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Abstract

We extend Bayesian models of non-rigid image registration to allow not only for the automatic determination of registration param
eters (such as the trade-off between image similarity and regularization functionals), but also for a data-driven, multiscale, spatial
adaptive parametrization of deformations. Adaptive parametrizations have been used with success to promote both the regula
and accuracy of registration schemes, but so far on non-probabilistic grounds — either as part of multiscale heuristics, or on tl
basis of sparse optimization. Under the proposed model, a sparsity-inducing prior on transformation parameters complements
classical smoothness-inducing prior, and favors parametrizations that use few degrees of freedom. As a result, ner bases get
troduced only in the presence of coherent image information and motion, while coarser bases ensure better extrapolation of t
motion to textureless, uninformative regions. The space of possible parametrizations consists of arbitrary combinations of bas
functions chosen among any preset, widely overcomplete (and typically multiscale) dictionary. Inference is tackled in an ef cien
Variational Bayes framework. In addition we propose a exible mixture-of-Gaussian model of data that proves to be more faithful
for a variety of image modalities than the sum-of-squared differences. The performance of the proposed approach is demonstra
on time series of (cine and tagged) magnetic resonance and echocardiographic cardiac images. The proposed algorithm matc
the state-of-the-art on benchmark datasets evaluating accuracy of motion and strain, and is highly automated.

Keywords: Non-rigid registration, Bayesian modelling, Sparse structured prior, Variational Bayes, ARD, Cardiac Imaging

1. Introduction

Non-rigid image registration is the ill-posed task of inferring
a deformation from a pair of observed (albeit noisy), related
imagesl andJ. Classical approaches propose to minimize a
functional which weighs an image similarity criteriBnagainst
a regularizing (penalty) term:

argming( )=D(I;J )+ R() Q)

Prior knowledge to precisely model the space of plausible de-

formations or the regularizing energy is generally unavailable.

The optimal trade-off between the image similarity term and the

regularization prior is itself dif cult to nd. Typically the user

WOUId,manua”y, adJ_USF the trade_Of,f until a qualitatively good t Figure 1: (a) Trajectories of points on the endocardium, following the registra-
is achieved, which is time consuming and calls for some degregn of a time series of cardiac MR images by the proposed approach. (b) LV
of expertise. Alternatively if quantitative benchmarks are avail-volume over time an®9:7% con dence interval. (c) Tensor visualization of
able on a similar set of images, they can serve as a metric @frectional uncertainty at end-systole, rasterized at voxel center2Dfstice.
reference on which to optimize parameters, under the assump-

tion that the value that achieves optimality is constant across the

dataset. Unfortunately, this assumption generally does not hol@s a hidden random variable, equipped with a broad prior distri-
Probabilistic interpretations of registration recently emerged abution, and jointly inferred with or integrated out. In practice,

a way to automate the process (Richard et al., R009; Simpsanalytical inference is precluded and various strategies are de-
et al| [ 2012} Risholm et a/., 2013). Gee and Baj¢sy (1998) rstvised for approximate inference. Risholm et al. (2013) charac-
noted that, in a Bayesian paradigm, the two terms in [E§. (1)erize the distributions of interest from MCMC samples. This is
relate respectively to a likelihood and prior on the latent transa most principled and accurate approach provided that enough
formation . In fact the trade-off parameter itself can be treatedsamples can be drawn within the available computational bud-
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sparse optimization with a multiscale free-form representation
of deformations, demonstrating gains in registration accuracy.
Here and to our knowledge, for the rst time, basis selection in

registration is approached on principled grounds within a prob-
abilistic framework.

We propose a Bayesian model of registration that allows to
automatically infer from the data the optimal parametrization of
displacements, along with all model parameters. The inference
scheme is ef cient and tractable for real scale non-rigid regis-
tration tasks. The model and inference strategy are based on
the Relevance Vector Machine (Tippjng, 2001; Tipping €t al.,
2003), a generic approach to sparse regression and classi ca-

Figure 2: Graphical model of registration. The generative model of Data tion. To make it suitable for regiStrationv where smooth solu-
involves a transformation of space, and noise governed by a set of underly- tions are looked for, we extend it to richer Gaussian priors with
ing parameter®. Hyperpriors (with hyperparametelrsp) are in turn imposed  grbitrarily structured covariance, at no cost in algorithmic com-

over the noise parameters. The transformation is parametrized as a linear co ; ; ; _
bination of prede ned basis functiorisy; k=1  Mgwith associated weights B[eXIty' We also generalize the approach to multivalued regres

Wg. Priors on the transformation smoothness and on the relevance of individua_a?{ion _(regreSSion of vector elds), so as to preserve the natural
bases introduce additional parameterand Aw. Random variables are cir- invariance of the problem to changes of coordinate frames.

cled, hyperparameters are squared. Arrows capture conditional dependencies.This article expands on earlier work of the authérs (Le|Fol-
Shaded nodes are observed variables or xed hyperparameters. The transfgr-

mation is fully determined by its parent nodes (thg andw), hence the gc_)c _et al.| 2_014) in several ways. Inference is fully pr?semed
doubly circled node. The content of plates is replicated (M times). within a variational Bayes framework. We propose a different
approximation of the likelihood term, effectively removing a
computational bottleneck: the voxelwise, local optimization of
get. Aside from monitoring the progress of the scheme, two difthe image similaritywia dense block-matching. Itis replaced by
culties arise: crafting an ef cient proposal distribution over  a step where the registration energy is optimized w.r.t. the re-
and computing the acceptance probability of the proposed sarduced parametrization. Finally we introduce a exible noise
ple. To circumvent this latter issue, the authors sample froninodel that is more robust to acquisition noise and artefacts,
an approximate posterior distribution derived in a variationaladapting over a range of image modalities.
free-energy framework. Alternatively, tiiiell inference canbe  Sectior 2 describes the statistical model of pairwise registra-
tackled in a variational Bayes framework (Simpson et al., 2012tion. The inference strategy is exposed in secﬂpn 3. Section
2013). This offers an appealing compromise between the coni reports experiments on tasks of motion tracking on real car-
putational burden and the quality of the estimates, dependingiac data, speci cally time sequences3i cine or tagged MR
on the chosen family of variational (approximate) posterior disimages and echocardiographic images.
tributions. In this article, we propose to extend the Bayesian
framework of registration to automatically select the optimal
location and scale of bases parametrizing the transformation. 2. Statistical Model of Registration
Spatial re nement of the parametrization was previously
handled heuristicallyf (Rohde et|al., 2003), or led to alternative Image registration assumes images to relédesome trans-
formulations of registration via spatially anisotropic Itering formation of space such as, in a medical context, when imaging
Stefanescu et al. (2004). Dynamic re nements of the displacethe motion of organs throughout a sequence of time frames.
ment space have also been proposef by Glocker ét al.|(2008}ggistration then aims at recovering the unknown transforma-
Parisot et al.[(2014) for MRF-based discrete registration. Thé&ion of space from the observed data, which is formally an infer-
displacement quantization is re ned using local, min-marginalence problem. We now specify a generative model of the data
based estimates of uncertainty. Dynamic quantization (see alggiven the transformation, along with a sparse structured prior
Tang and Hamarnéh (2013) gnd Heinrich et al. (2016)) does natver the admissible set of transformations. Hif. 2 provides a
affect the registration energy however: its purpose is simply t@raphical depiction of the model.
accelerate convergence towards the optimum. In our work, the The sparse structured prior model was previously proposed
registration cost function forces the complexity of the mappingby|Sabuncu and Van Leemput (2012) for image-based tasks of
to adapt to the underlying dataset: ner bases are introducedlassi cation and regression. Inference followed the guidelines
only in the presence of coherent image information and motionof [Tipping (20071), and was later accelerated for speci c pri-
while coarser bases ensure better extrapolation of the motioors exploiting sparsely connected graphs (Ganz gt al.,|2013).
to textureless, uninformative regions. In that spirit of modelln Sectior] 3 we develop alternative inference schemes that are
selection| Stewart et al. (2003) use an information criterion t@pplicable with no restriction: the structured part of the prior,
choose regionally among a limited pool of deformation modeldrrelevant to the algorithmic complexity, may be arbitrarily de-
(e.g. similarity, af ne, quadratic), but do not address combi- ned. The gain in algorithmic complexity re ects the way in
natorial issues arising in fully non-rigid registration from the which the later work of Tipping et al| (2003) accelerates the
number of possible parametrizations. Shi gt[al. (2013) coupleriginal Relevance Vector Maching (Tippirig, 2001). This ef-
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a. Moving image b. Fixed image c. SSD loss d. Robust loss

Figure 3: We illustrate the appeal of a robust variant of the SSD image loss based on a mixture-of-Gaussians model (GMM). Images (c,d) display the output warp
images obtained after registering images (a) and (b), using respectively the SSD-based likelihood or the GMM-based likelihodd (section 2.1). The arrows poi
towards a speci c region that highlights the limitations of the SSD: the subset of hypo-intense voxels bordering the myocardium in the xed image has no eviden
counterpart in the moving image. The SSD still drives the motion towards the best matches intensity-wise, which induces implausible tangential stretch of tt
myocardium. The GMM, on the other hand, incorporates a natural mechanism to downweight regions that cannot be reliably paired from image to image based
intensity values. The inferred motion is qualitatively closer to our expectations.

fectively renders the approach applicable to non-rigid registrawheree N (0; 1), 1 theN N identity matrix. is a global

tion. scaling parameter: it stands for the inverse variance (precision)
of the noise across the image. The SSD model can be described
2.1. Data Likelihood in a more familiar manner by the energy of Eg. (4), wiferg!
A good transformation should adequately map the js the list of voxel centers in the xed image avi=  1(v)

datasets, up to some misalignment and residual error akre the paired coordinates in the moving image.
tributable to the data formation process. The knowledge of
this process is captured in a likelihood model, which assigns R 5
a probability p(Dj ; P) for the dataD to be observed under D@ )=5 Jv 1V
some transformation (often conditioned on a set of hyperpa- =1
rametersP). The likelihood typically assumes the form of a Sjnce the SSD is quadratic w.r.t to intensity differences of
Boltzmann distribution: paired voxels, both the penalty for intensity discrepancies and
p(Dj :P)/ expD (D; :P); @ f[he rf':\te at Wh'iCh it grows can begome arbitrarily high. As seen
in Fig. [3, this renders registration vulnerable to strong local
which explicitely bridges the gap with the classic optimizationintensity biases, introduced for instance by acquisition artefacts
framework of Eq.[(IL). For pairwise registration of images, theor by topology changes in the imaged objects. In addition resid-
simplest and most common image similarity term is the sum ofial misalignments between structures of interest tend to yield
squared difference (SSD) of voxel intensities, which can be imhigher intensity residuals than those observed at background
proved upon by modeling spatially varying noise levels (Simp-voxels (see for instance Fig:]4a). Sources of model bias and ac-
son et al.| 2013) and artefacts (Hachama ef al., [2012), or byuisition noise cannot be captured together in a plausible man-
relaxing assumptions over the intensity mapping between imner with a single, spatially uniform noise level. In other words,
ages —e.g. to a piecewise constant mappirig (Richard €t al.the SSD noise model is neither robust nor exible enough.
2009), to a locally af ne mapping (Cachier etjal., 2003) orto a To gddress this limitation we propose to model the noise
more complex, non-linear (Parzen-window type) intensity mape, 11 L IN(; |) at each voxel = 1 N with a mix-
ping (Janoos et al., 2012). Mutual information is another popture of L Gaussian distributions. Implicitely at each voxel, the
ular image similarity, especially in the context of registeringresidueg = J[vi] 1[Vi] is independently assigned to one of
images of different modalities (Wells 1l et al., 1996), and hasthe L components, with| the probability of being assigned to
been successfully applied to the registration of cardiac imagege Ith componenN (0; ). Introducing a set of binary assign-
(Chandrashekara etlal., 2004). ment variable$z;,  z gfor theith voxel, such thagy = 1if
SSD is a simple yet ef cient image similarity term for regis- assigned to thith component and;, = 0 otherwise, the above
tration of monomodal cardiac images. It naturally lends itselfcan be summarized as:
to a probabilistic interpretation and eases mathematical deriva-

(4)

- - . - YN

tions. The target imagé is modeled as the warped source im- . 1P, _ 2

agel L further corrupted by additive, independent iden- POl 5 59/ ) exp E( =12) IV TV )

tically distributed (i.i.d.) noises N (0; ) at each voxel ;\‘ v

i=1 N . iz )/ " ©6)
J=1 +e 3) =1 121



Figure 4: (Left) Example residual image following registration. Artefacts and structures that changed appearance from one image to the other stand out much unl
ambient noise. Note that the intensity of the cardiac muscle itself differed in the pair of images. (Middle) Histogram of intensity residuals, with SSD and GMM ts
overlayed respectively in red and green. (Right) Energy pro les for the SSD (grey dashes) and GMM (black line). The voxelwise penalty is plotted as a function o
the intensity residual. GMM achieves robustness thanks to concave in exions that result in a soft threshold on the penalty incurred for large intensity residuals.

with =f 4 g =f, igandz = fzg=1 ni1=1 L. This  noise pattern leads to an arti cial increase in the number of in-
yields a spatially varying model of noise that is better suited tadependent observations and induces over-con dence in the data
render the complexity of noise patterns in medical images. Unterm. On the other hand, modeling precisely the noise structure
like in previous work|(Simpson et al., 2013; Le Folgoc et al.,would come at a signi cant computational cost. Here, we fol-
2014) the noise here is not assumed to vary smoothly across thev|Simpson et al/ (201.2) in arti cially downweighting the data
image, as patterns arising from misalignment and imaging artegerm by a factor that captures redundancies in voxelwise ob-
facts are local in nature. Integrating over assignment variableservations, based on a virtual decimation procedure suggested
we explicitely retrieve the mixture-of-Gaussian structure: by|Groves et al! (2011).

W X
pJjl; ;)= Lexp = Jv 1V, 2 (7) 2.2. Representation of displacements
We proceed in a small deformation framework,! = Id+u,
wherez, = p2?|stands for the normalizing constant for the with a parameterized representation of the displacement eld

. d d i i
Gaussian probability distribution function. The corresponding”: X 2 R 7! u(x) 2 R%. The displacement eld is expressed
data matching energy is given in Ef] (8): over a dictionaryf g, of Gaussian radial basis functions,
i k(X) = Ks (X«; x) | wherel isthed d identity matrix and
A o | 2
D..(&l; )= log Sexp 5 Jvi Vi “(8)
-1 =1 A 2

Fig. [48 shows the histogram of intensity residuals for the exin other words, the displacement eids parametrized by a set
ample registration of Fig[]3, along with the learned Gaussianf weightswy 2 RY associated to each basigs

Ks(xy)=exp (¢ WIS Y (@

mixture (jointly t during registration). The pro les of the stan- X
dard SSD loss and the Gaussian mixture (GMM) loss are dis- Un(X) = MW= (W (10)
played in Fid 4F. The characteristic in exion of the GMM loss, 1k M

with a reduced growth rate as the intensity residual becomes

higher, is responsible for its robustness towards intensity arte-(x) = 1(x)  w(x) andw = Wll W, are respectively

facts compared to the standard SSD quadratic loss. Mixturege concatenation, fde=1 M, of (x) andw.

of Gaussian (or Student-t) distributions have long been used as The basis centers span a prede ned regular grid of points,

building blocks for robust autoregressive models (Roberts ang,pica”y the whole range of voxel centers. The kernel wiith

Penny| 2002; Tipping and Lawrence, 2005), including in mediys also allowed to vary and spans a user-prede ned set of values

calimaging|(Penny et al., 2007) but remain uncommon forregs,;S,;  ;S,. This yields a redundant, multiscale representa-

istration (Leventon and Grimspn, 1998). tion of displacements. Larger kernels make the representation
A limitation of SSD shared by all aforementioned variantsmore compact, whereas smaller kernels allow to capture ner

is to assume that voxelwise intensity residuals are independengcal details. The genericity of the approach w.r.t. the choice of

This assumption does not ho[d (Simpson et al., 2012). In praddictionary is discussed [n AppendikH.
tice, the residual between the warped image ! and its

counterpart] exhibits local spatial correlations, either intrinsic
to the image acquisition and pre-processiegy( image pre-
smoothing, image upsampling) or introduced as a consequenceln non-rigid registration, the displacementis insuf ciently

of registration misalignments. Ignoring local correlations in theconstrained by the data and some regularizing prior has to be

4
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Penalizing Elastic membrane  Bending (thin-plate) Basis scale: Basis scale: Basis scale:
compressibility energy energy =0:25 =10 =40
(D = div) (D=r) (D=r?
Figure 6: Impact of the basis scale on the inferred transform. From left to

Figure 5: Impact of the regularization model. Displacements are parameterizetght, the displacement eld is parameterized by isotropic Gaussian kernels of
by isotropic Gaussian kernels of set width= 0:25. From left to right, the  increasing width. The data consists&points regularly sampled on the unit
regularizer varies. The data consistsAgfoints regularly sampled on the unit circle. The underlying motion is a rotation of4 radian. Only four of these
circle, forming an axis aligned square, pulled twice as far away from the origireight rotated samples are displayed for readibility. The scale of the bases used
as they initially were. The warped grid obtained by regression is displayedo represent the transform affects the area of in uence of the data points and the
along with the ground truth displacement. scale at which the regressed transform resembles a global rotation.

imposed over its parameters. This prior distribution encapsuthe additional ternw'kAkwk for each basis lets us penalize
lates our knowledge of the deformation and our modeling asindependently the recourse to this basis to capture the displace-
sumptions (see for instance Sotiras €t/al. (2013) for an exhaugient, by penalizing high magnitudes of its associated weight
tive review of deformation priors). We will consider Gaussianwy. EachAy is an arbitraryd d symmetric positive matrix,
priors of the form so thatwy can be penalized in a different manner along differ-
8 ent orientations. The improper limit case of in nifg actually
] 13 n | constrainswg to be null and thus forbids the use gfto repre-
p(wi; fAQ / exp 5B WRW+ W A (11)  sentthe signal. In sectipn 3 we determine optimal values of the
k=1 setfAxG=1 m in a principled manner, from which most of them
turn out to be in nite: we thus obtain a sparse representation of
the displacement from the initial, over-complete dictionary.
IntroducingA , diag/A1 Ap) as the block diagonal ma-
trix whosekth d  d diagonal block isAg, the full prior takes
A)l exp W (A+ R)w.

=W IwWo

where andfAyg=1 m are model parameters. The motivation
for such a prior is two-fold.

Regularity control. Gaussian priors in the form of Eq. (12) :
let us penalize physically implausible deformations. They hav&n€ more compact form(wj ;
been commonly used in the literature starting Wwith Bfoit (1981),
both because of their natural interpretability and soundness ip.4. Hyperpriors
mechanical terms, and their convenience from an algorithmic

and computational standpoint. The value of model parameters , andfAyxg-1 m iS un-

known. We regard them as additional model variables and en-
dow them with prior distributions. When possible, the choice
of conjugate priors facilitates inference. The noise levels

f1 Lgfor each component of the Gaussian mixture are as-
The structure of the precision matriR can be adjusted to sjgned independent Gamma prior jjco; do) / % lg do1
penalize the magnitudkDuk? of the rst derivative of the The noise mixture proportions = (5 1 Lgare equipped
displacement eld [(Gee and Bajdsy, 1998) or higher ordefyith a Dirichlet prior Dif( j o) / L 1 is endowed
derivatives|(Rueckert et al., 1999; Ashbuiner, 2007; Ashburnefjith a Gamma prior ( jag;bo) / % e ™ . In absence of
and Ridgway, 2013), effectively encoding a wide range ofstrong prior knowledge, broad uninformative priors can be cho-
priors. We recall if AppendixH how to compukeefciently  sengg=by=cy=dy= o! O).
using Fourier analysis for general families of basis functions  an improper uniform prior is taken over basis penaltes
instead of relying on costly numerical integration. With the yith the added bene t of making inference invariant to rescal-
parametrization of displacements given in sedfioh 2.2, classicghg of basis functions. Moreover given the inference strat-
energies are in fact implemented in closed-form. In this workgqgy of sectiorf 3 Appendi®B arid Append|xE, optimality con-
we speci cally rely on a bending (thin-plate) enerdy € 1 ?).  ditions state tha#,T = ,‘nenl is at most rank-one, with
k 2 R: [f +1g. We found advantageous to further restrain
Basis selection.The second factor in our prior, recalled in | to be eithei0 or +1 . In other words, along any given direc-
Eq. (13), induces the desired basis selection mechanism. tion, A either constrainsv, to be null or does not constrain it
whatsoever. This prevents direct competition between the two
(13) regularization mechanisms of E{. [12) ahd|(13). Moreover, the
Gamma prior over then becomes conjugate pgwjA; ).

awj )/ exp % w Rw (12)

. e 1
q(wjfAxg / exp EWIk AW
k=1



2.5. Related work: Sparse Coding & Registration The goal of Bayesian inference is thus to characterize the joint

Sparsity-inducing priors have a two-fold motivation. The Posteriorp( jD) or to characterize marginals of interest, such as
rst bene t is in terms of algorithmic complexity. Unless re- the marginal posterior distributigp(wjD) of transformation pa-
sorting to low parametric models, the size of the parametrizat@meters for the purpose of registration. Exact inference is pre-
tion makes direct optimization cumbersome without the recluded and we proceed in the framework of variational Bayes
course to sophisticated solvers. The computation of exact cdVB) inference (Bishop et al., 2006).
variance matrices that are typically involved in probabilistic
approaches also becomes unfeasible, while diagonal approx-1. Variational Bayes inference
mations used in their stead discard signi cant interactions in- VB inference approximates the true posteprjD) among a
duced by the data and priors. Secondly, basis selection mechgstricted family of variational posterior distributiogé ) that
nisms adaptively constrain the space of deformations, automathene ts analytical and computational derivations. The objec-
cally tuning the degrees of freedom to the smallest set suf cientive under VB inference is to minimize the Kullbach-Leibler di-
to capture the observed displacement. Coupled with a multivergence Kli(q( )kp( jD)) or equivalently to maximize a lower
scale set of basis functions, this yields a data-driven, automatisoundL (q) of the log-evidence. This equivalence follows from
spatial re nement of the granularity of the displacement eld the following identity, where on the left-hand side the evidence
that complements the otherwise scale-bllpdregularization.  p(D) for the model is constant w.r .y
Adaptive, multiscale regularization was shown to yield state- 7
of-art resultse.g. in denoising natural scenes (Fanello et al., logp(D) = KL q( ) p( jD) q( )log a( ) d (15)

2014), but also in medical image registratibn (Shi e al., 2013). p( ;D)
Fig. [G gives a naive insight into the key impact of scale when | {z
limited data is available. . L@

L, priors have been widely used in all areas of sparse coc\—N
ing, including for registratior] (Shi et all., 2013). Other sparsity-
inducing norms such dssupport norms and varianis (Argyriou
et al|| 2012; Belilovsky et al., 2015a), that improve over the per-. g
formance of the_; norm w.r.t. the degree of sparsity in pres- tional fz_;\mllyq re ects a _trade-off betwee_n_ the accuracy of the
ence of strongly correlated explanatory variables, have recent@pproxmatlorq ( ) and its actual tractability.

been proposed. They were shown to be attractive on tasks of The mean- eld approximation assumegsto faCtF’”Ze over
| subsets of model variables. In our case, we consider variational

functional MR imaging|(Jenatton etlal., 2012; Belilovsky €t al.,> >~ ) : -
5015h). Here, we turn instead towards sparse Bayesian learflistributions for which the transformation parameters and indi-
' vidual penalties, the regularization level, the noise levels, the

ing, with the prospect of joint estimation of model parameters’ " i dth | . P o
and that of uncertainty quanti cation. For an extensive reviewm'xture proportions and the voxel assignments factorize:
of sparse methods, we refer the reader to the work of |Bach

' = Owa(W; A : 1
et al| (2012), and to that bf Mohamed et Al. (2012) for a bench- a() = duaiA)a ()a ()a ()2 (16)

mark ofL; and bayesian sparse learning methods. The prior of o q be any one of the individual factors and the prod-

Eq. {(1I3) was rst introduced by Tipping (20D1) for regression ¢ of remaining factor®.g.q andguaW: A)q ( )g ( )g(2)
and classi cation tasks with the so called Relevance Vector Ma‘respectively. Let, and |, denote éorresponding subsets of

chine. The authors demonstrated its relevance for sparse coghyiaples within . Exploiting the factorization, each factor
ing when used in conjunction with the framework of Automatic a()  pl ij] can be seen to give an approximation of a

Relevance Determination (MacKay, 1992). Bishop and Tip pi”%iven marginal of interest. The optimuegn among variational

(2000) offer an alternative sparse Bayesian learning (SBL) vieWsteriors compatible with this factorization is known from cal-
on the Relevance Vector Machine, where they opt for a Varius of variations to satisfy, for each individual factpr
ational Bayes treatmenf. Wipf and Nagarajan (2008) further

investigate links between the SBL and ARD frameworks and logg, =Hogp( ;D)iq, + const a7
resulting schemes. Alternatively, E§. [11) can be interpreted as

a generalized spike-and-slab pribr (Mitchell and Beauchampere,h iy, denotes expectation w.rgy; ( | ). Eq. [I7) nat-
1988) despite using a different parametrization, provided thatirally suggests inference schemes that update each factor
eachAy is constrained to a binary state — either null or in nite. in turn until convergence, guaranteeing decrease of the objec-
tive L (g) at each iteration. Moreover when the Bayesian model
uses conjugate exponential distributions, mean- eld VB up-
dates are considerably simpli ed. Each factp( | ) lies in the

Bayesian inference summarizes both prior knowleggg  Same exponential family as the corresponding ppr j | )
and data-driven informatiop(Dj ) on model parameters and SO that VB inference resolves into much more practical updates

hen the true posterior lies within the variational family, the
(non negative) Kullbach-Leibler divergence is minimized (zero)
wheng () = p( jD). In practice however, the choice of varia-

3. Model Inference

hyperparameters = fw; ; :z ; Agwithin a posterior distri- Of the exponential distributioparameters For instance, the
bution i) pl)
iy = P ) POy R R R
e O @ Tha(n=a(n @ (di = q0dy  piD)d



a. Moving image b. Fixed image c. Adaptive parametrization d. Adaptive parametrization e. Output displacement eld
(In the initial steps) (At the end)

Figure 7: Basis selection mechanism displayed on an exa@iptegistration between slices of cardiac MR images (cfc 4.3), respectively at ES (a) and ED (b).
(d,e) Bases selected in the initial steps of the algorithm vs. at the end. The locations and scales of the Gaussian RBFs are indicated by circles (Isstdyntour at
(c) Inverse displacement eld output by the algorithm (scale fa@prsmoothly varying across the whole image.

optimal variational posterior for is again Gamma distributed, w.r.t. A is the same as maximizing the conditional evidence
q() = (jab), with closed form expressions fa;b. In p(DjA;h iq;hiq;hzdig,). Infactto increase the value of the
the proposed model, most conditional probabilities do belongbjectiveL (q) w.r.t. ..o We merely need to increase (not nec-
to conjugate exponential families. One exception is the like-essarily maximize) the conditional evidence w.At, then up-
lihood p(Djw; ;2). To enable analytical derivations qgf, q, dateq(vvjA) according to the optimality condition of Eq. (19).
andgwa, @ Gaussian approximation of the likelihood is used Based on this remark, we derive antive setmethod that
(section 3.14). In addition the family of variational posteriors greedily improves on the objective functionia{g). The active
awa(W; A) is further restricted (sectign 3.2). set refers to the subs8tof basis functions , for which Ay is
nite along at least a direction, as opposed to the inactive set of

3.2. Constrainingja(w; A) for fast sparse Bayes inference  basis functions for whicti\ is in nite and constrainsy, = 0.

From the factorization of Eq.[{16) and optimality condi- The scheme starts with an arbitrary active set (typically ; )
tions of Eq. [(I7),,,(W;A) unfortunately does not simplify and proceeds by updating org at a time, maximizing the
into a convenient distribution. Without Iggs of generality yet, duantity of Eq.[(2P)) w.r.t. this basis function only. This results
Gua(W; A) = q(WA)Ga(A), wherega(A) , . Gua(w;A)dwis N adding a new basis to the active seAifis made nite along
avariational approximation tp(AjD). We propose to constrain &t least a direction, or removing a previously active baskf
the variational posterioga (A) to take the form of a Dirac dis- Pecomes in nite. The hyperparame that is selected for an
tributionga(A) ,  4(A) with all its mass assigned at the value UPdate is the one, among all indides: 1:::M, that provides
A = Agfork = 1:::M, so thatgua(W;A) = gwjh) 4(A).  thehighest gainw.rt. the objectiie. AppendixB shows that, in
Under this assumption, the optimum the case of a Gaussian likelihood, all necessary updates can be

performed ef ciently using ranktlinear algebra identities.
Oua = argmaxt (@), q WA ) a (A) (18)
A qwiA) 3.3. Related work

can be derived by calculus of variations in two steps. Given any In & simpli ed setting (' = 0), [Bishop and Tipping| (2000)
A, g (wjA) satis es optimality conditions similar to Eq. ([L7):  use the factorizatiogw, (w; A) = aw(W)da(A) to derive closed-
form updates for all factors. Unfortunately, the smoothness-

logq (WjA) = Hog p( W, A;W;A; D)iq, 5 tconst (19) inducing prior destroys model conjugacies on which the au-
thors rely. In addition, the resulting updates have a complexity

Reinjecting this expression into Ed. {18) turns it into a maxi-O(M3) that does not scale favorably w.r.t the number of basis
mization w.r.t.A only, so that the maximizex of L (q) canbe  functions. Finally basis functions that are numerically pruned

shown to maximize the following quantity: from the model cannot be reintroduced at a later stage. As an al-
z ternative, the evidence-maximization criterion of Hq.] (21) was
A =argmax expHogp( a; A;D)i g, dw (20)  also proposed by Tipping etfdl. (2003) on the grounds of type-I|
A w ' maximum likelihood inference. Our active set method gener-
= argmaxp(AjD;hiq;hiq;hdg,); (21) alizes their fast marginal likelihood maximization procedure in
A presence of a smoothness-inducing prior.

= argmaxp(DjA;hiq;h iq ;hg,): (22)
A 3.4. Gaussian approximation of the likelihood
Eq. (21) uses the fact tha{wjA; ) andp(Djw; ;z) belong to Although voxel intensities in the warped and xed images are

exponential families. Eq.[ (22) follows from Bayes' rule with related by assumptioria Gaussian noise (or a mixture thereof),
the improper priop(A) / 1, and shows that maximizing(q)  the transformation ,! acts non-linearly on intensity pro les



and the resulting likelihood w.r.tv does not belong to a stan- approximation itself involves minimizing a registration energy
dard family. To retrieve the required conjugacies during updatew.r.t. the subset of active basis parametgg$ ( M) to nd

of g , g; andagw.a, @ Gaussian approximation of the data likeli- the posterior mode, then®@(N) cost to compute the Gaussian
hood is used. Itis derived from an ef cient second-order Taylorapproximation around this mode.

expansion of the log-likelihood (AppendikA). The Taylor ex- As a point of comparison, a single gradient descent step
pansion is local: it depends on the pomtaround which itis  when optimizing the classical registration energy of Egl (1)
computed. For updates gf andg,, the approximation is used w.r.t. the full set of variables cost®(M? + NlogN), where
around the known mode af(wjA). For updates ofl.» how-  the left-hand term stems from the gradient of the regularization
ever, the approximation is taken at the mode of the true posteenergy and the right-hand term from the gradient of the data-
rior p(wjD; A;h iq ;hig ;hig), whichmust rstbe computed. energy. Exact Hessian computation in absence of sparsity costs
This is done by quasi Newton optimization (L-BFGS) w.r.t. the O(M?2 + MN log N) and Hessian inversion 8(M?3).

subset of active variables (AppendixB).

3.5. Algorithm overview 4. Experiments & Results

The scheme proceeds according to Algorifhin 1. We starg 1. Material
W't.h ho z_;\cnve bases = ;. We cycle between _updates of th_e We experiment with the proposed framework on tasks of car-
noise mixiure parameters, of the transformaiion parametnzadiac motion tracking. The goal is to recover the motion of the
tion and parameters, and of the regularization parameter. Pri%r

o updatinggy,s (w: A). we update the approximation of the data ardiac muscle over the course of the cardiac cycle from a time
W;A ’ 1 5 H 5 H H H H
likelihood. The global objectivé. (g) provides an always in- series of3D images. The rst experiment gives insight into the

. . empirical behaviour of the proposed algorithm on a simple ex-
creasing lower-bound to the evm_lenpeD) and can be us_ed ample of2D pairwise registration. Other experiments involve
to monitor convergence. Alternatively, the scheme can S'mp|¥ull 3D + t motion tracking on various imaging modalities.
stop after a certain number of updates to the set of active basesThe rst dataset consists of synthetic sequenceabfiltra-
has been performed. sound data provided as part of the registration challenge orga-
nized for the 2012 MICCAI workshop on Statistical Atlases and
Computational Models of the Heart (STACOM). Details on the

Algorithm 1 Sparse Bayesian registration algorithm

1: Initialize A, = 1 forallk (S = ;) andq challenge methodology can be found in De Craenelet al. (2013).

2: repeat These synthetic images count approximatéymillion voxels

3. for T iterationsdo each, at a very ne isotropic resolution 633mm. To avoid

4: Updateq; to arg max, L (q) following [AppendixD. further optimization of our code in terms of RAM management,

5: Updateq to argmay L (q) following[AppendixD. we downsampled them by a factor &f We thus worked at a

6: Updateq to argmay L (g) following AppendixD). resolution of0:66mm at the nest level. The second and third

7:  end for datasets are hosted by the Cardiac Atlas Project. They were

8:  Update the likelihood approximation (AppendixA). made available following the cardiac motion analysis challenge

9: UpdateA (active set method) to greedily incredsén) (Tobon-Gomez et all, 2013) organized for the 2011 MICCAI
then seg(wjA) to arg maxa) L (d) workshop on Statistical Atlases and Computational Models of

(AppendixB[ AppendixH, AppendixF, AppendikxG) the Heart (STACOM). The data includes a setlbfsequences
10:  Updateq toargmay L (q) according t. of real 3D tagged MR images at roughlynm 1Imm 1mm
11: until no signi cant increase i (g) or maximum number resolution { million voxels), and a set af5 sequences of real
of iterations reached. cine MR images at abodt25mm 1:25mm  8mm resolution.
The tagged sequences cont@ilito 30 frames each, the cine
MR sequence80 frames each. Fig[]8 displays exam2e
3.6. Algorithmic complexity slices from frames of each modality.

Updates of the mixture parameters taBfL. N) per pass ) ) ]
on the image. The cost is dominated by the computation-2- Details of the experimental setting
for each of theN voxels, of soft-assignments to the mix- The experimental setup is identical across all modalities. The
ture components. Sever@(L N) passes are typically per- multiscale parametrization of the displacement eld consists of
formed. The regularization levelis updated irO(jSj?), where  isotropic Gaussian kernels of respective variag®gce 20> mn?
jSj is the number of active bases. Updates to the parametrizand S, = 10° mn¥, plus an anisotropic Gaussian kernel of
tion A occur one basis at a time (a singdg is changed): variancel®? mn¥ in the short axis plane ar@l? mn¥ along
each update take®(jSj*> + MjSj + NlogN) to maintain nec- the long axis. The proposed framework imposes no restriction
essary statistics, exploiting rariklinear algebra identities. As on the parametrization of the displacement eld and we expect
a byproduct, an update gfwjA) is obtained. An overhead of the anisotropy to be of potential relevance given the ventricle
O(Sj® + MjSj? + jSj NlogN) adds up to this, since statistics anatomy. All hyperparameters are set to uninformative values
must be recomputed once in full after the mixture parameter§ay = bg = ¢ = dg = o ! 0). The registration is accel-
and the likelihood approximation are updated. The likelihooderated with a multiresolution pyramidal scheme, starting with
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Figure 8: Example slices for the cardiac imaging modalities that we experiment on, with artefacts and patterns peculiar to each modaitytaggé MR
image. (Middle)3D echocardiographic image. (Rigl&) cine MR image.

parameter re-estimation throughout iterations. A heuristic
provides a large initial value for the regularization level
This initially discourages the addition of ner dictionary bases,
whose impact on the signal regularity is too high at this stage.
Coarse bases are added instead to capture the global trends
in the observed displacement. The regularization level is
consequently re ned to re ect the regularity of the inferred
displacement. As decreases towards a more sensible value,
ner bases are incorporated in the active set to capture ner
local details of the visible motion, or to ensure that these ner
details of the inferred motion blend smoothly with the rest of
the displacement eld. In case of signi cant overlap between
a subset of ne bases and a coarse basis, the basis at the
coarsest scale may be deemed no longer to contribute towards
a better explanation of the data and removed. Towards the
last iterations, most actions consist in updating the orientation
Figure 9: Basis selection mechanism and its coupling with the jointly estimated)f active bases rather than in additions or deletions from the
regularization level, across iterations. (Top) Addition, update or deletion ofactive set, and reaches a plateau as well. Fif] 7 further
dictionary bases in the active parametrization of the displacement eld acrosfj|ystrates this mechanism of basis selection. The location of

iterations. Three distinct scales are used in the representation of displacemergétive bases is shown at two points in time: in the initial steps
(1 curve per scale). (Bottom) Regularization parametenpdated every few ’

iterations, plotted against the number of iterations run since the beginning o@f the algorithm and at the end.
the registration.

Noise model estimation.The noise model is jointly estimated

downsampled (smoothed) versions of imagesdJ and pro-
gressively moving through the pyramid of images to the images
| andJ at full resolution. Three resolution levels are introduced,
downsampling by a factor @&at each level. Note that we do not
make use of pre-segmentations of regions of interest. Computa-
tions were run on an Intel Xeon processd@660(@2:80GHz,

6 cores, 12 threads) and totbs 30min per image pair for cine
MRI, 30 45min for tagged MRI and 90min for 3D US.

4.3. Self-tuning registration algorithm: an analysis

We use the exampl2D registration of Fig[ B and Fid.| 7 to

give some mSIth into the registration algorlthm. Figure 10: Inferred noise model at the beginning of registration and at the end.

The noise model learned on downsampled, smoothed images has a higher prob-
Basis selection & regularization. Fig. [J demonstrates ability of low noise (higher peak arour@ but also of high noise (higher tails)

how basis selection mechanisms empirically combine witHfue to the increased misalignment at the beginning of registration.
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over the course of the algorithm. In all experiments it displayed
a fast convergence. The Gaussian mixture also adapts quickly
to changes in the distribution of intensity residuals that arise
from the multiresolution pyramidal scheme, when hopping
from a smoothed downsampled image to the next level in the
pyramid of images, as seen from Fig 10.

Robustness w.r.t. initialization. Fig. [1] provides evidence

towards the empirical robustness of the estimated level of

regularity w.r.t. its initial value. The initial value of spans

4 orders of magnitude, whereas its nal estimate varies by

at most a factor o4 across runs. Empirically, we observe

that the regularity level decreases monotonically from its

starting value towards a reasonable local optimum. As a IimiT:igure 13: Accuracy benchmark on tBB US STACOM 2012 normal dataset,
tation, it follows that the scheme will typically not recover the reporting the median tracking error over time for varying SNRs (blue, green,

expected regularity level if initialized from too low a value of ~ red curves). For the reference SNR (in blue), quartiles are overlayed (boxplots)
to picture the dispersion of error values.

deformed over the cardiac cycle. The data extracted from such
ground truth meshes can be compared to that obtained by de-
forming the mesh at a reference time point (namely, end dias-
tole) throughout the cardiac cycle with the transformation out-
put by the proposed registration approach. The visual and qual-
itative behaviour of the proposed approach was found to be sat-
isfactory, even in terms of extrapolation: the inferred motion
remained consistent in areas of the right ventricle that fall out-
side of the eld of view (Fig.[IR). This hints at an effective
] ) ) o _regularization mechanism, despite being automatically tuned.
Figure 11: Robustness of the inferred regularity level w.r.t. its initial estima-
tion. The2D registration is rurB times, and initialized each time with a dif- We evaluate the accuracy of the proposed approach on a
fering level of regularity (respectivelyl(?, 10°, 10°). Each curve shows the  rst subset of sequences that image the same motion at vari-
evolution of over the course of the associated run. ous Signal-to-Noise Ratios (SNRs). Because the proposed ap-
proach infers a consistent motion both inside and outside of the
eld of view, we nd natural to assess its accuracy from statis-
4.4. Syntheti@D Ultrasound Cardiac Dataset tics based on the whole mesh. This slightly departs from the
i i methodology of De Craene et|al. (2013) where part of the left
The appeal of this benchmark is to offer a dense groundenricie only is considered. Fig. 113 reports the median point-
truth in terms of motion and strain inside the cardiac muscley,_nqint error in the inferred displacement for each time frame,
The work ow of image synthesis uses the output of a cardiaG,here the median statistics is computed from every node in the
electromechanical model to prescribe displacements in the myqach At the best SNR, the highest error is observed around end
ocardium. For each sequence of images, the ground truth CORystqle with a median d¥:83mm, although the spread of error
sists of a sequence of meshes of the left and right ventricleg,| ,es pecomes wider in the last frames. This falls in the same

range as that reported for challenge participants by De Craene
et al| (2018) — although slightly higher than the most accurate
methodology. Of course part of the error is likely to be at-
tributable to the use of downsampled, smoothed images with
a resolution 000:66mm as opposed t0:33mm. Besides as the
signal to noise ratio degrades, we observe as expected a global
trend of increased error magnitude. As seen from Fig. 14, the
increased SNR impacts the noise model (with a higher preva-
lence of small intensity residuals at high SNR) learned by the
proposed approach, which in turn becomes more conservative
end-diastole frame end-systole frame in its estimates of displacements.

Figure 12: Ground truth mesh (green transparent surface) vs. reference mesh Fig. @ reports (Green Lagrangian) stra_un mea_lsure_s a.t end
transportedia registration (overlayed black wireframe). The extrapolated mo- Systole averaged over AHA segments. This provides indirect

tion out of the eld of view (where the arrow points) remains close to the groundevidence of the relevance of the automatically tuned regularity
truth. The maximum error does not excefem. Best seen by zoomingin. |evel and of the displacement parametrization. Ground truth
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Normal Ischemy (LCX)

Figure 14: Evolution of the inferred noise model for increasing Signal-to-NoiseFigure 15: Bull's eye plots of the radial, longitudinal and circumferential strain
Ratios. components at end-systole, averaged over AHA segments: estimated (top) and

ground truth (bottom). A healthy case (left) and an ischemic case (right) are
reported.

values of strain obtained from the corresponding ground truth
mesh are compared to those estimated from the output of re nuscle. Each sequence in the dataset thus comes with a corre-

istration. Variations in the strain across segments are generalé’ponding set 012 landmarks. the motion of which was man-

Wel.l captured, even more So for its longitudinal an_d cwcumfer-ua”y tracked over time. The landmarks are divided in three
ential components. Similarly to most methodologies however

the radial strain — which captures the thickening of the muscléJrOUpS of4 points n the basal, mid-ventricular and apical ar
eas of the left ventricle. They serve as ground truth from which

during the contraction — appears to be globally somewhat unfe istration accuracy is assessed. Details of the experimental
derestimated in the left ventricle. This might indicate a slight g y ) P

L : . : etting along with challenger results are provided by Tobon-
under-estimation of the endo- and/or epicardium dlsplacemenéomgz ot alg 2013) 9 P y
due to a coarse parametrization or over-regularized transforma=—: ’ - , .
Fig. [18 summarizes challengers' results along with ours

tion. The following table provides statlst|qs on the numl_aer ofat End-Systole (ES). The proposed approach achieves state-
bases of each scale used for the parametrization of the displace- . ; .
ment eld, for the normal case at highest SNR of-art results on this benchmark with a median accuracy of
’ ' 1:46mm. As a point of comparison, the variability in the land-
mark tracking was estimated as part of the challenge method-

Basis type Median # (Q1 - Q3 . -
yp (Q1-0Q3) ology at0:84mm. We perform two simple statistical tests to

= 20mm 175(14:25-19) quantify the statistical signi cance of the increase in accuracy
anisotropic 15(11:25-205) of our methodology compared to the challengers: a pairwise
= 10mm 34(31:25-38) Student-t test and a pairwise Kolmogorov-Smirnov test. The
Total 64:5 (60— 71) tests are run for each pair of samples involving the proposed

approach against a challenge participant's. The Student-t test
Table 1: Number of bases at each scale in the active parametrization of tr@ims at detecting signi cant differences in the true mean error
displacement eld (pooled over all frames and all sequences). Median, rstantgf our method versus a challenger's, whereas the Kolmogorov-
third quartiles are reported. Smirnov test more generally aims at detecting whether the un-
derlying distribution of errors differ. Figures are reported in
The number of active bases on these sequences is typical-bémeB and provide some evidence towards a signi cant im-

smaller than that used in our experiments on cine and taggegtoyement from at leag of the 4 methodologies.
data, with a lesser reliance on ne-scale bases. It may evidence

increased conservatism in the estimated displacements, as well
as indicate greater regularity of the synthetic ground truth mo-
tion. The benchmark also provides datasets that aim at repro-
ducing pathological cardiac function, including a case where
certain AHA segments become quasi akinetic due to ischemy.
Fig. [15B summarizes estimated regional strains for this case,
with qualitative retrieval of the ischemic segments (bolded con-
tours), as emphasized by the comparison with the normal case.
The accuracy on the ischemic case is similar to that of the nor-
mal case at identical SNR, with a median error at end systole of
0:30mm.

4.5. STACOM 2011 tagged MRI benchmark
Figure 16: Accuracy benchmark on tBB tag STACOM 2011 dataset, report-
On this image modality the grid-like tags allow to follow the ing box-plots of tracking errors on all methodologies. The doted black line

motion of keypoints on the boundary of, or inside the cardiadepresents the average inter-observer variability.
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Figure 17: Strain at ES, computed from 8@ tag data of volunteer ¥.

Challenger Student-t p-value KS p-value
Figure 18: Accuracy benchmark on the cine MR dataset, reporting median error
iLogDemons <22 1016 <22 1016 over time along with quartiles. Surfaces reconstructed from slice-by-2ilie¢
MEVIS 0:0099 0.1385 segmentation serve as ground truth. Points on the discrete contours @ttiene
IUCL <22 1016 <22 1016 transported over time using the registration output. For each time step, point-
UPE 245 105 0:00024 to-surface distances over dlb sequences and all contour points are pooled.
: : Errors at timeD are induced by the surface reconstruction.

Table 2: Statistical signi cance of the increase in accuracy on the STACOM
20113D motion tracking challenge. We repgptvalues of pairwise tests for  time was deemed dif cult for this image modality. Instead the

the proposed approach versus each participant's. Bolded values highlight Si%iccuracy of the proposed algorithm was evaluated by Cross-

ni cant improvements at th&% signi cance level. : . . . .
comparison with direcBD+t segmentation results. Speci -
cally, the endocardium was delineated over time2bnslices

The proposed formulation appears to achieve in a quasi ai'Sing the freely available software Segrife(iteiberg et al.,
tomatic manner results qualitatively and quantitatively on pai2003), yielding a3D point set of discretized contours. 3D
with the state of the art. In particular we insist that most paramsurface was then reconstructed as the zero level set of a signed
eters involved in the proposed formulation — the noise modeflistance map computed by radial basis interpolation, after esti-
and regularity level , the active parametrization of the dis- mating the normal to the surface at every point in the set from
placement eld — were automatically determined during reg-2 local neighborho@}l We then assessed the discrepancy be-
istration. The strain maps and mesh deformations produced By/een the reference end diastole segmentation transported over
the proposed scheme, as illustrated for instance infFig. 17, a|§5ne viathe outpqt of registration, anq the surface_estlmated by
appear to be qualitatively on par with the best challenge resulidirect segmentation of the endocardium at each time step.
in that respect, and superior to that of the closest competing Fig- [18 summarizes the distribution of errors over time,
methodology accuracy wise (please refér to Tobon-Gomez et apooled over alts sequences and all contour points, displaying
(2013) for a direct counterpart to Fif-]17). This again hints athe evolution of key quantile-based statistics. The median error
the practical viability of the automatically adjusted trade-off be-réaches a satisfactory maximumic82mm for framel0, which
tween data and regularization energies. We report in Table 3 tH@ughly coincides with the end systole time for all volunteers.
number of bases of each scale used for the parametrization 6 & point of comparison, the volumes under consideration have

the displacement eld. a spacing ofL:25mm in the short-axis plané.€. within slices)
and8mm along the long-axid.g. inter-slice). The wide spread
Basis type Median # (Q1 — Q3) of error values partly re ects the challenge in obtaininga

segmentation of the endocardium that remains consistent over

= 20mm 17 (14:75__20) time (e.g.due to the variable appearance of papillary muscles).
anisotropic 30(25-3325) Misalignment of short-axis slices i8D volumes, which may
= 10mm 100(90-11025)

arise from the (slice by slice) image acquisition process, also
Total 148(134-160) accounts for some of the largest discrepancies. We observed no
evident spatial pattern in the distribution of errors, although the
Table 3: Number of‘bases at each scale ir_\ the active parametrization (POO'%gmentation rarely reached the very tip of the apical region.
over all cases). Median, rstand third quartiles are reported. The mixture-of-Gaussians noise model captured variations in
the level of noise of an order of magnitude between distinct
) o _ components (a factor df0 between the standard deviations of
4.6. Cine MRI dataset: qualitative results and uncertainty extreme components). The visual aspect of the cardiac muscle
Original images had a low inter-slice resolutiorBaim com-  changes drastically over time, so that these regions tend to be
pared to the in-plane resolution af25mm. We upsampled assigned higher noise levels than the baseline acquisition noise
them (typically by a factor ob) prior to the registration pro-
cess to prevent a degradation of numerical accuracy. To ob- 2hp://segment.heiberg.se
tain a ground truth by direct manual tracking of landmarks over 3http:/hdl.handle.net/10380/3149
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FrameO Framell Frame29
(End Diastole) (End Systole) (End Diastole)

Figure 19: Example registration for the cine SSFP dataset of volunteeé propagate the segmentation from the reference frame to the rest of the time-series
with the output of the registration. The resulting mesh is overlayed 8B alice and visualized at three representative timesteps. 3Dhmesh attests to the
regularity of the underlying transform, and to its coherence over the cardiac cycle.

level. Voxels in basal slices, with visible out ow tracts and ap- 5. Discussion

parent topology changes, also tend to fall in the noisiest com-

ponents. Fig[ 20 attests to the high variability (several orderg 1 Adequacy of modelling assumptions

of magnitude) of the optimal model parametefor varying

sequences and time steps, which would render its manual esti- pespite using generic RBFs, the inferred parametrizations of

mation via a trial-and-error or cross-validation approach cumsp displacements were highly sparse, typically involving no

bersome. The apparent bimodality of the histogram might remgre than a hundred degrees of freedom. This shows that the

ect the fact that cardiac phases with Signi cant contraction Orproposed Sparsity_inducing mechanism is potent’ and bene ts

rela.xation, around end SyStOle, alternate with phaseS of Iessgbth algorithmic Comp|exity and memory usage. Finer bases

motion around end diastole. were used more often in experiments with tagged MRI; in addi-
tion to the higher resolution of these volumes compared to cine
MRI data, tags may have been regarded as reliable, informative
structures along all directions of motion. While good accuracy
was achieved on synthetic echocardiographic time series with a
reduced number of bases, the synthetic motion from which the
sequences were reconstructed is likely to have enjoyed greater
regularity as well.

We did not explicitely make use of temporal regularization

(as ine.g.|De Craene et all (2012)), but the temporal (and spa-
tial) consistency of deformations remained satisfactory (Fig.
[(a) and Fig.[ I9). Incorporating temporal regularization and
moving towards a large deformation framework (Beg et al.,

_ _ _ _ 2005;/ Arsigny et al., 2006) with geodesic-by-part trajectories
Figure 20: Histogram of inferred values for the regularity hyperparameter may still be advantageous, although technicalities should be ad-
pooled over alll5 sequences ar@D frames per sequence. e ’ ) -

dressed to maintain a reasonable computational complexity.

Finally, table[4 reports statistics on the number of bases o The proposed smoothness-inducing prior is widely used, and

N . |I alizes a pragmatic trade-off between quality and complexity:
E;‘gh scale used for the parametrization of the d|splacemeﬂ?is stationary and involves a single hyperparamete3patially

varying levels of regularization have been used in the recent lit-

Basis type Median # (Q1 — Q3) _eratu_re (Simpson et al., 2015; Gerig _et al., 2014) to account for
imaging artefacts or heterogeneous image contnt {issue,
= 20mm 18(10-28) blood), at the cost of additional technicalities and approxima-
anisotropic 29(21-39) tions in the variational inference. Here, spatially varying reg-
= 10mm 44(29-57) ularization occurs indirectly via a spatially varying noise level,
Total 93(75-111) and directly thanks to the adaptive parametrization of displace-

ments. The latter results in a non-stationary prior on transfor-

Table 4: Number of bases in the active parametrization (pooled over all casegpations (with coarser bases naturally enforcing higher regular-
at each scale. Median, rst and third quartiles are reported. ization).
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The sparsity-inducing prior over individual basis functionsimatimﬂ by partial parallelization of the VB updates for the
is parametrized by a positive symmetric precision ma#ix  noise mixture[(AppendixP) and by optimizing convolution |-
This allows to activate a given basis along a single directiorters that we rely or{ (Appendi¥H). Limitations of the proposed
while constrainingai to be null in the orthogonal plane. This approach include the technicality of its implementation and its
type of (at most) rank onté‘kl = klnknL is in fact optimal memory consumption.
under variational Bayes inference. To simplify derivations, an Upon inspection, the expressions derivedtfag , h iy and
alternativeall or nothing parametrizatiodx = ¢l could have other hyperparameter expectations relate to intuitive quantities,
been chosen, where a basis function is arti cially constrainedsuch as averages of voxelwise square intensity residuals, or the
to be either fully in use or fully pruned along all directions, at energy in the estimated displacement eld. Simpli ed versions
the cost of arti cially tripling the number of active degrees of of these updates can be used independently of the speci cs of
freedom. the registration scheme as ad-hoc recipes for automated param-
For mono-modal registration the assumption that intensitiester tuning.
between source and target images coincide up to spatially vary-
ing noise mostly holds. In this context, the mixture-of-Gaussiarp-3. Atlas of motion
model of residuals is exible yet simple enough to be ef ciently  In the present work, the reduced parametrization simply ben-
and robustly t jointly during the registration of images of in- e ts the algorithmic complexity of the schemes and the qual-
terest, as opposed to beforehand on training data (Leventon aifgl of interpolation. If an anatomically relevant parametrization
Grimson/ 1998; Zhou et al., 2006; Lee et @l., 2009; Tang et alwere desired however, we note that the active set method natu-
2012). For higher interpretability of the mixture, the variationalrally extends to a multi-subject setting: it may be used to yield
Bayes approach allows to select the optimal number of compacan optimal, joint parametrization of displacements. This could
nents [(Penny et al., 2007; Archambeau and Verleysen, 2007pnstitute a basis to learn a parametric atlas of motion from a
although this was not pursued here. For multi-modal regissmall dataset 08D+t images in the spirit oé.g.JAllassonnere
tration, the mapping between source and target image intefet all (2007); Durrleman et a/. (20138); Gori ef al. (2013).
sities can also be regressed (Guimond et al., 2001; Janods et al.,
2012). 5.4. Uncertainty quanti cation
The assumed independence of voxelwise intensity residuals The proposed method returns a Gaussian variational approxi-
is not realistic. To avoid placing too much con dence on data,mationg(wjA) , N( ; ) of the posterior distributiop(wjl; J)
the virtual decimation procedure downweights the data tern®f transformation parameters. Ti® |Sj covariance matrix
(by up to two factors of magnitude iB8D experiments) in a is of small size and readily computed over the course of the
mostly ad-hoc but empirically viable manner. Designing spaalgorithm. The covariance on transformation parameters can
tially varying, correlation-aware models of image discrepancie®e turned into directional estimates of uncertainty at any point
would address the matter more elegantly, but is outside of th# space by simple linear algebra, or can be sampled from at a
scope of this paper. marginal cost to ef ciently explore th@int variability of the
Modelling uncertainty in the interpolation of discrete inten- full transformation. Sampling the transformation itself, unlike
sity pro les (cf. [AppendixA) proved to be appropriate. This is sampling displacements independently at each point in space,
exampli ed by cine MR data, due to the lower long-axis res-preserves correlations in the displacement of close-by points.
olution. If not accounting for it the regularity of the inferred This allows to derive empirical uncertainty estimates on inte-
transform in the long axis direction was systematically found gral geometrical quantities.
upon visual inspection, to be of lesser quality. This behaviour Fig. [J(b) reports estimates of uncertainty in the volume en-
is expected if the scheme is unaware of its increased reliance éfpsed over time by the endocardium surface, as segmented on
interpolation to match intensity values between images. Imag#he reference frame (at tin@®, for a cine MRI sequence (vol-

upsampling prior to registration also involves interpolation andUnteers). For the same volunteer, Fig. 1(c) summarizes, in the
was accounted for in an identical manner. form of a tensor map, the uncertainty in the inferred displace-

ment eld at end-systole, accounting for uncertainty in the out-
put of each frame-to-frame registration between end-diastole
and end-systole. Tensors are rasterized at the voxel centers of
Running times for the proposed approach are on the santbe end-systole frame. Each tensor encodes (the square root of)
order of magnitude as the state-of-the-art in cardiac motiothe3 3 covariance matrix of the pointwise displacement and
tracking (De Craene et Al., 2013; Tobon-Gomez é{ al., 2013)s elongated in directions of higher uncertainty. Due to voxel
Although our implementation is CPU based (with partial mul-anisotropy, the direction of higher uncertainty is, consistently
tithreading), most computations involve statistics at the levehcross space, aligned with the long-axis. The color scheme
of individual voxels or basis functions and are highly paral-thus encodes the second principal direction of highest uncer-
lelizable. The active set method used to update the activiinty. Steep intensity gradients in the underlying image typi-
parametrization is technical but computationally inexpensivecally translate into directions where tensors are least elongated.
Signi cant improvements in running time may be obtained in-
stead by basic optimization of the energy minimization problem  4the minimization is w.rt. the active, reduced parametrization and should
solved to compute the posterior mode for the Laplace approXse signi cantly faster and easier than its classic counterpart.
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Tensor magnitude and principal directions vary smoothly acroswhere ; = Pl L Ll - fVid\il is the list of voxel centers in
space, as estimates of uncertainty incorporate information of the xed image and/; , Wl(Vi) =vi+ (v)w are the paired
local (and in fact, global) nature. The yeIIow dashed line giveScoordinates in the moving image_ For the Hessian:

a visual cue as to the position of the left ventricle endocardium i
boundary. The agreement between exact and approximate pos- -

teriors sgould begexplored in future work. PP P HID o = ] W)l I e ()
U =1 (A.3)

+ G0V VD () HINV) ()

6. Conclusions i1

In this paper we proposed an approach to data-driven, spaiter dropping the term involving the Hessian of the infge
tially adaptative, multiscale parametrizations of deformationsye arrive at the following approximation & .,(J; 1;w):
for registration. It uses larger kernels in regions of high uncer- X\l
tainty due toe.g. lack of image gradients or incoherent infor- . A .
mation in registered images, and uses smaller kernels where aD AW 3 - G w! THi G (vw) s (A4)
ner motion can be estimated with con dence from local cues -
in paired images. This is achieved in a Bayesian framework sb 2 R* andH; 2 M4 4 only depend on the poirw around
that the approach retains natural advantages of probabilistic fowhich the approximation is taken, and are respectively given by
mulations. It is self-tuning, with hyperparameters being jointly Ed. [A.5) and Eq.[(AJ6), noting (vi) ,  (v)w .

inferred during registration. Inference is tractable on real-scale V) J(v)

data thanks to an ef cient Variational Bayes method. ti=u (vi) KR Vi), (A.5)
The core methodological contribution is a procedure for '

fast marginal likelihood maximisation in sparse Bayesian Hi =1 1(V)r 1(vi)! (A.6)

models, that relaxes the assumptions made by Tipping|et g [x2) demonstrates that up to a second order local approx-
(2003) for the fast Relevance Vector Machine. The prior iSimasion registration can be recast as a regression task with a
allowed to encode correlations between explanatory variablegyt of (virtual) observations and associated (heteroscedastic,
so as to favor smooth solutions. The proposed structurednisatropic) con denced;. This is known as a generalized lin-

sparse Bayesian model itself, and variants thereof, are relevagl,. mogel. 'In block form, the data likelihood can be expressed
to a variety of generalized regression problems, including,g p(Djw: :2)  p(tjw; “) with:

image-based classi cation and regression tasks.

p(tiw; )/ exp }(t w! THE w): (A7)
Acknowledgments. The rst author was partly funded by the 2
Microsoft Research — Inria Joint Centre, and part of this work; genotes the concatenation of all "H is a block diagonal
was funded by the European Research Council through thgatix with theith diagonal block equal to H)i , "iHi.
ERC Advanced Grant MedYMA (2011-291080) on Biophys- | oyr particular instance, the virtual pairings relate to the op-

ical Modeling and Analysis of Dynamic Medical Images. tical ow: if we dropped the con dence tensots;, Eq. [A4)
would yield an approximation of Eq[ (B.6) much in the spirit
AppendixA. Second order Taylor expansion of the model Of the demonsalgorithm [Thirion, 1998; Cachier and Ayache,
likelihood 2004). The tensor$l; vary sharply across the image how-
ever, e.g. as edges or boundaries are crossed. They assign
Taking a Gaussian approximation of the likelihood facili- anisotropic, spatially varying con dence in voxelwise pairings
tates the variational Bayes inference, as the variational postend account for how informative and structured the image is
rior gwjA) N (; ) is then approximately Gaussign (Ap- at the point of interest. The local approximation of EG. {A.4)
[pendixB). We seek such an approximation of the likelihood transforms an image-based criterion into a landmark-based one,
or equivalently we look for a quadratic approximation of the and the proximity to formulations in the related literatire (Rohr
log-likelihood. In this appendix we derive one from the secondiet al|2003) is indeed striking in this form.
order Taylor expansion ob ,(J;1;w) = log p(Djw; ;2). The con denceiH; in the virtual voxelwise pairing; + V;
Around the pointv , it takes the form: can grow arbitrarily high for arbitrarily high intensity gradients.
o . | These expressions result from linearizing the intensity pro le
D A3liw) D AJEw)+r[D ], (W w) around the current pairing,, and are blind to interpolation un-
+ }(W W) HD Jww w) (A-1) certe_\inty in evaluating(Vi) andr 1(Vi). To address this short-
2 ' coming, we propose to replacgH; = ir 1(Vi)r 1(V})! by

1 1

wherer [D ], stands for the gradientat andH[D .., for _
1+ tr["{HiDind

"HYl+ D " H.
the Hessian atv . For the gradient we obtain: ('iHi) =+ Din iHi (A-8)

B\l
r [D 'z]w = Ai (| [Vi] J[Vi]) (Vi)TI’ | (Vi) : (A.2) 5This outer product approximation conveniently guarantees positivity of the
' Hessian and is discussedery. (Bishop et al., 2006).

i=1
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which implements a soft upper threshold on the precision, as @here by identi cationC * = “H (AH) | (AH). In other
heuristic for interpolation uncertainty;,; acts as a minimum words, the marginal distribution of the virtual datacondi-
covariance: it is a diagonal matrix set to the square of —say— hatfoned on the hyperparameteis; ; “gis GaussiarN (0; C).
the voxel spacing to prevent unreasonable subvoxel con dencé&urthermore, it follows from the Woodbury matrix identity that

C=(H)'+ A+ R? (B.5)

The objective is to increase E. (B.4) w.A. The two factors

We recall that the variational posteriqy; is constrained to  in Eq. {B.4) have antagonistic effects: while the left hand term
lie in the family gua(W; A) = q(WjA) A(A). [AppendixB.1 re-  penalizes covariance matric€sthat waste mass (Viij), the
states exact optimality conditions and exhibits where the likeliright hand term gives incentive to spend mass to better explain
hood is involved. Under a Gaussian approximation of the likethe datat. This compromise mechanically leads to sparsity.
linood, (approximate) optimality conditions yield tractable up- Indeed looking at the form o€ in Eq. [B.5), we see that part
dates ofq iA and suggest an ef cient active set scheme toof the data is explainetbr free by the contribution( H) ! of
updateA (A ) Technicalities for the Gaussian ap-the noise tcC regardless of the right hand term; thus only a few

proximation are clari ed i AppendixB]3.

AppendixB.1. Exact optimality conditions

From optimality conditions given in sectipn 8.2 by Ef.](19)
and keeping explicit only the terms that dependwmwe obtain:

AppendixB. VB inference — optimization of gy

degrees of freedom need be actidg € 1) to fully explain the
data.

Algorithm 2 Optimization ofA

1: if the likelihood approximation was updatgokn
2:  Recompute, in full from Eq. (B:3).

3:  Recompute statistiog, sc and g in full for all k.
(B.1) 4 endif

5

6

. pDwhig;hdg p wA;hig
q (WA) = —— , ; ;
p DjA;hig;hig;hdg,

: for piterationsdo
8k 2 S (resp.k < S), compute the gaimaxa, [(Ak) in

where we exploited the linearity of the logarithm of distribu- d : )
log-evidence obtained by updating or deletknffom S

tions of interest w.r.t. , zand to take the expectations of

those variables w.r.t. the associated variational factors inside

those distributions. The numerator of Ef. (B.1) is simply the -

product of the likelihood times the prior on transformation pa-
rameters, with ,

B.5):

and z xed at their expected values with &
respect to their respective variational posteriors. Again from &
Eq. (22), the optimaA maximizes the denominator of Eq. 10:

(resp. addind to S) from[AppendixE.
Select the most favorable actibsuch that:
maxy, (A1) maxa, [(Ay)
SetA, = argmax, I(A)) and updates.
Update , viarank-one identities (AppendikF).

Updateqk, s« and i for all k using rank-one updates

(APPenaNG).

11: end for

p DjA;hig;hiq;hdg, =
z (B.2)

p Diw;hiq;hdg, p WA;hiq dw
w

In we single out the contributiori(Ay) of each

basis g to the log marginal likelihood given the state of other

bases| AppendifF arid AppendixG show that the statisgics

andg,,,(W;A) = g (WA ) a (A). Maximizing Eq. [B.2) w.r.t.

s« and  required to express this contribution can be updated

A and evaluating Eq[(B}1) however is hard since the likelihoocef ciently using rank-one linear algebra identities. This is the

p(Djw; h iq ;hzig,) is non trivial as a function o#v. For con-
venience we drop the expectatioms from notations in what
follows (and the hat oved), as it does not affect derivations.

basis for the proposeattive setmethod, which optimize& by
updating oné\ at a time according to Algorithfr] 2.

AppendixB.3. Around which point is the likelihood approxi-

AppendixB.2. Approximate optimality conditions
The tractability of the inference relies on approximating the

mated?

We have not yet speci ed around which point the Gaussian

data likelihood following AppendixA as a Gaussian distribution approximation is taken. The modgr of the (true) posterior

p(Djw; ;2 N (tj w; H),withvirtual datat interpretable as
the concatenation of noisy voxelwise displacements. The prior

PWD;A;hiq;hiq;hig)

P(WA; ) = N(0;A + R)is also Gaussian, yielding in turn a i chosen. This departs from Simpson et jal. (2012), who use

a Taylor expansion around the mode of the (Gaussian) varia-

tional posterion,, and fron] Le Folgoc et al. (2014) who use a

Gaussian variational posteriqr(wjA) N ( ; ) with:
= I"Ht =(!"H + R+A) % (B.3)
Moreover the marginal likelihoog(DjA; ; ;2) p(tj ;A; )
is Gaussian as well:
) (., )
p(tj :A; )=j2 Cj ¥ exp Etlc 1t (B.4)
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EW) =Dnini(J:1;

different strategy to derive a quadratic approximation. Here, as
in energy-based registration we numerically solve for the mini-
mizer wp of Eq. (B.8), using the current estimate of hyperpa-

rameterdA;hi;hi;hi:

W) + %wl (A+hiR)w (B.6)



with the notable difference, in terms of computational complex-AppendixD. VB inference — optimization ofq , q , g

ity, that Eq. [B.§) only involves the sparse subSetf active ) o

bases. Other weights are effectively constrained to zero due to VB updates are stated without proof. Derivations follow the
an in nite penaltyA,. Note that we marginalize over soft as- Same strategy as previously, starting from the optimality con-
signmentsz of voxels to components of the noise mixture. Thisdition of Eq. [IT). They follow the same outline as those
comes at little computational cost and can reasonably be exf /Archambeau and Verleysen (2007). The variational poste-
pected to accelerate convergence. The mode is found by qudig" for assignments of voxels to a component of the Gaus-
Newton (BFGS) optimization, using closed form expressiongjan mixture is a product of categorical distributiogs =

for the energy and its gradient. Expressions for the energy fol- 1 i nC(@i i1 i) with parageters; interpretable as soft-
low Eq. [B.6) and Eq.[{8). The gradient of the data term is2SSignments, summing ©(8i, | 4 = 1) and given by Eq.

given by: (D.7)). The variational posterigy for the noise mixture propor-
" tions =1f 4 Lgfollows a Dirichlet distribution Di¢ j ),
f W[Dini] = UMD dMD W)TrIV): (BT) with = ( 1 L) given by Eq. [(D.R). The variational pos-

- terior for noise levelsy = ~ 4, | (jg;d) is a product of

. P . . _ Gamma distributions over each individual mixture component,
where j = ;| ihi canbe seen as an effective noise levelwith parameter updates given by EQ. (D.3) gnd [D.4).
for tlgeith voxel, and i / “lexp h—z" (Jv]  1[Vi])? (such

Z ~ ~1= . .
that | ; = 1) can be seen as a soft assignment ofitheoxel il TP exp dhig hefi (D.1)
to thelth component. =N+ o (D.2)
a=3N7+c (D.3)
. . T P .
AppendixC. VB inference — optimization of gq d :% Lo i PR+ do (D.4)

Taking terms that do not depend onin the constant, the

optimality condition of Eq.[(T]7) rewrites as: The quantities required for these updates are as follows:

; . ~ . P
logq (') = hlog p(WA; )P( )iguaq g *+ cONSt (C1 log™, Hog iiq = (1) (1101) (D.5)
= hlog p(WjA; )p( )ig,, + const (C.2) log™), Hog jiqg = (c) logd (D.6)
A _ P
= Hog p(WjA; )i gwia) +logp( ) + const.  (C.3) LoE LN (D.7)
R . .
Recall thath iq ) = g( )d denotes expectation w.ray ). hefi , R W' O] D)% gwia)
The second equation uses the fact that the integrand does not [ )] vl 2+tr (v)! () H;i (D.8)
depend on either, z nor The third uses the fact that o
awa(W;A) = g(WjA) A(A). The prior on is Gamma dis- hiiq = o= (D.9)

tributed,p( ) =
logp( ) =

( jag; bp), so that:

bp +(ap 1)log +consf ): (C.4)

p(WjA; )= N(OjA + R)is a degenerate Gaussian. For all in-

active basek < S, Akl = 0, and the Gaussian degenerates to
Dirac at0 along thed corresponding dimensions. For all active
bases 2 S, the Gaussian degenerates alahg 1 directions
sinceAk1 klnknL is rank one (sectio .41, AppendixE).
By assumption = 0 so that, notingns = (W, Nk)kes and
Ws = WNWsg:

PWA; )= ows) j5-RsiFexp swiRsws: (C.5)

whereRs is anjSj jSj matrix whosek; Ith coef cient is nL Rn.
Finally, sinceq(wjA) = N ( ; ):

iSj 1
logq ()="llog 5 'Rs +t( Re)
bp +(ap 1)log +const ):

(C.6)

In other words,q ( ) = ( ja;b) is Gamma distributed with
hyperparameters given by Ef. (€.7) and (C.8),lang = a=b.

(C.7)
(C.8)

a=ayt+|Sj=2
b=by+ !Rs +tr( Rs) =2:
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where ( ) stands for the digamma function and fr for the
trace. Eg. [(D.B) follows from the quadratic approximation of

A, noting in addition thaq(ij) =N(; )(cf
and Eq[(BI3) for the updates af ).

a Each facton,, q ,q is updated in turn fol iterations; each

iteration essentially computes then aggregates voxelwise statis-
tics in a single pass over the image of squared intensity residuals
he?i.

AppendixE. Contribution of a basis to the log marginal
likelihood

From Eq. [(B.#) we see that the log marginal likelihdod-
logp(tj ;A; )is given up to additive constant by

an - 0
L= 3 logjCj+ t! C t (E.1)
withC=("H) '+ L !, wherewe de ne
L, A+ R)®: (E.2)

Noting thatC exclusively depends on the bakigia thekth (d
d block-) diagonal coef cient oA and thekth column (ofd d
elements) of , we would like to single out the contribution



I(Ak) of any such basisy to the log marginal likelihood in the
form:
L=1A)+L g (E.3)

whereL  does not depend on the bakidf we denote by
the inverse of the matrix obtained by removing Nﬂecolumnﬁ]
fromL ' = A+ R (or equivalently by setting\x = +1in
L), we see from the Woodbury rank one matrix ideRtitiyat
L =1L+ Ukkaul , With UL = (L kRk)l I andLy =
(Ax+ ) ', wherethed dmatrix yis de ned as:

R ( R)'L «( R

By injecting this latter decomposition &f into the expression
of C, we derive a decomposition @ into the sum of a term
that does not depend on tkt basis and of a rank one term:

K (E.4)

C=Ck+( UJA+ © ' U (E.5)

LettingC 1, (C i) %, a second application of rank one up-

rank one,r [(Ax) has at most one negative eigenvalue. More
precisely, iquq'k s« is negative then [ (Ay) is positive de nite

for all A and the improper maximizer &A) lies at in nity

A ! +1. Otherwise there is exactly one negative eigenvalue
and we look for maximizers of the form, ! = klnknL . Thisis
consistent with the intuitive comment thapl 2 M g4 cannot

be fully determined from a single "observation; 2 RY and
should be degenerate. Rewriting E. (E.10) as a function of
; nleads to maximizinf E.12 under constraint thas positive
(dropping the index for convenience). Note also tHat E}12 is

- 2

invariant under reparametrization  n; !
( )
nl sn (g n)?
I(; = log 1+ + E.12
G g +nl n +nl (+9)n (E12)

At a maximizer ;n = argmax ,I(; n)the constraint is ei-
ther active ( = 0) or inactive (> 0). If inactive, the solu-
tion actually maximizes the unconstrained funcfion k.12 and is
givenby = "(n),n = nwhere

date identities for the determinant and the inverse gives the two

following expressions E}6 afd E.7 for the two terms in the right-

hand side of the log marginal likelihood expresgion E.1:

iCi=iC W A+ Wt JA+ k+sd (E.6)
tclt=tcit o A+ k+s) a (E7)

We introduced the statisticg 2 M ¢4 andgx 2 RY respectively
de ned as:

s, (UQIC i Uy
o, ( UIC it

(E.8)
(E.9)

(n) = (ql(r;'z%] | n: (E.13)

n=-=s 1q; (E.14)

In this casd( ;n) is simply equal td(n ), wherel(n) is de-
ned by with (n), (g n)?=nl sn

I(n), log (N)+ (n) 1 (E.15)

In addition Rﬁ) can be shown to always provide an upper
bound to the maximum contribution of a basis to the evidence,

Eq. [G.}) and Eq. [(G]2) ih AppendiXG provide alternative, may. . |(; n). If (A) < 0, the upper bound is not reachable
more easily interpretable expressions for these quantities. Thig,q the constraint is active, = 0. In that case, we numerically

yields the following expression fd(Ay):

I(Ak) = logjAk+ «  logjAk+ «+ sd

| . (E.10)
+ o fAK+ k+ SO Ok

It is of practical signicance to the algorithmic complexity
of our schemes that the quantities involved (, ) do not
actually depend on bases that are not in the active gie¢. all
bases s.tAx = +1). Similarly s, k andg only involve the
set of active baseS augmented with th&th basis, due of the
form of Uy.

The maximization of Eq[(E-10) under constraint tAatis a
symmetric positive semide nitd d matrix involves the gra-

dient of the (unconstrained) functidfiy):
n 0
FIA) =« g s sA+ ) 'sc « (E1D)

where is shorthand fo(Ac + «+ s 1, andr [(Ay)isad d
matrix. Since  is symmetric positive de nite anqqu is of

optimize over the unit sphere R% to nd n . The case occurs
when thel,-norm regularization is by itself suf cient along the
directionn , and no additional shrinkage is deemed necessary.
It is also the default case if we purposedly restridio be ei-
ther null or in nite. To save on unnecessary computations, we
rst check that the upper bourldn) to the maximum contribu-
tion of the basik to the evidence is superior to the current best
contribution among bases already handled.

AppendixF. Update of , ,L

Updates of the moments of the posterior distribution =
( 'CH) +A+ R)'andofL = (A+ R) !upon deletion
from the model, update or addition to the model of a bhaig
done similarly ta Tipping et al/ (2003) and follow from Wood-
bury identities. Denoting updated quantities with a tilde, we get
in the case of deletih

(F.1)

This is an abuse of speech for the sake of convenience, when we in fact 8whenever necessary we identify square matrices (resp. vectors) of dif-

manipulate blocks off d elements, lines and columns of suth d elements.
"We abuse notations here again for convenience. We mean to sd;{(ihat
Oorthat8n2 RY, nl Agn! 1
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fering dimensionalities if one can be obtained from the other by padding with
zerose.g.in (E1) [E2) [E3), the rank-one correction leavesltheolumn and
line (resp. coef cient) of the right-hand side of the equation equal to zero.



C=L L|L”1Lf (F.2)  found useful to introduce surrogate quantitiggndr respec-

and tively de ned according t§ GI3 arjd G.4:

=t ) (F.3) t, WCH & L k+(RJL(RY) (G3)
These rank one updates carefully avoid matrix-matrix products |~ | |
and have @(jSj°) complexity. In the case of the addition of a e, H)t k ( H)t (G.4)
basis, we rst compute the new column of(resp. L) before  These quantities merely differ fros and g in that the index

updating its full body as: k was dropped from  andL . Our underlying motiva-
tion is to update simpler quantitigg and ry that still retain a

=t ||l l ; (F.4) straightforward link to the statisticg and gy of interest for the

- — computation ofi(Ay). Indeed, for a basisy that does not lie
L=L+LL,"L (F5)  inthe model, = andL « = L. Therefore, the quantities

~ ~ R nder consideration coincide; = t, andgx = ri. For a basis

where the column | (resp.L)) is given inO(jSj?) by u o . -
7 O kthqthesmthg r'nodeliand noting Fhatk— ok o L,We
. S~ L(R)L obtain the statistics of interest ef ciently as:
BT L= Ly () h i h iy
S T
and | 1 ol (G.5)
- L - L [( RQ)' L] Ly [( R Li]
1=(s+ 1 +A) ", Li=(1+A) (F.7) h o

| is the column vector ofl  d matrices de ned by | = K=+t ok ok (G.6)

~("H) 1+ Ri._The counterpart of Eq.[(].3) for addition Thys, we always maintain the quantitigsand ry (for every
is given by Eq.[(EB): basis) and recomputs and g either at no cost for inactive

N ~ bases or, for bases in the active Setin O(jSj d). Updates

= o (F.8) of tx andry upon deletion from the model, update or addition
to the model of a basikare done similarly t¢ Tipping et al.
(2003), inO(jSj d) per basis. For instance, in the addition case,
it follows from Woodbury identities that

In particular,” = ~” g. The case of the update of a bakis
treated as a deletion followed by an addition, updasirend |
in-between these actions as they are needed i Eq. (F.7).

. h |~ i. h | - i
tk = tk k | ||l Kk |
; h I L (G.7)
AppendixG. Update of sy, x and gk + (RJ'L LIIl ( RO
From the resolvent identity, we note that | ('H) L =L and )
. Using such relationships after developing the factofs i E.8 Fe = I h | ~|' r (G.8)
K .

and E.9, we derive alternative expressionssoando:
. wheref, andty denote updated quantities, as opposed to quan-
s= L(H) kL k k*+(RJ'L k(R (G.1) tities prior to the update, andt,. The quantities indexed Hy
. . are computed (once for all bases) follow[ng AppendlixF. Simi-
Ok = L( H)t L K| ( H)t (G.2) larly we maintain R ( R)! L( Ry) instead of  (index k

where  is a column vector ofd d matrices de ned by dropped from. ).

g = | (AH) k + Rg.  can be interpreted as the inner
product of basik with all the active bases w.r.t an appropriate AppendixH. Basis functions: Computational complexity
metric, in the sense that itgh d d coef cient is given by: with translation invariant kernels

ik = LCH) «+ D ijJD «i. gk is the projection on the ba-
sis y of the optimal residua « for the active seSnfkg The section discusses the generality of the proposed

with a correction to account for regularizaffrit is an unnor- ~ approach w.r.t. the basis functiong parametrizing the
malized indicator of the relevance of basisto better explain ~ displacement eld. Smooth radial basis functions as well as
the data. s¢ + ¢ = L(AH) k+ R L « k measures Many types of splines can be used without affecting the com-
how much con dence basis, aggregates, taking into account putational complexity. We show how to ef ciently compute
its overlap with bases already in the active set (the con dencé&lementsRy of the quadratic regularizer and inner products
already captured by overlapping active bases is withdrawn). In, ( H) , which are required in the scheme (see for instance
the speci ¢ case where = 0, we retrieve the quantities and [Appendixf and AppendixXG).

expressions derived by Tipping et|al. (2003) for the RVM. We
Regularization and Fourier analysis. Let K(x;y) = (X V)

be a translation invariant positive de nite kernel such thét
°Indeed,qx = 'k(”H)(t K) R'k k. integrable orRY as well as its Fourier transforfn We consider
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the spacéd of integrabled-vector eldsf: RY! RYsuchthat factors and using Eq._(H.4), we nally obtain for two Gaussian
kfk® = hfjfi < +1 , where bases  and | (with respective variancg andS, and centered
Z at x andx):

higi =~ B(Yb()" Y()d:  (HI)

2)d 1=2

|
A R | | = DO (KA1 (HE)
f(), F[fl(), ,expf x| gf(x)dxis the Fourier trans- '
form of f. If is sufciently smooth, the successive partial with | thed didentity matrix, X=X X, Sk = Sk+S1 S
derivatives@, i, f of elementsf 2 H exist and all lie inH andKs, (X) = exp %XI S !x. The derivative( )?[Ks,,] of
(Zhoy,2008). As such, we can consider families of regularizerghe Gaussian kernel at any point is known in closed form.
of the formRp(f) = kDfK2, whereD is a linear differential
operator. enables additional Itering in the frequency domain |nner products L(“H) . For a block-diagonal matrix H
and can be set to= 1if no such penalty is desired. (with N blocks) and an arbitrary set d#l basis functions,

computing the inner product ofi with all other bases func-
Representatjon on a nite dictionary. The displacement tions is O(MN). If the dictionary of bases is generated from
eld u® = 1« wm k(X)W is assumed to be expressed as aK translation invariant kernels, these inner products can be
linear combination of basesc 2 H (with associated weight computed inO(KN log N). L(”H) is computed irO(N), then
w 2 RY). By linearity of the representatioRp(f) = W Rw K convolutions (one with each generating kerne{ log N)
where thek; Ith block elemenRy is ad - d matrix, whosé; jth  each) yield the desired result. Similarly all of thg( H)
coefcient is D( x&)jD( i), with &1 ey the canonical K = 1:::M, can be computed by convolution of the image
frame. We wish to compute these coef cients ef ciently. whose voxels are thé  d tensors jH; with the square of the
K generating kernels.
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