
HAL Id: hal-01149659
https://inria.hal.science/hal-01149659

Submitted on 7 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

iRho: An Imperative Rewriting Calculus [Extended
Abstract]

Luigi Liquori, Bernard P. Serpette

To cite this version:
Luigi Liquori, Bernard P. Serpette. iRho: An Imperative Rewriting Calculus [Extended Abstract].
Proceedings of the 6th ACM SIGPLAN International Conference on Principles and Practice of Declar-
ative Programming (PPDP), Aug 2004, Verona, Italy. pp.167-178, �10.1145/1013963.1013983�. �hal-
01149659�

https://inria.hal.science/hal-01149659
https://hal.archives-ouvertes.fr


iRho: An Imperative Rewriting Calculus

[Extended Abstract]
∗

Luigi Liquori
INRIA, France

Luigi.Liquori@inria.fr

Bernard Paul Serpette
INRIA, France

Bernard.Serpette@inria.fr

ABSTRACT
We propose an imperative version of the Rewriting-calculus,
a calculus based on pattern-matching, pattern-abstraction,
and side-effects, which we call iRho.

We formulate a static and a call-by-value dynamic
semantics of iRho like that of Gilles Kahn’s Natural
Semantics. The operational semantics is deterministic, and
immediately suggests how to build an interpreter for the
calculus. The static semantics is given via a first-order
type system based on a form of product-type, which can
be assigned to iRho-terms like structures (i.e. pairs).

The calculus is à la Church, i.e. pattern-abstractions are
decorated with the types of the free variables of the pattern.

iRho is a good candidate for a core or an intermediate
language, because it can safely access and modify a
(monomorphic) typed store, and because fixed-points can
be defined.

Properties like determinism of the interpreter, and subject
reduction are completely checked by a machine assisted
approach, using the Coq proof assistant. Progress and
decidability of type-checking are proved by pen and paper.

Categories and Subject Descriptors
D.3.1 [Formal Definitions and Theory]: [Syntax, Se-
mantics]; D.3.2 [Language Classifications]: [Applicative
(functional) languages, Constraint and logic languages]; F.4.1
[Mathematical Logic]: [Lambda calculus and related sys-
tems, Logic and constraint programming, Mechanical theo-
rem proving]

General Terms
Languages, Theory.

Keywords
Term Rewriting Systems, Rewriting-calculus, Types, Pat-
tern-Matching, Natural Semantics, Certified Software.

∗A full version of this paper is available as http://www-sop.
inria.fr/oasis/Bernard.Serpette/ImpRhoCalculus/

1. INTRODUCTION
A promising line of research unifying the logic paradigm

with the functional paradigm is that of rewriting-based
languages (Elan [44], Maude [42], ASF+SDF [35, 49], OBJ∗

[15], . . . ). Although these languages are less used than
object-oriented languages (Java [34], C# [26], . . . ), they
can also serve as (formal) common typed intermediate
languages for implementing compilers for rewriting-based,
functional, object-oriented, logic, and other “high-level”
modern languages.

One of the main advantages of the rewriting-based lan-
guages is pattern-matching which allows one to discriminate
between alternatives. Once a pattern is recognized, a pat-
tern is associated to an action. The corresponding pattern
is thus rewritten in an appropriate instance of a new one.
Another advantage of rewriting-based languages (in contrast
with ML or Haskell) is the ability to handle non-determinism
in the sense of a collection of results: pattern matching need
not to be exclusive, i.e. multiple branches can be “fired”
simultaneously. An empty collection of results represents
an application failure, a singleton represents a deterministic
result, and a collection with more than one element rep-
resents a non-deterministic choice between the elements of
the collection. This feature make the calculus quite close to
logic languages too; this means that it is possible to make
a product of two patterns, thus applying ”in parallel” both
patterns. Optimistic/pessimistic semantics can then be im-
posed to the calculus by defining successful results as prod-
ucts that have at least a component (respectively all the
components) different from error values. It should be pos-
sible to obtain a logic language on top of it by redefining
appropriate strategy for backtracking.

Useful applications lie in the field of pattern recognition,
and strings/trees manipulation. Pattern-matching has been
widely used in functional and logic programming, as ML
[27, 38], Haskell [40], Scheme [45], or Prolog [39]; generally,
it is considered a convenient mechanism for expressing
complex requirements about the function’s argument, rather
than a basis for an ad hoc paradigm of computation.

One of the most commonly used models of computation,
Lambda-calculus, uses only trivial pattern-matching. This
calculus has been extended, initially for programming
concerns, either by introducing patterns in Lambda-calculi
[30, 50], or by introducing matching and rewrite rules in
functional languages.

The Rewriting-calculus (Rho) [7,9] integrates in a uniform
way, matching, rewriting, and functions; its abstraction
mechanism is based on the rewrite rule formation: in a



term of the form P → A, one abstracts over the pattern
P . Note that the Rewriting-calculus is a generalization of
the Lambda-calculus if the pattern P is a variable. If an
abstraction P → A is applied to the term B, then the
evaluation mechanism is based on the binding of the free
variables present in P to the appropriate subterms of B
applied to A. Indeed, this binding is achieved by matching
P against B. One of the advantages of matching is that it is
“customizable” with more sophisticated matching theories,
e.g. the associative-commutative one.

The Rho is computationally complete, since Lambda-
calculus and fixed-points can be encoded and type-checked
by using ad hoc patterns. Thus, Rho comes as a direct
generalization of a core of a typed (rewriting-based and
functional) programming language (of the ML∪Elan family)
in which, roughly speaking, an ML-like let becomes by
default a let rec, by abstracting over a suitable pattern P .
In fact, through pattern-matching, one can type-check many
divergent terms.

One of the main features of the Rewriting-calculus is that
it can deal with (de)structuring structures, e.g. lists: we
record only the names of the constructor and we discard
those of the accessors. Since structures are built-in the cal-
culus, it follows that the encoding of constructor/accessors is
simpler w.r.t. the standard encoding in the Lambda-calculus.
The table below (informally) compares the (untyped) encod-
ing of accessors in both formalisms.

ops/form Rewriting-calculus Lambda-calculus
cons (cons X Y ) λXYZ. ZXY
car (cons X Y )→ X λZ. Z(λXY.X)
cdr (cons X Y )→ Y λZ. Z(λXY.Y )

This work presents the first version of the Imperative Rewri-
ting-calculus (iRho), an extension of Rho with references,
memory allocation, and assignment. To our knowledge, no
similar study exists in the literature. The iRho-calculus is a
“rich” calculus, both at the syntactic and at the semantic
level. It features, in a nutshell, all the “idiosyncrasies”
of functional/rewriting-based languages with imperative
features and modern pattern-matching facilities.

The controlled and conscious use of references, in the style
of the ML language [27] also gives the user the programming
comfort and expressiveness that would not a priori be
expected from such a simple calculus.

The “crucial ingredients” of iRho are the combination of
(i) modern and safe imperative features, which give full
control over the internal data-structure representation, and
of (ii) the “matching power”, which provides the main
Lisp-like operations, like cons/car/cdr. For example, iRho
make a good theoretical engine for an emerging family
of ad hoc languages combining rewriting, functions and
patterns with semi-structured XML-data, like XDUCE [48],
CDUCE [36], or combining object-orientation and patterns
with semi-structured data, like HYDROJ [21](“...object-
oriented pattern-matching naturally focuses on the essential
information in a message and is insensitive to inessential
information...”), etc. To summarize, even if iRho is a
minimalist calculus, its features, like pattern-matching,
references, and built-in structures, suggest iRho as a good
candidate to be a computational core of a real rewriting-
based language.

From Theory to Practice and Vice versa. We design
static and dynamic semantics of iRho; the dynamic seman-
tics is given via a natural deduction system à la Kahn. The
formalization uses environments inside “closure-values” to
keep the value of free variables in function bodies, and a
global store to model the imperative traits. We always had
in mind the main objectives of a skilled implementor, i.e.
a sound machine (the interpreter) with a sound type sys-
tem (the type-checker), respecting the Milner’s slogan that
“well-typed programs do not go wrong”.

Static and dynamic semantics were suitable to be specified
with nice mathematics, to be implemented with high-level
programming languages, e.g. Bigloo [43] (of the Scheme
family), and to be certified with a modern and semi-
automatic proof assistant, e.g. Coq [41].

For this goal, we have encoded in Coq the static and
dynamic semantics of iRho. All subtle aspects, which
are usually “swept under the rug” on the paper, are here
highlighted by the rigid discipline imposed by the Logical
Framework of Coq. Often, this process has a bearing on the
design of the static and dynamic semantics. The continuous
cycle between mathematics and manual (i.e. pen and paper)
vs. mechanical proofs, and “toy” implementations using
high-level languages such as Scheme (and back) has been
fruitful since the very beginning of our project. Although
our calculus is rather simple, it is not impossible, in a near
future, to scale-up to larger projects, such as the certified
implementation of compilers for a “real” programming
language of the C family [11].

Therefore, the main contributions of this paper are:

• provide a typed framework that enhances the func-
tional Rho, introduced in [9], with imperative features
like referencing (i.e. “malloc-like ops”, ref term), deref-
erencing (i.e. ”goto-memory ops”, ! term), and assign-
ments operators (X := term), and enrich the type sys-
tem with dereferencing-types (i.e. pointer-types, int ref),
and product-types. The resulting calculus iRho is a
good candidate for giving a semantics to a broad fam-
ily of functional, rewriting, and logic-based languages.

• experiment an interesting “pattern1” (in the sense
of “The Gang of Four” [13]) called DIMPRO, a.k.a.
Design-IMplement-PROve, to design safe software,
which respects in toto its mathematical and functional
specifications. Intuitively, we started from a clean and
elegant mathematical design, from which we continued
with an implementation of a prototype satisfying the
design (using a functional language), and finally we
completed it with a mechanical certification of the
mathematical properties of the design, by looking
for the simplest “adequacy” property of the related
software implementation. These three phases are
strictly coupled and, very often, one particular choice
in one phase induced a corresponding choice in another
phase, very often forcing backtracking.

The process refinement is done by iterating cycles
until all the global properties wanted are reached (the
process is reminiscent of a fixed-point computation, or
of a B-refinement [1]). All three phases have the same
status, and each can influence the other.

1“A pattern is the abstraction from a concrete form which
keeps recurring in specific non-arbitrary contexts...” [31].



τ ::= b | τ → τ | τ ∧ τ | τ ref

∆ ::= ∅ | ∆, X:τ | ∆, f :τ

P ::= X | f P | P, P | ref P

A ::= f | X | P :∆→ A | AA | A,A | ref A | !A | A := A

Figure 1: Syntax of iRho.

Road Map. The paper is structured as follows. In Section
2, we present the syntax and the operational semantics of
the imperative Rewriting-calculus iRho. Section 3 describes
the type system. Section 4 contains various encodings of a
quite common decision procedure, i.e. computing a negation
normal form. All the encodings are type-checked by the type
system. For lack of space, Section 5 enumerates the main
metatheoretical results. Section 6 contains some hints about
our methodology and describes some “views” of the Natural
Semantic, conclusions and further work.

For obvious lack of space, this paper is an extended
abstract. The full version of this paper containing additional
definitions, the complete set of typing rules, a wide collection
of functional and imperative examples concerning the static
and dynamic semantics of iRho, the Bigloo code for iRho and
the Coq encoding of the dynamic and static semantics (with
their theorems) can be found in: http://www-sop.inria.

fr/oasis/Bernard.Serpette/ImpRhoCalculus/.

2. IRHO: IMPERATIVE REWRITING
In a nutshell, iRho is a imperative calculus with pattern-

matching, and can be seen as the kernel of any (statically
typed) programming language based on functions, muta-
ble variables, and (customizable) pattern-matching; term
rewriting systems can be encoded too in iRho, following the
same lines as [9]. The presentation of iRho is also original
because it mimics our current implementation by making
use of closures instead of (meta) substitutions.

Notational Conventions. In what follows, we use the
meta-symbols “→” (function- and type-abstraction), and
“,” (structure operator), and the (hidden) “•” (application
operator). We assume that the application operator “•”
associates to the left, while the other operators associate to
the right. The priority of “•” is higher than that of “→ “
which is, in turn, of higher priority than “,”.

The symbols A,B,C, . . . range over the set T of terms,
the symbols X,Y, Z, . . . , SELF, . . . range over the set X
of variables (X ⊆ T ), the symbols a, b, c, . . . , f, . . .,
car, cons, cdr, true, false, not, and, or, dummy, . . . range over a
set K of term-constants (K ⊆ T ). The symbol P ranges
over the set P of pseudo-patterns, (X ⊆ P). The symbol τ
ranges over the set Ty of types, the symbol b ranges over the
set of type-constants, the symbols Γ,∆ range over contexts.
The symbols Av, Bv, Cv, . . . range over the set Val of values.
We often denote fA for (. . . ((f A1)A2) . . . An), for n ≥ 0.
The symbol ≡ denotes syntactic equality.

2.1 Syntax
The syntax of iRho (types, contexts, patterns and terms)

is presented in Figure 1.

Types and Contexts. The symbol b denotes basic types,
the arrow type τ1 → τ2 is the type of pattern abstractions
P :∆ → A, and the product-type τ1 ∧ τ2 is the type of
structure terms (A1, A2); finally, the type τ ref is the type
of references containing a value of type τ .

Patterns. It is well-known that an unrestricted use of pat-
terns in lambda-abstraction, may lead to loose confluence;
this was pointed out by Vincent van Oostrom [50] which
introduced the, so called, Rigid Pattern Condition (RPC),
which forces patterns to be “linear” (i.e. no double occur-
rences of free variables, thus avoiding, the pattern f(X,X)),
and without “active” variables (thus avoiding the pattern
(X P )).

The solution we adopt in this presentation of the Rewri-
ting-calculus relaxes, safely, the van Oostrom’s condition;
the main reason to do this is because most real functional
programming languages Scheme, relax the linearity restric-
tion (this is not the case of ML). This means that the pattern
f(X,X) is allowed in Rho.

This choice induces also a modification in the classical
syntactic pattern-matching algorithm, since we “hide” the
first binding in favor of the second one. The original
syntactic pattern-matching algorithm, due by Gérard Huet
[17], forces both occurrences to be matchable with the same
value. As a comparison, both solutions are presented in the
table below:

patt � term hide force

f(X,X)� f(3, 4) θ
4
= {4/X} fail

f(X,X)� f(4, 4) θ
4
= {4/X} θ

4
= {4/X}

Both solutions for matching are sound, in the sense that
confluence and type soundness are not lost. Our choice was
suggested by the practice found in languages like Bigloo (re-
call that non linear pattern are rejected in ML); the non-
linearity could be easy implemented with some minor mod-
ifications in the definition/implementation/proofs). There-
fore, our mathematical definition, together with our cur-
rent implementations (in Bigloo and in Coq) are, in some
sense, synchronized; we “hide” all the bindings of the same
variable occurring inside a pattern with the binding of last
occurrence; this greatly simplifies the implementation. The
“force” solution would be worthy to explore since would lead
to a redefinition of equality between terms.

Terms. Intuitively, the main intuition behind the term
syntax is as follows:

• (Variable and Constant) are used as in Lambda-
calculus with algebraic constants;

• (Structure) allows one to express structures, like lists,
sets, objects, etc.

• (Pattern Abstraction) allows one to match over pat-
terns, so giving de facto a conservative extension of
the Lambda-calculus when the pattern is a simple vari-
able; the context ∆ in the pattern abstraction records
the types of all the free variables of P (possibly bound
in the body A); as example, the accessor car (in a
homogeneous list) can be written in Rho as follows:

car
4
= (cons X Y):(X:τ,Y:τ)→ X;



• (Application) allows one to apply a pattern abstraction
P :∆ → A to an argument B, which, of course
must match on P ; the terms are reduced under
a classical call-by-value evaluation strategy; in the
evaluation, the body of a pattern abstraction is not
evaluated until the function is called on a suitable
value (i.e. pattern abstraction are values) ; as example,
(car(car(cons a b) c)) reduces to a;

• (Ref-Terms) The term ref A is a “referencing” term
(the-location-of); if A is a term of type τ , then ref A
is a pointer to A of type τ ref ;

• (Deref-terms) The term !A is a “dereferencing” term
(goto-memory); term A is a pointer in the store;

• (Assign-terms) The term A := B is an “assignment”
operator, which returns as result the value obtained
by evaluating B.

We need not include sequencing since it can easily be defined
in iRho as follows (types are omitted):

A ;B
4
= (X → B)A where X 6∈ Fv(B)

When unambiguous, we introduce the following syntactic-
sugar for multiple assignments, i.e.:

(X1, . . . Xn) := (A1, . . . An)
4
= X1 := A1 ; . . . ;Xn := An

As an immediate benefit of the built-in powerful new pattern-
matching algorithm, it follows that also the dereferencing
term !A can be easily defined as follows (types are omitted):

!A
4
= (ref X → X)A

We leave the dereferencing term in the syntax of iRho
as “syntactic sugar”. Finally, observe that issues related
to garbage collection are out of the scope of the paper:
new locations created during reduction, via referencing
(ref A), will remain in the store forever. In principle,
classical techniques of Ian Mason and Carolyn Talcott,
and Greg Morrisset et al. [23, 29] could be applied to
iRho. Observe that, w.r.t. “non strategic” implementations
of the Rewriting-calculus [2, 6–8], the delayed matching-
constraint [P �∆ A].B, becomes now just syntactic sugar
for (P :∆ → A)B (hence omitted from the source language
but still presents in the set of output values). Moreover, the
shape of patterns has been limited to algebraic terms (i.e.
no function-as-pattern). This restriction is strictly related
to the current software development of our interpreter, and
of the current mechanical development of the metatheory
underneath iRho and not to theoretical problems (see [2]).
The choice of call-by-value too was suggested by the practice
of current functional languages.

Values and Environments. In order to define a call-by-
value operational semantics of the Rewriting-calculus, we
need to introduce the set Val of values, and the set of
environments Env (historically, and by a little abuse of
notation, the symbol ρ ranges over environments), and the
set Store of stores (the symbol σ ranges over the set of
stores). The symbol ι ranges over the set Loc of store
locations. Values are defined below:

Av ::= f Av | Av, Av | 〈P :∆→ A � ρ〉 | 〈[P �∆ Av].B � ρ〉 | ι

Environments are partial functions from the set of variables
to the set of values, i.e. ρ ∈ Env ' [X ⇒ Val]⊥; the

extension of an environment is denoted by ρ[X 7→ Av].
Stores are partial functions from the set L of locations to
the set of values i.e. σ ∈ Store ' [Loc ⇒ Val]⊥; we denote
the extension of a store by σ[ι 7→ Av]. Environment and
stores are defined as follows:

ρ[X 7→ Av](Y )
4
=

{
Av if X ≡ Y
ρ(Y ) otherwise

σ[ι 7→ Av](ι
′)

4
=

{
Av if ι ≡ ι′

σ(ι′) otherwise

Remark 1 (On Failure-values and Exceptions).
“Failure-values” 〈[P � Av].B � ρ〉 denote failures occurring
when we cannot find a correct substitution θ on the free
variables of P such that θ(P ) ≡ Av; the environment ρ
records the value of the free variables of B. Failure-values
are obtained during the computation when a matching failure
occurs. Unsuccessful matches generate an error value that
does not stuck the interpreter. These can, in principle,
be discarded, or caught by a suitable exception handler [8]
implemented in the interpreter.

For the sake of simplicity, dealing with pattern-mismatch
errors and pattern-exceptions is out of the scope of this
paper (but this feature is available with a “flag-option”
in our interpreter written in Bigloo); in all examples
presented in Section 4 when a computation terminates with
a success (i.e. not a failure-value), all intermediate failure-
values are simply discharged from the final output. The
interested reader could have a look at [9] showing necessary
extensions/enhancements of an operational semantics and
a suitable matching theory that would automatically drop
failure-values.

2.2 Imperative Operational Semantics
We define a call-by-value operational semantics via a

natural proof deduction system à la Kahn [18]. The present
interpreter is “optimistic” since it gives a result if at least
one computation does not produce a failure-value: of course
other choices are possible, e.g. a “pessimistic” interpreter
which stops if at least one failure-value occurs. The purpose
of the deduction system is to map every expression into a
value, i.e. an irreducible term in weak-head normal form.
The semantics is defined via three judgments of the shape:

σ � ρ ` A ⇓val Av � σ
′

σ ` 〈Av �Bv〉 ⇓call Cv � σ
′

σ � ρ ` 〈A �Av〉 ⇓match ρ
′

All judgments have as premises a global store σ, which can
be modified and returned as a result. In the case of ⇓val and
⇓call, a store σ is given as input, and a (possibly modified)
store σ′ is returned as output. In the ⇓match rule, a store σ
is needed as input since our matching algorithm allows to
match a referencing terms ref A to a pointer-variable, such
as in:

[ι0 7→ 3] � [Y 7→ ι0] ` (ref X:(X:b)→ X)Y ⇓val 3 � [ι0 7→ 3]

The rules of the dynamic semantics are defined in Figure 2.
In a nutshell:

• (Red−v) This rule evaluates every constant to itself;

• (Red−Fun) This rule evaluates a pattern abstraction
to its closure 〈P :∆→ A � ρ〉;



Value Reduction ⇓val
(Red−Fun)

σ � ρ ` P :∆→ A ⇓val 〈P :∆→ A � ρ〉 � σ σ � ρ ` f ⇓val f � σ
(Red−v)

σ0 � ρ ` A ⇓val Av � σ1

σ1 � ρ ` B ⇓val Bv � σ2

σ0 � ρ ` A,B ⇓val Av, Bv � σ2

(Red−Struct)
X ∈ Dom(ρ)

σ � ρ ` X ⇓val ρ(X) � σ
(Red−V ar)

ι /∈ Dom(σ1)

σ0 � ρ ` A ⇓val Av � σ1

σ0 � ρ ` ref A ⇓val ι � σ1[ι 7→ Av]
(Red−Ref)

ι ∈ Dom(σ1)

σ0 � ρ ` A ⇓val ι � σ1

σ0 � ρ ` !A ⇓val σ1(ι) � σ1

(Red−Deref)

σ0 � ρ ` A ⇓val Av � σ1

σ1 � ρ ` B ⇓val Bv � σ2

σ2 ` 〈Av �Bv〉 ⇓call Cv � σ3

σ0 � ρ ` AB ⇓val Cv � σ3

(Red−ρv)

ι ∈ Dom(σ1)

σ0 � ρ ` A ⇓val ι � σ1

σ1 � ρ ` B ⇓val Bv � σ2

σ0 � ρ ` A := B ⇓val Bv � σ2[ι 7→ Bv]
(Red−:=)

Call Reduction ⇓call
σ0 � ρ ` 〈P �Bv〉 ⇓match ρ

′

σ0 � ρ′ ` A ⇓val Av � σ1 (Call−FunOk)

σ0 ` 〈〈P :∆→ A � ρ〉 �Bv〉 ⇓call Av � σ1

σ0 ` 〈Av � Cv〉 ⇓call Dv � σ1

σ1 ` 〈Bv � Cv〉 ⇓call Ev � σ2

σ0 ` 〈(Av, Bv) � Cv〉 ⇓call Dv, Ev � σ2

(Call−Struct)

6 ∃ρ′. σ � ρ ` 〈P �Bv〉 ⇓match ρ
′

Av ≡ 〈[P �∆ Bv].A � ρ〉

σ ` 〈Av �Bv〉 ⇓call Av � σ
(Call−FunKo)

Av ≡ 〈[P �∆ Bv].A � ρ〉

σ ` 〈Av � Cv〉 ⇓call Av � σ
(Call−Wrong)

σ ` 〈f Av �Bv〉 ⇓call f Av Bv � σ
(Call−Algbr)

Matching Reduction ⇓match

σ � ρ ` 〈X �Av〉 ⇓match ρ[X 7→ Av]
(Match−V ar)

σ � ρ ` 〈a � a〉 ⇓match ρ
(Match−Const)

ι ∈ Dom(σ) σ(ι) ≡ Av

σ � ρ ` 〈P �Av〉 ⇓match ρ
′

σ � ρ ` 〈ref P � ι〉 ⇓match ρ
′

(Match−Ref)

σ � ρ0 ` 〈A �Av〉 ⇓match ρ1

σ � ρ1 ` 〈B �Bv〉 ⇓match ρ2

σ � ρ0 ` 〈A ? B �Av ? Bv〉 ⇓match ρ2

(Match−Pair)

Figure 2: Natural Imperative Semantics.

• (Red−V ar) This rule simply fetches the value of X
into the environment;

• (Red−Struct) This rule simply evaluates the elements
of the structure;

• (Red−ρv) This rule reduces the term A to a value
Av, then evaluates the argument B in Bv, and finally
applies Av to Bv using the ⇓call judgment;

• (Red−Ref) This rule first reduces A into a value, and
then stores it into a “fresh” location ι;

• (Red−Deref) This rule first reduces A into a memory
location ι, and then read the store at ι;

• (Red−:=) This rule performs assignment: first we
reduce the receiver A into an (existent) memory
location, then we reduce the expression B (to be
assigned) into a value, and finally we give as result the
value produced by B, and a new store which performs
the modification in situ;

• (Call−FunOk) This rule first matches successfully P
against Bv, and then evaluates the body of the pattern
abstraction A in the new environment calculated by
⇓match;

• (Call−FunKo) This rule applies when the match of
P against Bv fails: a failure-value is returned;



• (Call−Struct) This rule applies every element of the
structure-value to the argument Cv;

• (Call−Algbr) This rule builds an algebraic-value
under the shape of an application in weak-head normal
form;

• (Call−Wrong) This rule applies a failure-value to a
value; the failure-value is then propagated;

• (Match−Const) Matching two equal constants does
not modify the resulting environment;

• (Match−V ar) Matching a variable against a value
produces an environment updated with the new
binding;

• (Match−Pair) Let ? ∈ {• , }. Matching either
an application (like “f Av”) or a structure (like
“A,B”) produces an environment resulting from the
composition of two environments;

• (Match−Ref) This rule is the only matching rule
which needs a store as an input argument ; it first
fetch the value Av in the store σ, at the location ι, and
then calls the matching of the pattern P against the
value Av. An example of imperative pattern-matching
is:

[ι0 7→ 3] � [X 7→ 4] ` 〈ref X � ι0〉 ⇓match [X 7→ 4][X 7→ 3]

As said before, this kind of imperative pattern-
matching gives the dereferencing term !A the status
of simple sugar in iRho.

3. THE TYPE SYSTEM
In this section, we present a type system which allows

us to give a type to terms of iRho. Our type discipline
assigns a semantical meaning to iRho-programs by type-
checking and hence, allows to catch some error before
run-time. More precisely, the type system is powerful
enough to ensure a type consistency, and to give a type
to a rich collection of interesting examples, namely decision
procedures, meaningful objects, fixed-points, term rewriting
systems, etc. This type system is, in principle, suitable to
be extended with a subtyping relation, or with bounded-
polymorphism, to capture the behavior of structures-as-
objects, and object-oriented features.

The main novelty, with respect to previous type systems
for the (functional) Rho [2, 7–9] is that term-structures can
have different types, i.e. we introduce the following new rule
for structure:

Γ À A : τ1 Γ À B : τ2

Γ À A,B : τ1 ∧ τ2
(Term−Struct)

The new kind of type τ1 ∧ τ2 (reminiscent of product-types
discipline) is suitable for heterogeneous (non-commutative)
structures, like lists, ordered sets, or objects. This
enhancement gives a more flexible type discipline, where the
structure-type τ1 ∧ τ2 reflects the implicit non-commutative
property of “,” in the term “A,B”, i.e. “A,B” does not
behave necessarily as “B,A”. This modification greatly
improves expressiveness w.r.t. previous typing disciplines on
the Rho [9], in the sense that it gives a type to terms that will
not be stuck at run-time, but it complicates the metatheory
and the mechanical proof development.

The type system À we present is algorithmic, in the
sense that the type rules are deterministic and they allow
to describe two decidable procedures for type-reconstruction
and type-checking. More precisely, a set of rules specifies a
deterministic typing algorithm if the type rules are syntax-
directed, and, moreover, if each rule satisfies the subformula
property, i.e. all the formulas appearing in the premise of a
rule are subformulas of those appearing in the conclusion.

The main complication in the type system lies in applying
a structure to an argument, thus producing a structure-value
by dispatching the argument to all the pattern abstractions
contained in the structure.

The structure-value will be typed with a structure-
type containing all the components of the structure. As
a simple example, if we apply a structure (with type
(b1 → b2)∧ (b1 → b3)) to an argument of type b1, we would
obtain as result a structure-value of type b2∧b3. To capture
this behavior (which is a direct consequence of dispatching
application into structures), we need the partial function arr
on types, which transforms a structure-type into a function-
type:

arr(τ1 → τ2)
4
= τ1 → τ2

arr(τ1 ∧ τ2)
4
= τ3 → (τ4 ∧ τ5)

{
if arr(τ1) ≡ τ3 → τ4
and arr(τ2) ≡ τ3 → τ5

Therefore, the type system of iRho derives judgments of the
shape:

Γ Γ̀ ok Γ τ̀ τ : ok Γ v̀ Av : τ

Γ ρ̀ ρ : Γ′ Γ σ̀ σ : Γ′ Γ P̀ P : τ Γ À A : τ

which denote well-typed contexts, types, values, environ-
ments, stores, patterns, and terms, respectively. For the
lack of space, we present here only the rules for patterns
and terms. In the following, we let the symbol α range over
X ∪ K. The type system is given by using rule schema pre-
sented in Figure 3. In what follows, we give a review of the
most intriguing type-checking rules.

• (Patt−Start), (Term−Start) Those rules fetch from
the context the correct type of variables and constants,
respectively;

• (Patt−Struct), (Term−Struct) Those rules assign a
product-type to a structure which records the type of
both elements;

• (Patt−Algbr), (Term−Appl) Those rules deal with
application. We discuss the application term-term, the
pattern-pattern being similar. The application rule is
the usual one can expect for an algorithmic version of
a type system; note that, before applying terms, we
need to transform the type τ1 of A into an arrow type,
since it could happen that A is a structure containing
more branches of the same domain type;

• (Term−Abs) In this rule we note that the context ∆ is
charged in the premises, using the decidable function
Fv(P ); the context Γ gives types only for algebraic
constants;

• (Term−Assign) This rule deals with assignment: the
only possible choice is to assign to an expression A, of
type τ ref , an object B of type τ ;



Pattern Rules

Γ1, α:τ,Γ2 Γ̀ ok

Γ1, α:τ,Γ2 P̀ α : τ
(Patt−Start)

Γ P̀ P1 : τ1 Γ P̀ P2 : τ2

Γ P̀ P1, P2 : τ1 ∧ τ2
(Patt−Struct)

Term Rules

Γ1, α:τ,Γ2 Γ̀ ok

Γ1, α:τ,Γ2 À α : τ
(Term−Start)

arr(τ1) ≡ τ2 → τ3

Γ P̀ f P : τ1 Γ P̀ P : τ2

Γ P̀ f P P : τ3

(Patt−Algbr)

Dom(∆) = Fv(P )

Γ,∆ P̀ P : τ1 Γ,∆ À A : τ2

Γ À P :∆→ A : τ1 → τ2
(Term−Abs)

arr(τ1) ≡ τ2 → τ3

Γ À A : τ1 Γ À B : τ2

Γ À AB : τ3
(Term−Appl)

Γ À A : τ1 Γ À B : τ2

Γ À A,B : τ1 ∧ τ2
(Term−Struct)

Γ À A : τ ref Γ À B : τ

Γ À A := B : τ
(Term−Assign)

Γ À A : τ

Γ À ref A : τ ref
(Term−Ref)

Γ À A : τ ref

Γ À !A : τ
(Term−Deref)

Figure 3: Well Formed Pattern and Terms

• (Term−Ref) This rule says that, if an object A has
type τ , then a pointer to this object, denoted by ref A,
has type τ ref ;

• (Term−Deref) This rule says that, if A is a pointer to
an object of type τ , then its access in memory, denoted
by !A, has type τ .

4. EXAMPLES
This section presents two encodings of a quite common

decision procedure, computing a negation normal form; both
encodings are type checked by our type system. In what
follows, following the algebraic “folklore”, we denote the
application (AB) by A(B).

Example 1 (Negation Normal Form).
This function is used in implementing decision procedures,
present in almost all model checkers. The processed input
is an implication-free language of formulas with generating
grammar:

φ ::= p | and(φ, φ) | or(φ, φ) | not(φ)

We present two imperative encodings: in the first, the
function is shared via a pointer and recursion is achieved via
dereferencing. In the second, formulas are shared too with
back-pointers to shared-subtrees. The variable “SELF” plays
the role of the metavariable “self” (or “this”) common in
object-orientation. Then we type-check the encodings. For
the sake of readability, all type decorations inside terms are
omitted.

(Imperative, I) this encoding uses a variable SELF which
contains a pointer to the recursive code: here the
recursion is achieved directly via pointer dereferencing,
assignment and classical imperative fixed-point in
order to implement recursion. Given the constant
dummy, the structure nnf1 is defined as in Figure 4

and the imperative encoding is:

let SELF� ref dummy in let NNF� nnf1 in

SELF := NNF; NNF(φ)

(Imperative-with-Sharing, IS) this encoding uses a vari-
able SELF which contains a pointer to the recursive
code and a flag-pointer to a boolean value associated
to each node: all flag-pointers are initially set to false;
each time we scan a (possibly) shared-formulas we set
the corresponding flag-pointer to true. The grammar
of shared-formulas is as follows:

bool ::= true | false flag ::= bool ref ψ ::= ref φ

φ ::= p | and(flag, ψ, ψ) | or(flag, ψ, ψ) | not(flag, ψ)

The structure nnf2 is defined as in Figure 4 and the
imperative encoding is:

let SELF� ref dummy in let NNF� nnf2 in

SELF := NNF; NNF(ψ)

(Typing The Imperative Encodings) Fixed-points and
let rec definitions are introduced using the well-known
result of Nax Paul Mendler [24, 25]; in fact, when
introducing recursive definitions in the typed Lambda-
calculus, the strong normalization is no longer enforced
by typing, if the type constructors do not satisfy a
“positiveness condition”.

This condition forces an algebraic constructor to be
typed without negative occurrences of “recursive”,
(potentially infinite) entities; This condition is also
enforced in the Calculus of Inductive Constructions
(see [14]), which is the basis of the Coq proof
assistant; the condition avoids inconsistencies in the
system itself, such as proving the Russell Paradox;
termination issues are essentials in Curry-Howard
based proof assistants. The same problem also appears



nnf1
4
=



p → p,

not(not(X)) → !SELF(X),

not(or(X,Y)) → and(!SELF(not(X)), !SELF(not(Y))),

not(and(X,Y)) → or(!SELF(not(X)), !SELF(not(Y))),

and(X,Y) → and(!SELF(X), !SELF(Y)),

or(X,Y) → or(!SELF(X), !SELF(Y))



nnf2
4
=



p → p,

not(B1, ref not(B2,X)) → !SELF(!X),

not(B1, ref or(B2,X,Y)) → and(ref false, !SELF(ref not(ref false,X)), !SELF(ref not(ref false,Y))),

not(B1, ref and(B2,X,Y)) → or(ref false, !SELF(ref not(ref false,X)), !SELF(ref not(ref false,Y))),

and(B,X,Y) → if (neg ref B) then (B,X,Y) := (true, !SELF(!X), !SELF(!Y))

else and(B,X,Y),

or(B,X,Y) → if (neg ref B) then (B,X,Y) := (true, !SELF(!X), !SELF(!Y))

else or(B,X,Y)


Figure 4: Imperative Encoding with(out) Sharing

in programming languages: for instance, in Caml,
one can define a recursive function without using the
keyword let rec.

There are many techniques to efficiently and effectively
implement recursive definitions in call-by-value func-
tional languages: among them, it is worth noticing the
“in-place update tricks” outlined by Guy Cousineau et
al. [10], and the more recent techniques due by Gérard
Boudol and Pascal Zimmer [3,4], and by Tom Hirscho-
witz et al. [16], or the Peter Landin’s classical trick
[20].

If b is the type of formulas φ, and b ref is the

type of the shared-formulas ψ, and ∧
n

τ
4
= τ ∧ · · · ∧ τ︸ ︷︷ ︸

n

,

and τ1
4
= b → b, and τ2

4
= b ref → b ref , then the

reader can verify that the following judgments are

derivable (let Γ1
4
= dummy: ∧

6

τ1, SELF: ∧
6

τ1 ref , and

Γ2
4
= dummy: ∧

6

τ2,SELF: ∧
6

τ2 ref )

(I) Γ1, X: ∧
6

τ1,NNF: ∧
6

τ1 ` NNF(φ) : ∧
6

b

(IS) Γ2, X: ∧
6

τ2,NNF: ∧
6

τ2 ` NNF(ψ) : ∧
6

b ref

Example 2 (Simple First-order Fixed-point [9]).
The type systems of iRho relax the classical property that
“well-typed programs normalize”. More precisely, non-termi-
nation can be encoded in our calculus thanks to ad hoc pat-
terns. We present here a term inspired by the classical Ω
term of the untyped Lambda-calculus. Let Γ ≡ fix:(b→ b)→
b, and ∆ ≡ X:b → b. A derivation for Ω

4
= fix(X):∆ →

X fix(X) is shown in Figure 5. The reader can verify that
our interpreter diverges.

5. MECHANICAL METATHEORY
In the previous sections, we have given a mathematical

presentation of iRho better suited to an encoding in Coq.
The formalization of iRho in the specification language of
the proof assistant is nevertheless a complex task, since we

have to face many subtle details which are left implicit on
paper. Due to lack of space, here we will briefly discuss the
most interesting aspects of this development.

The encoding of iRho in Coq rephrases naturally the
previous sections. Adequacy of the Coq encoding w.r.t. the
mathematical presentation is proved by pen and paper.

A well-known problem we have to deal with is the
encoding of the →-binder. Binders are known to be
difficult to encode in proof assistants; our encoding was
essentially based on closures, i.e. pairs <pattern abstraction
· environment>. Environments are partial functions from
variables to values. Substitution is replaced by a simple
look-up in the environment; variable scoping, and all name-
related matters are simply ignored. This technique is widely
used in efficient implementations of functional languages,
and greatly simplifies mechanical metatheory.

The signature of the encoding of iRho is therefore
presented in Figure 6. The natural semantics is given by
means of two mutually recursive functions, namely, eval

and call, and a third function match devoted to calculate
matching; they are sketched in Figure 7. The encoding
of the type system is rather intuitive, again by a positive
consequence of our DIMPRO pattern. The most intriguing
rules are sketched in Figure 8. For obvious lack of space we
omit any discussion of the mechanical formalization of iRho
in the Coq proof assistant: the interested reader can refers
to [22]. Again, for obvious lack of space, we just enumerate
the main metatheoretical results. We label with a “

√
” all

theorems proved by the proof assistant Coq.

(Determinism)
√

If σ � ρ ` A ⇓val A′v � σ′, and σ � ρ ` A ⇓val
A′′v � σ

′′, then A′v ≡ A′′v , and σ′ ≡ σ′′;

(Unique Type)
√

If Γ À A : τ , then τ is unique;

(Coherence)
√
σ � ρ `coh Γ if there exist two sub-contexts

Γ1, and Γ2, such that Γ1,Γ2 ≡ Γ, and Γ σ̀ σ : Γ1, and
Γ ρ̀ ρ : Γ2;

(Subject-reduction)
√

If ∅ À A : τ , and ∅�∅ ` A ⇓val Av �σ,
then there exists Γ′ which extend Γ, such that
Γ′ σ̀ σ : ok, and Γ′ v̀ Av : τ .



Γ,∆ À fix : (b→ b)→ b

Γ,∆ À X : b→ b

Γ,∆ À fix(X) : b

Γ,∆ À X : b→ b

Γ,∆ À fix(X) : b

Γ,∆ À X fix(X) : b

Γ À Ω : b→ b

Γ À fix : (b→ b)→ b

Γ À Ω : b→ b

Γ À fix(Ω) : b

Γ À Ω fix(Ω) : b

∞
∴

∅ ` Ω fix(Ω) ⇓val stack overflow

Figure 5: One Fixed-point.

Variable basic : Set. Variable eqbasic : basic -> basic -> bool. Variable var : Set. (* Bricks *)
Variable boperator: Set. Variable eqvar : var -> var -> bool. Variable sbrk : store -> loc.
Definition env := (PartialFunction var value). Definition envt := (PartialFunction var type).
Definition store := (PartialFunction loc value). Definition storet := (PartialFunction loc type).
Definition loc := nat. Definition values := (list value).
Inductive type : Set := Basic : basic -> type (* Types *)

| FunType : type -> type -> type
| ProdType : type -> type -> type
| RefType : type -> type.

Definition operator := boperator * type.
Inductive pattern : Set := POpe : operator -> (list pattern) -> pattern (* Patterns *)

| PVar : var -> type -> pattern
| PCons : pattern -> pattern -> pattern
| PRef : pattern -> pattern.

Definition patterns := (list pattern).
Inductive expr : Set := Ope : operator -> expr (* Expressions *)

| Var : var -> expr
| Abs : pattern -> expr -> expr
| App : expr -> expr -> expr
| Cons : expr -> expr -> expr
| Assign : expr -> expr -> expr
| Ref : expr -> expr
| Deref : expr -> expr.

Inductive value : Set := VOpe : operator -> (list value) -> value (* Values *)
| Loc : loc -> value
| Pair : value -> value -> value
| Closure : pattern -> expr -> env -> value
| Wrong : pattern -> value -> expr -> env -> value.

Figure 6: Semantics Domains in Coq.

(Type-soundness) If ∅ À A : τ , then ∅ � ∅ ` A ⇓call Av;

(Type-reconstruction) It is decidable if, for a given τ , is
it true that ∅ À A : τ ;

(Type-checking) It is decidable if there a type τ such that
∅ À A : τ .

6. CONCLUSIONS, RELATED, FUTURE
In this paper, we have presented a formal development

of the theory of iRho, a typed rewriting-based calculus
featuring term-rewriting, pattern-matching on imperative
terms, structures, functions, and side-effects. We mix
rewriting (for rule-based languages), with functions (for
functional languages), structures (for logic-like languages)
and safe imperative structures, all “glued” by a “imperative-
tolerant” pattern-matching algorithm. To our knowledge,
no similar study can be found in the literature.

We presented a clean and compact formalization of iRho
in the proof assistant Coq. The Subject Reduction theorem,
which is particularly tricky on the paper, was proved in
Coq with relatively little effort. The full proof development

amounts approximately to 43Kbyte and the size of the .vo

file is approximately 1Mbyte, working with CoqV7.2.
As we said in the introduction, the continuous cycle

between mathematics, manual (i.e. pen and paper) vs.
mechanical proofs, “toy” implementations using high-level
languages (and back), has been very fruitful since the very
beginning of the design of iRho.

We sometime had the feeling that the design using
mathematics was driven both by the machine assisted
certification and by the software implementation, and
that the feedback between those three (usually considered
distinct) phases was the crucial point in order to make “safe
software.”

The lesson learned with iRho, beside from the originality
of adding imperative features to a typed calculus featuring
functions, pattern-matching, and rewriting, was that the
hand of the math’s designer must be in strict contact
with the hand of the software’s designer, which, in turn,
must be in strict contact with the hand of the proof’s
certifier. Our recipe probably suggests a new schema,
or “pattern”, in the sense of “The Gang of Four” [13],
for design-implement-certify safe software. This could be
subject of future work. A small software interpreted for our



Mutual Inductive eval : expr -> env -> store -> value -> store -> Prop := (* Eval *)
...
| evalApp : (F:expr)(e:env)(s:store)(f:value)(s1:store)

(eval F e s f s1) -> (A:expr)(a:value)(s2:store)
(eval A e s1 a s2) -> (v:value)(s3:store)
(call f a s2 v s3) ->
(eval (App F A) e s v s3)

| evalRef : (A:expr)(e:env)(s:store)(a:value)(s1:store)
(eval A e s a s1) -> (i:loc)
(i=(sbrk s1)) ->
(eval (Ref A) e s (Loc i) (extend_store s1 i a))

| evalDeref : (A:expr)(e:env)(s:store)(i:loc)(s1:store)
(eval A e s (Loc i) s1) -> (v:value)
((s1 i)=(Some value v)) ->
(eval (Deref A) e s v s1)

| evalAssign : (A:expr)(e:env)(s:store)(i:loc)(v:value)(s1:store)
(eval A e s (Loc i) s1) -> (B:expr)(s2:store)
(eval B e s1 v s2) -> (old:value)
((s1 i)=(Some value old)) ->
(eval (Assign A B) e s v (extend_store s2 i v))

with call : value -> value -> store -> value -> store -> Prop :=Eval (* Call *)
...
| callClosureOK : (P:pattern)(v:value)(s:store)(e,e’:env)

(match P v s e e’) -> (B:expr)(r:value)(s1:store)
(eval B e’ s r s1) ->
(call (Closure P B e) v s r s1).

Inductive match : pattern -> value -> store -> env -> env -> Prop := (* Match *)
...
| matchCons: (left:pattern)(car:value)(s:store)(e,e’:env)

(match left car s e e’) -> (right:pattern)(cdr:value)(r:env)
(match right cdr s e’ r) ->
(match (PCons left right) (Pair car cdr) s e r)

| matchRef: (i:loc)(s:store)(v:value)
((s i)=(Some value v)) -> (x:pattern)(e,r:env)
(match x v s e r) ->
(match (PRef x) (Loc i) s e r).

Figure 7: Sketch of Natural Imperative Semantics in Coq.

core-calculus is surely a good test of the “methodology”.
More generally, this methodology could be applied in the
setting of raising quality software to the highest levels of the
Common Criteria, CC [37] (from EAL5 to EAL7), or level
five of the Capability Maturity Model, CMM. We schedule
in our agenda our novel DIMPRO, in the folklore of “design
pattern”, hoping that it would be useful to the community
developing safe software for crucial applications.

Related. Some implementations of the untyped Rewriting-
calculus (uRho) can be found in the literature: among them
we recall:

• RhoStratego [46] is an implementation of an early
version of the uRho [5], written in the strategic
language Stratego [47]. The implementation tests
strategic programming with higher-order functional
programming;

• Rogue [32] is another implementation of a dialect of the
uRho [5]: this implementation is very interesting since
some imperative features are added to the language,
e.g. reading and writing “attributes” of expressions
and a fixed strategy. Rogue has an interesting
application, namely, it is the implementation language
for building a new Validity Checker based on the CVC
[33] infrastructure;

• JRho [12] is a Java implementation of uRho [5], using
the TOM pattern-matching compiler [28].

Future. The iRho calculus is suitable for extension with
more powerful pattern-matching algorithms, and more
sophisticated type systems capturing all modern object-
oriented features, both class-based and prototype-based
ones. Among the possible developments, the next questions
on our agenda are:

• add to our type system a subtyping relation; this would
allow one to type-check considerably more programs
in iRho, by enhancing the type system with bounded
polymorphism and object-types, together with the
design of a type inference algorithm;

• enhance the calculus with garbage collection: today,
new locations created during reduction remain in the
store forever; extending the calculus with suitable
modern exception mechanisms would be also worth
studying;

• analyze, perhaps using abstract interpretation or static
analysis techniques, the possibility to statically catch
some pattern-matching failures;

• enhance our work, using the DIMPRO pattern, build-
ing an abstract machine for iRho;



Inductive TypeCheckPattern : envt -> pattern -> envt -> type -> Prop := (* Type-check for patterns *)
...
| tcPOpCons : (E,E1:envt)(op:operator)(lp:patterns)(t:type)

(TypeCheckPattern E (POp op lp) E1 t) -> (t1,t2:type)
(NormalizeFunType t (FunType t1 t2)) -> (P:pattern)(E2:envt)
(TypeCheckPattern E1 P E2 t1) ->
(TypeCheckPattern E (POp op (cons P lp)) E2 t2).

Inductive TypeCheckExpr : envt -> expr -> type -> Prop := (* Type-check for expressions *)
...
| tcApp : (E:envt)(F:expr)(t:type)

(TypeCheckExpr E F t) -> (t1,t2:type)
(NormalizeFunType t (FunType t1 t2)) -> (A:expr)
(TypeCheckExpr E A t1) ->
(TypeCheckExpr E (App F A) t2)

| tcRef : (E:envt)(A:expr)(t:type)
(TypeCheckExpr E A t) ->
(TypeCheckExpr E (Ref A) (RefType t))

| tcDeref : (E:envt)(A:expr)(t:type)
(TypeCheckExpr E A (RefType t)) ->
(TypeCheckExpr E (Deref A) t)

| tcAssign : (E:envt)(A:expr)(t1:type)
(TypeCheckExpr E A (RefType t1)) -> (B:expr)(t2:type)
(TypeCheckExpr E B t1) ->
(TypeCheckExpr E (Assign A B) t1).

Mutual Inductive TypeOf : storet -> value -> type -> Prop := (* Type-check for values *)
...
| toClosure : (S:storet)(e:env)(E:envt)

(AbstractEnv S e E) -> (P:pattern)(B:expr)(t1,t2:type)
(TypeCheckExpr E (Abs P B) (FunType t1 t2)) ->
(TypeOf S (Closure P B e) (FunType t1 t2))

with AbstractEnv : storet -> env -> envt -> Prop := (* Coherence environment-type via coherence store-type *)
...
| aeExtend : (S:storet)(e:env)(E:envt)

(AbstractEnv S e E) -> (v:value)(t:type)
(TypeOf S v t) -> (x:var)
(AbstractEnv S (extend_env e x v) (extend_envt E x t)).

Definition AbstractStore: storet -> store -> storet -> Prop := (* Coherence store-type *)
[S1:storet][s:store][S2:storet]

(((i:loc)(v:value) (s i)=(Some value v) ->
(EX t:type | ((S2 i)=(Some type (RefType t)) /\ (TypeOf S1 v t) )))

/\ ((i:loc) (s i)=(None value) -> (S2 i)=(None type))).
Definition FixAbstract: env -> store -> envt -> storet -> Prop := (* Coherence environment-type-store *)
[e:env][s:store][E:envt][S:storet] ((AbstractEnv S e E) /\ (AbstractStore S s S)).

Figure 8: Sketch of Type-checking Rules in Coq.

• add some ad hoc XML primitives to iRho;

• enhance our proof development, in order to reach
software extraction via Coq; this would be particularly
appealing, since it would eliminate one cycle in our
DIMPRO pattern;

• conceive, following the “design pattern” jargon, the
pattern DIMPRO;

• apply DIMPRO to the design of a simple compiler from
iRho toward an abstract machine, like JVM, or .NET,
or to a variant of a Landin’s machine [4];

Acknowledgment. The authors would like to thank all
the members of the Protheo Team in Nancy for their
comments and interactions on Rewriting Calculus. Luigi
was visiting the University of Sussex, Brighton; he would
like to thank his hosts Matthew Hennessy and Vladimiro
Sassone, and the whole Department of Informatics for the
ideal working conditions they provided, and Matt Wall
for the careful reading of the paper. Finally, the authors
are sincerely grateful to all anonymous referees for their

extremely useful comments, in particular for pointing out
some subtleties in the interaction of patterns, structures and
logic programming.

7. REFERENCES
[1] J. R. Abrial. The B-Book: Assigning Programs to

Meanings. Cambridge University Press, 1996.

[2] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori.
Pure Pattern Type Systems. In Proc. of POPL, pages
250–261. The ACM Press, 2003.

[3] G. Boudol. The Recursive Record Semantics of
Objects Revisited. Journal of Functional
Programming, 200X.

[4] G. Boudol and P. Zimmer. Recursion in the
Call-by-Value Lambda-Calculus. In Proc. of FICS,
Note Series NS-02-2. BRICS, 2002.

[5] H. Cirstea and C. Kirchner. The rewriting calculus —
Part I and II. Logic Journal of the Interest Group in
Pure and Applied Logics, 9(3):427–498, 2001.

[6] H. Cirstea, C. Kirchner, and L. Liquori. Matching
Power. In Proc. of RTA, volume 2051 of LNCS, pages
77–92. Springer-Verlag, 2001.



[7] H. Cirstea, C. Kirchner, and L. Liquori. The Rho
Cube. In Proc. of FOSSACS, volume 2030 of LNCS,
pages 166–180, 2001.

[8] H. Cirstea, C. Kirchner, and L. Liquori. Rewriting
Calculus with(out) Types. In Proc. of WRLA,
ENTCS, 2002.

[9] H. Cirstea, L. Liquori, and B. Wack. Rho-calculus
with Fixpoint: First-order system. In Proc. of
TYPES. Springer-Verlag, 2004.

[10] G. Cousineau, P.-L. Curien, and M. Mauny. The
Categorical Abstract Machine. Science of Computer
Programming, 8(2):173–202, 1987.

[11] Cristal, Foc-CNAM, Lemme, Mimosa, Miró, and
Oasis. Concert: Compilateurs Certifiés, 2004. ARC
INRIA 2003-2004,
http://www-sop.inria.fr/lemme/concert.

[12] G. Faure and P. Moreau. Jrho: a Java Implementation
of the Rho Calculus, 2002.
http://elan.loria.fr/Soft/jrho-0.1.tar.gz.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides
(The Gang of Four). Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1994.

[14] E. Gimenez. Structural Recursive Definitions in Type
Theory. In Proc. of ICALP, pages 397–408, 1998.

[15] J. Goguen. The OBJ Family Home Page, 2004. http:
//www.cs.ucsd.edu/users/goguen/sys/obj.html.

[16] T. Hirschowitz, X. Leroy, and J. B. Wells. Compilation
of Extended Recursion in Call-by-Value Functional
Languages. In Proc. of PPDP. The ACM Press, 2003.

[17] G. Huet. Résolution d’equations dans les langages
d’ordre 1,2, ...,ω. Ph.d. thesis, Université de Paris 7
(France), 1976.

[18] G. Kahn. Natural Semantics. In Proc. of STACS,
volume 247 of LNCS, pages 22–39. Springer-Verlag,
1987.

[19] S. N. Kamin. Inheritance in Smalltalk-80: A
Denotational Definition. In Proc. of POPL, pages
80–87. The ACM Press, 1988.

[20] P. J. Landin. The Mechanical Evaluation of
Expression. The Computer Journal, 6:308–320, 1964.

[21] K. Lee, A. LaMarca, and C. Chambers. HydroJ:
Object-Oriented Pattern Matching for Evolvable
Distributed Systems. In Proc. of OOPSLA. The ACM
Press, 2003.

[22] L. Liquori and B. Serpette. The Full Version of this
paper, 2004. http://www-sop.inria.fr/oasis/
Bernard.Serpette/ImpRhoCalculus/.

[23] I. A. Mason and C. L. Talcott. References, Local
Variables and Operational Reasoning. In Proc. of
LICS, pages 66–77, 1992.

[24] N. P. Mendler. Inductive Definition in Type Theory.
PhD thesis, Cornell University, Ithaca, USA, 1987.

[25] N. P. Mendler, P. Panangaden, and R. L. Constable.
Infinite Objects in Type Theory. In Proc. of LICS,
pages 249–255, 1986.

[26] Microsoft. The C# Home Page, 2004.
http://msdn.microsoft.com/vcsharp/.

[27] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
1997.

[28] P. Moreau, C. Ringeissen, and M. Vittek. The Tom
Home Page, 2004. http://tom.loria.fr/.

[29] J. G. Morrisett, M. Felleisen, and R. Harper. Abstract
Models of Memory Management. In Proc. of FPCA,
pages 66–77. The ACM Press, 1995.

[30] S. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice Hall, 1987.

[31] D. Riehle and H. Züllighoven. Understanding and
Using Patterns in Software Development. Theory and
Practice of Object Systems, 2(1):3–13, 1996.

[32] A. Stump. The Rogue Home Page, 2004.
http://www.cse.wustl.edu/~stump/rogue.html.

[33] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A
Cooperating Validity Checker. In CAV, 2002. System
Description.

[34] Sun. Java Technology, 2004. http://java.sun.com/.

[35] The Asf+Sdf Team. The Asf+Sdf Meta-Environment
Home Page, 2004. http://www.cwi.nl/htbin/sen1/
twiki/bin/view/SEN1/MetaEnvironment.

[36] The Cduce Team. The Cduce Home Page, 2004.
http://www.cduce.org.

[37] The Common Criteria Consortium. The Common
Criteria Home Page, 2004.
http://www.commoncriteria.org.

[38] The Cristal Team. The Objective Caml Home Page,
2004. http://www.ocaml.org/.

[39] The GNU Prolog Team. The GNU Prolog Home Page,
2004.
http://pauillac.inria.fr/~diaz/gnu-prolog/.

[40] The Haskell Team. The Haskell Home Page, 2004.
http://www.haskell.org/.

[41] The Logical Team. The Coq Home Page, 2004.
http://coq.inria.fr.

[42] The Maude Team. The Maude Home Page, 2004.
http://maude.cs.uiuc.edu/.

[43] The Mimosa Team. The Schme Bigloo Home Page,
2004. http://www.sop.inria.fr/mimosa/fp/bigloo/.

[44] The Protheo Team. The Elan Home Page, 2004.
http://elan.loria.fr.

[45] The Scheme Team. The Scheme Language, 2004.
http://www.swiss.ai.mit.edu/projects/scheme/.

[46] The Stratego Team. The Rho Stratego Home Page,
2004. http://www.stratego-language.org/twiki/
bin/view/Stratego/RhoStratego.

[47] The Stratego Team. The Stratego Home Page, 2004.
http://www.stratego-language.org.

[48] The Xduce Team. The Xduce Home Page, 2004.
http://xduce.sourceforge.net.

[49] A. van Deursen, J. Heering, and P. Klint. Language
Prototyping. World Scientific, 1996.

[50] V. van Oostrom. Lambda Calculus with Patterns.
Technical Report IR-228, Faculteit der Wiskunde en
Informatica, Vrije Universiteit Amsterdam, 1990.


