
HAL Id: hal-01149845
https://inria.hal.science/hal-01149845

Submitted on 7 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning on an imperative object-based calculus in
Higher Order Abstract Syntax

Alberto Ciaffaglione, Luigi Liquori, Marino Miculan

To cite this version:
Alberto Ciaffaglione, Luigi Liquori, Marino Miculan. Reasoning on an imperative object-based calculus
in Higher Order Abstract Syntax. MERLIN ’03. Proceedings of the 2003 ACM SIGPLAN workshop
on Mechanized reasoning about languages with variable binding, Aug 2003, Uppsala, Sweden. pp.1-10,
�10.1145/976571.976574�. �hal-01149845�

https://inria.hal.science/hal-01149845
https://hal.archives-ouvertes.fr

Reasoning on an Imperative Object-based Calculus
in Higher Order Abstract Syntax ∗

Alberto Ciaffaglione‡

ciaffagl@dimi.uniud.it
Luigi Liquori

†

Luigi.Liquori@inria.fr
Marino Miculan

‡

miculan@dimi.uniud.it

ABSTRACT
We illustrate the benefits of using Natural Deduction in
combination with weak Higher-Order Abstract Syntax for
formalizing an object-based calculus with objects, cloning,
method-update, types with subtyping, and side-effects, in
inductive type theories such as the Calculus of Inductive
Constructions. This setting suggests a clean and compact
formalization of the syntax and semantics of the calculus,
with an efficient management of method closures. Using our
formalization and the Theory of Contexts, we can prove for-
mally the Subject Reduction Theorem in the proof assistant
Coq, with a relatively small overhead.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal definitions and
Theory—syntax, semantics; F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: [logics of pro-
grams]

General Terms
Languages, Theory, Verification.

Keywords
Interactive theorem proving, Logical foundations of program-
ming, Program and system verification, Object-based calculi
with side-effects, Logical Frameworks.

1. INTRODUCTION
Object-based languages, like Self and Obliq, are a kind

of object-oriented languages where there is no notion of

∗Research supported by Italian MIUR project COFIN
2001013518 CoMeta.
†INRIA-LORIA, Nancy, France.
‡Department of Mathematics and Computer Science, Uni-
versity of Udine, Italy.

“class”, differently from class-based languages, like Java,
C++ and C#. Object-based languages are simpler, provide
more primitive and flexible mechanisms, and can be used
as intermediate languages in the implementation of class-
based ones. Despite this, object-based languages are less
used in practice than the latter; for this reason, while in
recent years much effort has been put in the formalization
of class-based languages, relatively little or no formal work
has been carried out on object-based ones. This is a serious
gap, because most of the foundational calculi introduced for
the mathematical analysis of the object-oriented paradigm
are object-based [2, 13]; in fact, object-based calculi repre-
sent for the object-oriented paradigm what the λ-calculus
and its variants are for the functional paradigm.

The main aim of the present work is to fill this gap. More
precisely, we focus on Abadi and Cardelli’s impς [2], a par-
ticularly representative object-based calculus featuring ob-
jects, methods, cloning, dynamic lookup, method-update,
types, subtypes, and, last but not least, imperative features.
Both static and dynamic aspects of impς will be formal-
ized in the Calculus of Inductive Constructions type theory
(CIC), implemented in the interactive proof assistant Coq,
which has been already successfully used in the formaliza-
tion of class-based languages.

Due to its nature, impς is quite complex, both at the syn-
tactic and the semantic level: impς features all the idiosyn-
crasies of functional languages with imperative features; mo-
reover, the store model underlying the language allows for
loops, thus making the typing system quite awkward. Con-
sequently, key metatheoretic properties such as the Subject
Reduction are much harder to state and prove for impς than
for usual functional languages, already “on paper”.

Therefore, a plain, näıve first-order encoding of impς would
add further confusing details, leading to a clumsy and un-
manageable formalization; hence, a key aspect of this work
is that the overhead introduced by the formalization should
be as low as possible. This can be achieved by taking most
advantage of the metatheoretic features offered by the type
theory-based Logical Frameworks (LFs). In particular, the
direct support for Natural Deduction and Higher-Order Ab-
stract Syntax, common to most LFs, can be used proficiently
for defining alternative, and sparer, formalizations. For a
significant fragment of impς (i.e., without method-update),
we can even drop the so-called store-types and all related ma-
chinery, by taking full advantage of coinductive judgments.
However, in this paper we are interested in presenting the
difficulties and solutions we have developed for the full impς
calculus, rather than defining radically new semantics for ob-

ject calculi; therefore, we will not discuss coinductive types
and related proof systems. We refer the reader to [6].

Natural Deduction leads us to consider a different formu-
lation of static and dynamic semantics of impς, namely in
the style of the Natural Deduction Semantics (NDS) [4, 22].
The key point in using NDS is that all stack-like structures
(e.g., environments, typing bases) are distributed in the hy-
potheses of the proof derivations. Therefore, these struc-
tures do not appear explicitly anymore in the formal judg-
ments and proofs we have to deal with, which become fairly
simpler. Of course, the semantics in NDS we focus on is
equivalent to the original Natural Semantics of [2].

On the other hand, the impς calculus has binders, which
we have to deal efficiently with both in the syntax and in
the semantics (due to the presence of closures). To this
end, the weak Higher-Order Abstract Syntax (weak HOAS)
approach has emerged as one of the most suited in induc-
tive type theories like CIC [10, 17, 18]. Following such an
approach, a separate, open type for variables is introduced,
and binders are represented as second-order term construc-
tors, taking functions over variables as arguments. In this
way, it is possible to delegate to the metalanguage all the
burden of α-conversion, still retaining the benefits of induc-
tive definitions. The disadvantage of weak HOAS is that it
does not allow to inherit substitution of terms for variables
from the metalanguage, as it is possible, instead, using full
HOAS in non inductive type theories [15, 26]. Luckily, this
is not a problem in the case of impς, since its semantics is
defined using closures instead of substitutions. Therefore,
the solution of using weak HOAS fits perfectly the needs for
encoding impς; as a byproduct, the NDS and HOAS style
yield a different, more efficient handling of closures.

However, the weak HOAS reveals its main drawback when
we come to reasoning over our formalization of impς, e.g. for
proving key metaproperties such as the Subject Reduction.
Here we have to prove several properties concerning vari-
able renaming, often by induction over second-order terms,
and by case analysis over the name of the variables them-
selves. All this is problematic because CIC, and similar type
theories, are not expressive enough [18].

In recent years, various approaches have been proposed
to overcome these kinds of problems. One approach tends
to propose new, more expressive metalanguages, especially
designed for reasoning on names and variables, and based
on different techniques such as modal types, functor cate-
gories, permutation models of set theory, etc. [11,12,14,16].
Another line of research tends to cope with these problems
within the current systems and logical frameworks [18, 25,
27]. A comparison of the different approaches is out of the
scope of this paper.

Since we carry out a weak HOAS encoding in CIC, we
have decided to adopt the Theory of Contexts (ToC) [17],
a quite general “plug-and-play” methodology for reasoning
on object systems in weak HOAS. The gist of this approach
is to extend directly the existing framework (CIC, in this
case) with a small set of axioms capturing some basic and
natural properties of names and term contexts. The main
advantage of such a technique is that it requires a very low
mathematical and logical overhead: it can be easily used in
existing proof environments without the need of any redesign
of the system, and it allows for carrying out proofs with
arguments similar to those “on paper”. It turns out that
also in the present case, the ToC reveals to be well-suited:

we actually succeed in proving the Subject Reduction for
impς with a small, sustainable overhead.

Our effort is useful also from the point of view of Logi-
cal Frameworks. Their theoretical development and imple-
mentation will benefit from complex case studies like the
present one, where we test the applicability of advanced en-
coding and proof methodologies. An interesting remark is
that we have to slightly modify the “unsaturation”, one of
the axioms of the ToC, in order to take into account the
different kinds of informations kept in the proof derivation
environment. This is similar to previous applications of the
ToC to typed languages [23], and it is needed in order to re-
spect a form of “regularity” of well-formed contexts. Thus,
we argue that such a “regularity” of proof contexts should
allow to generalize further the ToC, subsuming the several
variants used in the case studies so far.

Synopsis. The paper is structured as follows. Section 2
gives a brief account of the impς-calculus, whose formaliza-
tion in weak HOAS is presented in Section 3. Development
of metatheoretic results, using the ToC, is discussed in Sec-
tion 4. Final discussions and directions for future work are
in Section 5. The Coq code is available at [7].

2. THE IMPς CALCULUS

Syntax. Abadi and Cardelli’s impς-calculus [2] is an imper-
ative calculus of objects forming the kernel of the program-
ming language Obliq [5]. The syntax is the following:

Term : a, b ::= x variable

[li = ς(xi)bi]
i∈I object

clone(a) cloning

a.l method invocation

a.l← ς(x)b method update

let x = a in b local declaration

Notice that ς and let bind x in b, so usual conventions about
α-conversion apply. The reader is referred to [2, Ch.10,11]
for an explanation of the intuitive meaning of these con-
structs. We present the semantics of impς using a Natural
Deduction (NDS) style, because this leads to a simpler for-
malization in LFs, as will be explained and carried out in
the next section.

Dynamic Semantics. First we need to introduce some im-
plementation-level entities, such as store-locations, results,
reduction contexts, closures and stores:

Loc : ι ∈ Nat store loc.

Res : v ::= [li = ιi]
i∈I result

RedCtx :Γ ::= ∅ | Γ, x 7→ v (x /∈ Dom(Γ)) red. ctx.

Store : s ::= ιi 7→ 〈ς(xi)bi,Γi〉i∈I store

A method-closure 〈ς(x)b,Γ〉 is a method together with a set
of declarations for its free variables, the (reduction) context.
In reduction contexts, variables are uniquely associated to
results of object declarations. Each result is a (possibly
empty) list of pairs: method-names together with store-
locations, where the corresponding method-closure is stored.
Hence a store is a function mapping locations to closures: in
the following, the notation ιi 7→ ci

i∈I denotes the store that

maps the locations ιi to the closures ci, for i ∈ I; s, ι 7→ c
extends s with c at location ι (fresh), and s.ιj ← c denotes
the result of replacing the content of the location ιj of s with
c. Unless explicitly remarked, all the li, ιi are distinct.

The big-step operational semantics is expressed by a re-
duction judgment relating a store s, a term a, a result v
and another store s′ (possibly different from s), in a given
reduction context, i.e.:

Γ ` s · a; v · s′

The intended meaning is that, evaluating the term a from
the store s in the reduction context Γ, yields the result v, in
an updated store s′. In this semantics, variables never need
to be replaced (i.e. substituted) by terms; instead, their re-
sult is book-kept in the reduction context. The rules for
the reduction judgment are in Figure 1. Slightly different
from the original presentation [2], ours is in Natural De-
duction style (despite that rules are written in “horizontal”,
sequent-like format for saving space): in fact, in all the rules,
the reduction context in each premise is a superset of the
reduction context in the conclusion. This alternative pre-
sentation is much easier to implement and reason about in
proof assistants based on type theory, as we will see in the
next sections. Clearly, our presentation is equivalent to the
original one (see [8, 9]).

Static Semantics. The impς-calculus has a first-order type
system with subtyping. The only type constructor is that
for object-types, i.e. TType : A,B ::= [li : Ai]

i∈I , so the
only ground type is [].

In order to define the typing judgment we need to in-
troduce the typing contexts (or bases), which are unique
assignments of types to variables:

TypCtx : ∆ ::= ∅ | ∆, x:A (x /∈ Dom(∆))

The type system is given by three judgments: well-formedness
of object-types ∆ ` A, subtyping ∆ ` A <: B, and term
typing ∆ ` a : A. The rules for these judgments are col-
lected in Figure 2; notice that also this system is in Natural
Deduction style. Subtyping induces subsumption: an object
of a given type also belongs to any super-type of that type
and can subsume objects in the super-type, because these
have a more limited protocol. Correspondingly, the rule
(Sub−Obj) allows a longer object-type to be a subtype of a
shorter one, when the shared components have exactly the
same types. Thus, object-types are invariant (i.e. neither
covariant nor contravariant) in their component types.

The typing of results is delicate, because results contain
pointers to the store, and stores may contain loops; thus,
it is not possible to determine the type of a result by ex-
amining its substructures recursively. In order to cope with
this problem, a whole store is typed a priori by means of
store-types. This is possible because type-sound computa-
tions do not store results of different types in the same lo-
cation. A store-type associates a method-type to each store
location. Method-types have the form [li : Bi]

i∈I ⇒ Bj ,
where [li : Bi]

i∈I is the type of “self” and Bj , such that
j ∈ I, is the type of the j-th method-body:

M ::= [li : Bi]
i∈I ⇒ Bj method-type (j ∈ I)

Σ ::= ιi 7→Mi
i∈I store-type

Σ1(ι) , [li : Bi]i∈I if Σ(ι) = [li : Bi]
i∈I ⇒ Bj

Σ2(ι) , Bj if Σ(ι) = [li : Bi]
i∈I ⇒ Bj

The type assignment system for results is given by five judg-
ments: well-formedness of method-types M |= � and store-
types Σ |= �, result typing Σ |= v : A and store typing
Σ |= s, and context compatibility Σ |= Γ : ∆. The intended
meaning of the main (result typing) judgment “Σ |= v : A”
is that the result v is given the type A, using the types as-
signed to locations by Σ. On the other hand, Σ |= s ensures
that the content of every store location of s can be given
the type assigned by Σ to the same location. The rules for
these judgments are collected in Figure 3.

Subject Reduction. The Type Soundness property for impς
establishes that every well-typed and not diverging term
never yields the “message not found” runtime error. This
is an immediate consequence of the Subject Reduction the-
orem [2].

Definition 1 (Store-type extension). We say Σ′ ≥
Σ (Σ′ is an extension of Σ) if and only if Dom(Σ) ⊆ Dom(Σ′),
and for all ι ∈ Dom(Σ): Σ′(ι) = Σ(ι).

Theorem 1 (Subject Reduction). If ∆ ` a : A, and
Γ ` s · a ; v · s′, and Σ |= s, and Dom(s) = Dom(Σ), and
Σ |= Γ : ∆, then there exist a type A′, and a store-type Σ′,
such that Σ′ ≥ Σ, and Σ′ |= s′, and Dom(s′) = Dom(Σ′),
and Σ′ |= v : A′, and A′ <: A.

3. FORMALIZATION OF IMPς IN CIC
In this section, we present and discuss the formalization

of impς in our LF based on type theory. For definiteness, we
work in the Calculus of Inductive Constructions (CIC), and
specifically in its Coq implementation, although the method-
ology we follow can be applied in any similar LF.

In encoding impς, we have to address efficiently several
aspects of its syntax and semantics. A clean and compact
encoding is a prerequisite for simplifying the development of
complex metatheoretical results, such as the Subject Reduc-
tion. In general, a näıve encoding would lead to a clumsy
and unmanageable set of definitions, which would add fur-
ther difficulties to the formal proofs, which are already dif-
ficult on paper. Therefore, we need encoding methodologies
that take most advantage of the features provided by mod-
ern type theories, so that most (if not all) details implicitly
taken for granted working with paper and pencil can be au-
tomatically inherited in the formal developments.

Among other issues, the treatment of binders, closures and
stores is of particular interest. We focus on these aspects at
the syntactic and semantic level, in turn.

3.1 Syntax
Following the weak higher-order abstract syntax paradigm,

we reduce all binders to the sole λ-abstraction. Therefore,
the encoding of the syntax of terms and types of impς is the
following:

Parameter Var : Set. Definition Lab := nat.
Inductive Term : Set := var : Var -> Term

| obj : Object -> Term
| call : Term -> Lab -> Term
| clone: Term -> Term
| over : Term -> Lab -> (Var->Term) -> Term
| let : Term -> (Var->Term) -> Term

with Object : Set := obj_nil : Object
| obj_cons : Lab -> (Var->Term)

-> Object -> Object.
Coercion var : Var >-> Term.
Inductive TType:Set:=mktype:(list (Lab*TType)) -> TType.

x 7→ v ∈ Γ ∀ ι ∈ v. ι ∈ Dom(s)

Γ ` s · x; v · s
(Red−V ar)

Γ ` s · a; v′ · s′ Γ, x 7→ v′ ` s′ · b; v′′ · s′′

Γ ` s · let x = a in b; v′′ · s′′
(Red−Let)

∀ (x 7→ v) ∈ Γ, ∀ ι′ ∈ v. ι′ ∈ Dom(s)

Γ ` s · [li = ς(xi)bi]
i∈I ; [li = ιi]

i∈I · (s, ιi 7→ 〈ς(xi)bi,Γ〉i∈I)
(Red−Obj)

Γ ` s · a; [li = ιi]
i∈I · s′ ιi ∈ Dom(s′) ∀i ∈ I

Γ ` s · clone(a) ; [li = ι′i]
i∈I · (s′, ι′i 7→ s′(ιi)

i∈I)
(Red−Clone)

Γ ` s · a; [li = ιi]
i∈I · s′ s′(ιj) = 〈ς(xj)bj ,Γ′〉 Γ,Γ′, xj 7→ [li = ιi]

i∈I ` s′ · bj ; v · s′′ j ∈ I

Γ ` s · a.lj ; v · s′′
(Red−Sel)

Γ ` s · a; [li = ιi]
i∈I · s′ ιj ∈ Dom(s′) j ∈ I

Γ ` s · a.lj ← ς(x)b; [li = ιi]
i∈I · (s′.ιj ← 〈ς(x)b,Γ〉)

(Red−Upd)

Figure 1: Operational semantics for impς.

Notice that we use a separate type Var for variables: the
only terms which can inhabit Var are the variables of the
metalanguage. Thus α-equivalence on terms is immediately
inherited from the metalanguage, still keeping induction and
recursion principles. If Var were inductive, we could define
“exotic terms” using the Case construct of Coq [10]. Exotic
terms are Coq terms not corresponding to any expression
of impς, which therefore should be ruled out by extra “well-
formedness” judgments, thus complicating the whole encod-
ing. Notice also that the constructor var is declared as a
coercion, thus it may omitted in the following. Weak HOAS
has well-known encoding methodologies [15, 28]; therefore,
the adequacy of the encoding w.r.t. the NDS presentation of
Section 2 follows from standard arguments.

An alternative definition of objects could use directly the
polymorphic lists of the Coq library, instead of introducing
a separate type Object, as follows:

| obj : (list (Lab * (Var->Term))) -> Term

However, in our experience, this choice would not allow for
defining, by recursion on the structure of terms, some fun-
damental functions which are essential for the rest of the
formalization (such as, for example, the non-occurrence of
variables “/∈”). Using polymorphic lists, the specification of
these functions would be actually “unguarded”, while they
are feasible adopting the above definition.

3.2 Dynamic Semantics
As pointed out in the previous sections, a proof system in

natural deduction like that in Figure 1 is easily encoded in a
LF based on type theory. This can be carried out by taking
advantage of hypothetical-general judgments à la Martin-
Löf: the content of Γ, i.e. the bindings between variables
and results, is actually represented through assumptions in
the proof context, namely by means of hypothetical premises
local to sub-reductions, which are discharged in the conclu-
sion, so adhering to the natural deduction style. Thus, the
evaluation judgment Γ ` s · a; v · s′ can be represented by
an inductive predicate:

Inductive eval : Store -> Term -> Store -> Res -> Prop :=

but, before giving its specification, we need to address some
details about locations and closures.

Locations. Locations, as method names (i.e., labels), can
be faithfully represented by natural numbers; this allows to
define results and reduction contexts:

Definition Loc := nat.

Definition Res : Set := (list (Lab*Loc)).

Parameter stack : Var -> Res.

Informally, reduction contexts are (partial) functions, map-
ping (declared) variables to results; therefore, they can be
represented as the graph of a function stack, which asso-
ciates a result to each declared variable. This map is never
effectively defined, but only described by a finite set of as-
sumptions of the form “(stack x)=v” (where “=” is Leibniz’s
equality). Each of such declarations corresponds to an as-
sumption “x 7→ v” of the context Γ in Figure 1; these as-
sumptions are used in evaluating variables, and discharged
when needed, as in the rule for let:

e_var : (s:Store) (x:Var) (v:Res) (stack x) = (v) ->
(eval s x s v)

e_let : (s,s’,t:Store) (a:Term) (b:Var->Term) (v,w:Res)
(eval s a s’ v) ->
((x:Var) (stack x) = (v)->(eval s’ (b x) t w)) ->
(eval s (let a b) t w)

In the rule e let, the “hole” of b is filled with a fresh (i.e.,
locally quantified) variable associated to v. This rule allows
also to enlighten why the weak HOAS approach is completely
well-suited w.r.t. impς: the only substitution we need is that
of variables for variables, which is completely delegated to
the metalanguage.

Closures. Some remarks about the rules dealing with clo-
sures are in order. Formally, closures are pairs 〈ς(x)b,Γ〉,
where ς(x)b is a method and Γ is the reduction context.
Therefore, we have to face two problems in implementing
closures: how to represent these sets of declarations Γ, and
how to gather and put back them from/to the proof context.

Since all the variables declared in the local context of a
closure are “morally” bound in the body of the method, we
have that the names of these “local” variables are pointless:
so, reduction contexts are equivalent to local declarations
of variables. Therefore, following the weak HOAS approach,
we implement closures as a concrete second-order datatype:

∆ ` Ai ∀i ∈ I

∆ ` [li : Ai]
i∈I

(Type−Obj) ∆ ` A

∆ ` A <: A
(Sub−Refl)

∆ ` A <: B ∆ ` B <: C

∆ ` A <: C
(Sub−Trans)

∆ ` Ai ∀i ∈ I ∪ J

∆ ` [li : Ai]
i∈I∪J <: [li : Ai]

i∈I
(Sub−Obj)

∆ ` a : A ∆ ` A <: B

∆ ` a : B
(V al−Sub)

x:A ∈ ∆ ∆ ` A

∆ ` x:A
(V al−V ar)

∆, xi:[li : Ai]
i∈I ` bi : Ai ∀i ∈ I

∆ ` [li = ς(xi)bi]
i∈I : [li : Ai]

i∈I
(V al−Obj)

∆ ` a : [li : Ai]
i∈I j ∈ I

∆ ` a.lj : Aj
(V al−Sel)

∆ ` a : [li : Ai]
i∈I

∆ ` clone(a) : [li : Ai]
i∈I

(V al−Clone)
∆ ` a : A ∆, x:A ` b : B

∆ ` let x = a in b : B
(V al−Let)

∆ ` a : [li : Ai]
i∈I ∆, x:[li : Ai]

i∈I ` b : Aj j ∈ I

∆ ` a.lj ← ς(x)b : [li : Ai]
i∈I

(V al−Upd)

Figure 2: Type assignment system for terms of impς.

j ∈ I

[li : Bi]
i∈I ⇒ Bj |= �

(Meth−Type)
Mi |= � ∀i ∈ I

ιi 7→M i∈I
i |= �

(Store−Type)

Σ |= � Σ1(ιi) = [li : Σ2(ιi)]
i∈I ∀i ∈ I

Σ |= [li = ιi]
i∈I : [li : Σ2(ιi)]

i∈I
(Res)

Σ |= Γj : ∆j ∀j ∈ I ∆i, xi:Σ1(ιi) ` bi : Σ2(ιi)

Σ |= ιi 7→ 〈ς(xi)bi,Γi〉i∈I
(Store−Typing)

Σ |= �

Σ |= ∅ : ∅
(Γ−∅−Typ)

x /∈ Dom(Γ ∪∆) Σ |= Γ : ∆ Σ |= v : A

Σ |= Γ, x 7→ v : ∆, x:A
(Γ−V ar−Typ)

Figure 3: Type assignment system for results of impς.

Inductive Body : Set := ground : Term -> Body
| bind : Res -> (Var->Body) -> Body.

Definition Closure : Set := Var -> Body.

For instance, the encoding of the closure

〈ς(x)b, {x1 7→ v1, . . . , xn 7→ vn}〉
is the following term of type Closure:

[x:Var] (bind v1
[x1:Var] (... (bind vn

[xn:Var] (ground b)) ...))

where the outermost abstraction represents the “self” local
variable x. Since stores are finite maps from locations to
closures, we can define stores straightforwardly as:

Definition Store : Set := (list Closure).

Some functions are needed for manipulating the above struc-
tures (e.g., for merging lists of pairs into single lists, for gen-
erating new results from objects and results, etc.), but their
definition is not problematic; see [7] for the code.

Evaluation of closures. Let us see how closures are “ope-
ned” in the implementation of the rule for method invoca-
tion (Red−Sel). Essentially, we have to add to the current
proof environment all the bindings recorded in the closure;
then, the evaluation of the closure-body may take place in
the extended environment. The evaluation of closure-bodies
can be pre-formalized by an auxiliary judgment Γ ` s · b̄;b

v · s′ whose rules are the following:

Γ ` s · a; v · s′

Γ ` s · ground(a) ;b s
′ · v

(eb ground)

Γ, y 7→ v ` s · b̄;b v
′ · s′

Γ ` s · bind(v, λy.b̄) ;b v
′ · s′

(eb bind)

Correspondingly, rule (Red−Sel) can be stated better as:

Γ ` s · a; [li = ιi]
i∈I · s′ s′(ιj) = λxj .bj

Γ,Γ′, xj 7→ [li = ιi]
i∈I ` s′ · b̄j ;b v · s′′ j ∈ I

Γ ` s · a.lj ; v · s′′
(Red−Sel′)

Thus, ; and ;b are two mutually recursive predicates:

Mutual Inductive
eval : Store -> Term -> Store -> Res -> Prop :=

with eval_body : Store -> Body -> Store -> Res -> Prop :=

The rules for eval_body are immediate; let us see the encod-
ing of the above (Red−Sel′):
e_call :

(s,s’,t:Store) (a:Term) (v,w:Res) (c:Closure) (l:Lab)
(eval s a s’ v) -> (In l (proj_lab_res v)) ->
(store_nth (loc_in_res v l s’) s’) = (c) ->
((x:Var) (stack x) = (v)->(eval_body s’ (c x) t w)) ->
(eval s (call a l) t w)

The auxiliary functions store_nth and loc_in_res implement
the dereferencing of locations in stores, and the lookup of
locations in results, respectively. The closure so obtained is
c, which is evaluated by eval_body after that a local variable
x, denoting “self”, is associated to (the implementation of)
the receiver, i.e. host, object itself.

Construction of closures. The construction of closures is
more delicate. We cannot form pairs out of the proof con-
text “Γ” and methods: closures have to be “calculated” by
wrapping method-bodies with all the results associated to
their free variables, which are in the proof context. This
closure construction is carried out by the auxiliary judg-
ment wrap ⊆ Term× Body. The intended meaning of Γ `
wrap(b, b) is that “b is a closure-body obtained by binding all
free variables in the term b to their respective results, which
are in Γ”. In order to keep track of free variables in terms,
we introduce a judgment closed ⊆ Term, whose formal
meaning is Γ ` closed(a) ⇐⇒ ∀x ∈ FV(a) : closed(x) ∈ Γ.
The rules for the two additional judgments are in Figure 4.
Intuitively, the rules for wrap allow for successively binding
the free variables appearing in the method-body (w bind),
until it is “closed” (w ground). When we apply the rule
(w bind), we choose any (free) variable y in b, and bind it
to the corresponding result v, as stated in Γ. The remain-
ing part b̄ of the closure can be seen as the closure body of
a method where the variable z is supposed to be “closed”,
and therefore it is obtained in a proof environment contain-
ing this information. This is captured by the sub-derivation
Γ, closed(z) ` wrap(b{z/y}, b̄{z/y}), which applies the rule
(w bind) until enough variables have been bound and, corre-
spondingly, enough assumptions of the form closed(z) have
been taken to be able to prove closed(b) (i.e., there are no
more free variables to bind) and thus apply rule (w ground).
Notice that the closures we get in this manner are “opti-
mized”, because only variables which are really free in the
body need to be bound in the closure (although in a non-
deterministic order).

The two auxiliary judgments wrap and closed can be for-
malized by two inductive predicates, as usual. However,
the latter can be managed more efficiently as a function
closed:Term->Prop, in the style of [24]:

Parameter dummy : Var -> Prop.
Fixpoint closed [t:Term] : Prop := Cases t of

(var x) => (dummy x) |
(obj ml) => (closed_obj ml)

| (over a l m) => (closed a) /\
((x:Var) (dummy x)->(closed (m x)))

| (call a l) => (closed a) |
(clone a) => (closed a)

| (let a b) => (closed a) /\
((x:Var) (dummy x)->(closed (b x)))

with closed_obj [ml:Object] : Prop := Cases ml of
(obj_nil) => True | (obj_cons l m nl) =>

(closed_obj nl) /\
((x:Var)(dummy x)->(closed (m x)))

end.

The intended behavior of this function, defined by mutual
recursion on the structure of terms and objects, is to re-
duce an assertion (closed a):Prop into a conjunction of sim-
ilar assertions about simpler terms. The dummy is the usual
workaround for the negative occurrences of closed in the
definition: dummy variables are just fill-ins for holes, and
must be considered as “closed”. The proposition resulting
from the Simplification of a (closed a) goal is easily dealt
with using the tactics provided by Coq. In a similar way,
we define also the functions notin : Var -> Term -> Prop
and fresh : Var -> (list Var) -> Prop, which capture the
“freshness” of a variable in a term and w.r.t. a list of vari-
ables, respectively (see [7]). Finally, the judgment wrap is
formalized via an inductive predicate:

Inductive wrap : Term -> Body -> Prop:=
w_ground : (b:Term) (closed b) -> (wrap b (ground b))

| w_bind : (b:Var->Term) (c:Var->Body) (y:Var)
(v:Res) (xl:Varlist)
((z:Var) (dummy z) /\
(fresh z xl)->(wrap (b z) (c z))) ->
(stack y) = (v) ->
((z:Var) ~(y=z)->(notin y (b z))) ->
(wrap (b y) (bind v c)).

In the rule w_bind, the premise ((z:Var) (y=z) -> (notin y

(b z))) ensures that b is a “good context” for y; that is, y

does not occur free in b. Thus, the replacement b{z/y} in
the rule (w bind) of Figure 4 can be implemented simply as
the application (b z), where z is the local variable.

All this technical machinery is useful, e.g., in the formal-
ization of the rule (Red−Obj):

e_obj : (s:Store) (ml:Object)
(cl:(list Closure)) (xl:Varlist)
(scan (proj_meth_obj (ml)) (cl) (xl)

(distinct (proj_lab_obj ml))) ->
(eval s (obj ml) (alloc s cl)

(new_res_obj ml (size s)))

Recall that the reduction of an object ml has the side-effect of
allocating in the store the collection of closures correspond-
ing to its methods. The scan function builds this list of
closures cl out of an object, using the wrap predicate above.
Then, the function alloc appends the new list of closures
to the current store, and the function new res obj produces
a new result, collecting the method-names of the given ob-
ject and pairing them with fresh pointers to the store. The
encoding of the remaining rules is not problematic.

3.3 Static Semantics

Typing of terms. The encoding of the typing system for
terms is straightforward. Like done for the reduction con-
text, we model the typing environment by means of a func-
tional symbol, associating object-types to variables:

Parameter typenv : Var -> TType.

The typing of terms is defined by mutual induction with the
typing of objects; notice only that we need to carry along
the whole (object) type while we scan and type the list of
methods forming the objects:

Mutual Inductive type : Term -> TType -> Prop :=
| t_sub : (a:Term; A,B:TType) (type a A) ->

(sub A B) -> (type a B)

Γ ` closed(b)

Γ ` wrap(b, ground(b))
(w ground)

Γ ` closed(a)

Γ ` closed(a.l)
(c call)

{Γ, closed(xi) ` closed(bi)}i∈I

Γ ` closed([li = ς(xi)bi]
i∈I)

(c obj)

Γ ` closed(a)

Γ ` closed(clone(a))
(c clone)

Γ, closed(z) ` wrap(b{z/y}, b̄{z/y}) z fresh y 7→ v ∈ Γ

Γ ` wrap(b, bind(v, λy.b̄))
(w bind)

Γ ` closed(a) Γ, closed(x) ` closed(b)

Γ ` closed(a.l← ς(x)b)
(c over)

Γ ` closed(a) Γ, closed(x) ` closed(b)

Γ ` closed(let x = a in b)
(c let)

Figure 4: Rules for wrap and closed judgments.

| t_obj : (ml:Object) (A:TType)
(type_obj A (obj ml) A) ->
(type (obj ml) A) | ...

with type_obj: TType -> Term -> TType -> Prop :=
t_nil : (A:TType)

(type_obj A (obj (obj_nil))
(mktype (nil (Lab*TType))))

| t_cons: (A,B,C:TType; ... m:Var->Term;
pl:(list (Lab*TType)))

(type_obj C (obj ml) A) ->
((x:Var) (typenv x) = (C) ->
(type (m x) B)) -> ...
(type_obj C (obj (obj_cons l m ml))

(mktype (cons (l,B) pl))).

where sub represents the subtype predicate “<:”. Due to
lack of space, we omit here its encoding, which makes also
use of an auxiliary predicate for permutation of lists repre-
senting object types (see [7]).

Typing of results. In order to type results, it is necessary
to type store-locations, whose content, in turn, may contain
other pointers to the store: thus potential loops may arise in
this process. The solution adopted in [2] is to introduce yet
another typing structure, i.e. store-types, used for assigning
to each store location a type consistent with its content:

Definition SType : Set := (list (TType * TType)).

Store-types cannot be inferred from the stores, but have to
be provided beforehand; they are used for assigning types
to results by means of the auxiliary proof system of Figure
3. Such a system is easily rendered in CIC; we only point
out that, similarly to the typing of objects, we have to carry
along the whole (result) type while we scan and type the
(components of) results:

Inductive res : SType -> TType -> Res -> TType -> Prop :=
t_void : (S:SType) (A:TType)

(res S A (nil (Lab*Loc)) ->
(mktype (nil (Lab*TType))))

| t_step : (S:SType) (A,B,C:TType) (v:Res) (i:Loc)
(l:Lab) (pl:(list (Lab*TType)))
(res S A v B) -> (type_from_lab A l)=C ->
(stype_nth_1 i S) = (A) ->
(stype_nth_2 i S) = (C) -> ...
(res S A (cons (l,i) v) ->
(mktype (cons (l,C) pl))).

Inductive type_body : SType -> Body -> TType -> Prop :=
t_ground : (S:SType) (b:Term) (A:TType)

(type b A) -> (type_body S (ground b) A)
| t_bind : (S:SType) (b:Var->Body) (A,B:TType) (v:Res)

(type_res S A v A) ->
((x:Var) (typenv x) = (A) ->
(type_body S (b x) B)) ->
(type_body S (bind v b) B).

Definition ext : SType -> SType -> Prop := [S’,S:SType]
(le (dim S) (dim S’)) /\
(i:nat) (lt i (dim S)) ->
(stype_nth i S’)=(stype_nth i S).

Definition comp:SType -> Store -> Prop:=[S:SType;s:Store]
(le (size s) (dim S)) /\
((i:nat) (lt i (dim S)) ->
((x:Var) (typenv x)=(stype_nth_1 i S) ->
(type_body S (store_nth i s x)

(stype_nth_2 i S)))).

The functions for store-type manipulation are in [7].

3.4 Adequacy
Our formalization of the semantics of impς in Coq corre-

sponds faithfully to the NDS one of Section 2, as we see now
(for the full proof, we refer the interested reader to [8, 9]).
First, we establish the relationship between our heteroge-
neous (Coq) context Υ and the reduction and typing envi-
ronments Γ,∆ of the setting of Section 2, and between the
two kinds of stores τ and s. In the following, we write Υ ` J

for ∃ t. Υ ` t : J.

Definition 2 (Well-formed context). A context Υ
is well-formed if and only if it can be partitioned as Υ =
Υs,Υt,Υd, where Υs = . . . , si : (stack xi)=vi, . . . and Υt =
. . . , tj : (typenv xj)=Aj , . . . and Υd = . . . , dk : (dummy xk), . . .;
moreover, Υs and Υt are functional (e.g., if stack(x)=v,
stack(x)=v’ ∈ Υs, then v ≡ v’).

Definition 3. Let Υ be a context, Γ, ∆ reduction and
typing contexts, τ and s stores. We define:

Υ ⊆ Γ , ∀(stack x)=v ∈ Υ. x 7→ v ∈ Γ

Υ ⊆ ∆ , ∀(typenv x)=A ∈ Υ. x:A ∈ ∆

Γ ⊆ Υ , ∀x 7→ v ∈ Γ. (stack x)=v ∈ Υ

∆ ⊆ Υ , ∀x:A ∈ ∆. (typenv x)=A ∈ Υ

γ(Γ) , {(stack x)=Γ(x) | x ∈ Dom(Γ)}
τ . s , ∀ιi ∈ Dom(τ). γ(Γi),

(dummy xi) ` (wrap bi ((τ ιi) xi)),
where s(ιi) = 〈ς(xi)bi,Γi〉

s . τ , ∀ιi ∈ Dom(s). γ(Γi),
(dummy xi) ` (wrap bi ((τ ιi) xi)),
where s(ιi) = 〈ς(xi)bi,Γi〉

In the following, for b̄ a closure-body, let us denote by stack(b̄)
the reduction context containing the bindings in b̄, and by
body(b̄) the innermost body. These functions can be defined

by recursion:

stack(ground(b)) , ∅
stack(bind(v, λx.b̄)) , stack(b̄) ∪ {x 7→ v}
body(ground(b)) , b

body(bind(v, λx.b̄)) , body(b̄)

Theorem 2 (Adequacy of reduction). Let Υ be
well-formed, Γ a reduction context.

1. Let Υ ⊆ Γ, and τ . s.

(a) Υ ` (eval τ a τ ′ v)⇒ ∃ s′.
Γ ` s · a; v · s′, and τ ′ . s′;

(b) Υ ` (eval body τ b̄ τ ′ v)⇒ ∃ s′.
stack(b̄) ` s · body(b̄) ;b v · s′, and τ ′ . s′.

2. Let Γ ⊆ Υ, and s . τ . Γ ` s · a; v · s′ ⇒ ∃τ ′.
Υ ` (eval τ a τ ′ v), and s′ . τ ′.

Proof. 1. The two points are proved by mutual struc-
tural induction on the derivations of
Υ ` (eval τ a τ ′ v) and Υ ` (eval body τ b̄ τ ′ v).

2. By structural induction on the derivation of
Γ ` s · a; v · s′.

ut

Theorem 3 (Adequacy of term typing). Let Υ be
well-formed, ∆ a typing context.

1. If Υ ⊆ ∆, and Υ ` (type a A), then ∆ ` a : A.

2. If ∆ ⊆ Υ, and ∆ ` a : A, then Υ ` (type a A).

Proof. 1. By structural induction on the derivation
of Υ ` (type a A).

2. By structural induction on the derivation of ∆ ` a : A.
ut

Theorem 4 (Adequacy of result typing). Let Υ be
well-formed, and Σ such that Σ ` �.

1. For τ . s, if Υ ` (res Σ v A) and Υ ` (comp Σ τ),
then Σ |= v : A and Σ |= s.

2. For s . τ , if Σ |= v : A and Σ |= s,
then Υ ` (res Σ v A) and Υ ` (comp Σ τ).

Proof. 1. By induction on v and inspection on the
derivation Υ ` (comp Σ τ).

2. By inspection on the derivations of Σ |= v : A and
Σ |= s.

ut

4. METATHEORY OF IMPς IN Coq
One of the main aims of the formalization presented in the

previous section is to allow for the formal development of im-
portant properties of impς. In this section we discuss briefly
the uppermost important, yet delicate to prove, metaprop-
erty of the Subject Reduction (Theorem 1). Its formaliza-
tion in Coq is as follows:

Theorem SR: (s,t:Store) (a:Term) (v:Res)
(eval s a t v) -> (A:TType)(type a A) ->
(S:SType)(comp S s) ->
((x:Var;w:Res;C:TType) (stack x) = (w) /\
(typenv x) = C -> (res S w C)) ->
(EX B:TType | (EX T:SType |

(res T B v B) /\ (ext T S) /\
(comp T t) /\ (sub B A))).

The proof is by induction on the derivation of (eval s a

t v). In order to prove the theorem, we have to address
preliminarly all the specific aspects concerning the manage-
ment of concrete structures, as objects, object-types, results,
stores, store-types, and so on: thus, many technical lem-
mata about operational semantics, term and result typing
have been specified and formally proved. It turns out that
these lemmata are relatively compact to prove, due to the
setting of our formalization, which is centered around the
natural deduction style of proof and, correspondingly, the
use of HOAS.

Natural Deduction allows to distribute stack-like struc-
tures (i.e. reduction and typing contexts) in the hypotheses
of the proof derivations: therefore, judgments and proofs we
have to deal with are appreciably simpler than traditional
ones. Weak HOAS, as previously remarked, fits perfectly the
needs for encoding impς: on one hand, it allows to get the
α-equivalence for free; on the other hand, the fact that the
general form of substitution is not automatically provided
by weak HOAS is not a problem, because it is not required
by the semantics of impς.

However, it is well-known that HOAS presents some draw-
backs: the main one is that most LFs do not provide an
adequate support for higher-order encodings. For example,
these systems neither provide recursion/induction principles
over higher-order terms (i.e., terms with “holes”) nor allow
to access the notions related to the mechanisms delegated to
the metalanguage. An important family of properties which
cannot be proved in plain CIC are the so-called renaming
lemmata, that is, invariance of validity under variable re-
naming, such as the following, regarding types of terms and
closure-bodies of impς:

Lemma rename_term : (m:Var->Term) (A:TType) (x,y:Var)
(type (m x) A) ->
(typenv x) = (typenv y) ->
(type (m y) A).

Lemma rename_body : (S:SType) (c:Var->Body)
(A:TType) (x,y:Var)
(type_body S (c x) A) ->
(typenv x) = (typenv y) ->
(type_body S (c y) A).

In other words, the expressive power of LFs is limited, when
it comes to reason on formalizations in (weak) HOAS.

A simple and direct way for recovering the missing ex-
pressive power is by assuming a suitable (but consistent)
set of axioms. This is the approach adopted in [17, 28],
where ToC, a simple axiomatization capturing some basic
and natural properties of (variable) names and term con-
texts, is proposed. These axioms allow for a smooth han-
dling of schemata in HOAS, with a very low mathematical
and logical overhead, hence they can be plugged in existing
proof environments without requiring any redesign of the
system. Their usefulness has been demonstrated in several
case studies regarding untyped and simply typed λ-calculus,
π-calculus, and Ambients [18, 23, 29]. Therefore, the use of
the ToC is a natural choice also in the present setting; it
should be noticed that the present one is the first applica-
tion of the ToC to an object-based calculus. The Theory of
Contexts consists in four axioms (indeed, axiom schemata):

unsaturation: ∀M. ∃x. x 6∈ FV(M). This axiom captures
the intuition that, since terms are finite entities, they
cannot contain all the variables at once. The same
axiom can be stated w.r.t. lists of variables, instead of
terms, since it is always possible to obtain from a term
the list of its free variables: ∀L. ∃x. x 6∈ L;

decidability of equality over variables: ∀x, y. x = y ∨
x 6= y. In a classical framework, this axiom is just an
instance of the Law of Excluded Middle. In the present
case, it represents the minimal classical property we
need in an (otherwise) intuitionistic setting;

β-expansion: ∀M,x. ∃N(·). x 6∈ FV(N(·)) ∧ M = N(x).
Essentially, β-expansion allows to generate a new con-
text N with one more hole from another context M ,
by abstracting over a given variable x;

extensionality: ∀M(·), N(·), x. x 6∈ FV(M(·), N(·)) ∧
(M(x) = N(x)) ⇒ M(·) = N(·). Extensionality al-
lows to conclude that two contexts are equal if they
are equal when applied to a fresh variable x. Together
with β-expansion, this allows to derive properties by
reasoning over the structure of higher-order terms.

The above axioms are very natural and useful for deal-
ing with higher-order terms as methods, closures and local
declarations. An important remark is that, in order to be
effectively used for reasoning on impς, the “unsaturation”
axiom has to be slightly modified with respect to its origi-
nal formulation in [17].

One first difference is due to the presence of types. Simi-
larly to the case of other typed languages, we assume infor-
mally that there are infinite variables for every type. This
is equivalent to say that each variable “generated” by the
unsaturation axiom can be associated to a given type.

A second difference, peculiar to impς and not required by
any previous application of the ToC, is due to the presence
of implementation-level entities, namely closures. In the for-
malization of impς presented in the previous section, vari-
ables are introduced in the Coq derivation context for two
reasons: either during reductions and typing assignments
(associated respectively to results and types), or in the con-
struction of closures (used just as place-holders). In the
first case the new variable is associated both to results and
types by the stack and typenv maps. In the second case, the
new variable is marked as dummy, because it does not carry
any information about results, but is used just as a typed
place-holder, needed for typing closure-bodies in the store.

Thus, we observe a kind of “regularity” of well-formed
contexts: for each variable x, there is always the assumption
(typenv x)=A for some A, and, either (stack x)=v for some v,
or (dummy x). The unsaturation axiom has to respect such
a regularity; this is reflected by assuming two variants of
unsaturation, one for each case, as follows:

Axiom unsat_res : (S:SType) (v:Res) (A:TType)
(res S v A) -> (xl:(list Var))
(EX x | (fresh x xl) /\ (stack x)=v /\ (typenv x)=A).

Axiom unsat : (A:TType) (xl:list Var)
(EX x | (fresh x xl) /\ (dummy x) /\ (typenv x)=A).

In unsat_res, the premise (res S v A) ensures the consis-
tency between results and types associated to the same vari-
able: this can be interpreted as the implementation of the
original context compatibility judgment of Figure 3.

The two axioms can be validated in models similar to
those of the original ToC [3]. Moreover, the notion of regu-
larity is close to the “regular world assumption” introduced
by Schürmann [30].

In order to convey better to the reader the above expla-
nation about the ToC, we say that a typical example of the
use of the axiom unsat is for proving that the type of a
closure-body is preserved by the closure construction:

Lemma wrap_pres_type: (A,B:TType; m:Var->Term; c:Closure;
xl:(list Var); S:SType)

((x:Var) (typenv x)=A -> (type (m x) B)) ->
((x:Var) (dummy x) /\

(fresh x xl) -> (wrap (m x) (c x))) -> ...
((x:Var) (typenv x)=A -> (type_body S (c x) B)).

provided the maps stack and typenv are consistent w.r.t. the
store-type S. The proof of this property requires the use
of both unsat and the decidability of equality over variables.
On the other hand, the proof of the lemmata rename term and
rename body, previously displayed, requires the application of
the β-expansion and extensionality.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have illustrated the benefits of using

Natural Deduction in combination with Higher-Order Ab-
stract Syntax and the Theory of Contexts for reasoning
on object-calculi with binders in type theory-based logical
frameworks. We have carried out our experiment on Abadi
and Cardelli’s impς, an object-based calculus featuring types
and side-effects. Natural Deduction style of proof has al-
lowed to distribute in the hypotheses of proof derivations
both the reduction and typing context of impς, thus obtain-
ing judgments and proofs appreciably simpler than tradi-
tional ones. Weak HOAS has permitted to deal with the
binders of impς in the Calculus of Inductive Constructions
without having to encode neither α-equivalence (which is in-
herited from the metalanguage) nor the substitution (which
is not required by the calculus). This is a big advantage
from the point of view of computer aided formal reasoning
w.r.t. first-order techniques, as de Bruijn indexes or explicit
names. A consequence of our choices is that we have ob-
tained a more fine-grained treatment of closures. Finally,
for reasoning on the formalization of impς in CIC we have
adopted the Theory of Contexts, in order to gain the extra
power CIC needs for reasoning on HOAS encodings.

Thus we have obtained a clean and compact formalization
of impς in the proof assistant Coq, the implementation of
CIC. Our style of encoding has allowed to prove formally a
Subject Reduction theorem, which is particularly involved
already “on paper”, with relatively little effort. Just notice
that the full proof development amounts approximately to
112Kbyte and the size of the .vo file is 785Kbyte, working
with Coq V7.3 on a Sun UltraSPARC IIe (64 bit).

To our knowledge, this is the first development of the the-
ory of an object-based language with side effects, in LF based
on type theory. The closest work may be [21], where Abadi
and Cardelli’s functional object-based calculus Ob1<:µ is en-
coded in Coq, using traditional first-order techniques and
Natural Semantics specifications through the Centaur sys-
tem. A logic for reasoning on paper about object-oriented
programs with imperative semantics, aliasing and self-refe-
rence in objects, has been presented in [1].

The Theory of Contexts has been already used with the
weak HOAS for carrying out many case studies in recent
years (see, e.g., [18,19,23,29]); however, the present work is
the first application of the ToC to an object calculus. Our
experience leads us to affirm that this approach is particu-
larly well-suited with respect to the proof practice of Coq.
The ToC can be actually plugged in existing LFs without re-
quiring any redesign of these systems. In particular, it seems
very suited for dealing with implementation-level structures,
such as closures, since full substitution is not required.

Future work. As a first step, we plan to experiment fur-
ther with the formalization we have carried out so far. We
will consider other interesting (meta)properties of impς, be-
side the albeit fundamental Subject Reduction theorem. In
particular, we can use the formalization for proving obser-
vational and behavioral equivalences of object programs.

From a practical point of view, our formalization could
be used for the development of certified tools, such as in-
terpreters, compilers and type checkers, for impς-like calculi
and languages. We plan to certify a given tool with respect
to the specification of the formal semantics of the object
calculus and the target machine. We are confident that the
use of Natural Deduction and HOAS should simplify these
advanced tasks in the case of languages with binders.

From a more theoretical point of view, we had to modify
slightly the unsaturation axiom of the ToC. This has oc-
curred also in other applications of ToC [23, 29]. From all
these case studies, we observe that these adaptments are re-
quired when the proof contexts have to satisfy some kind of
“well-formedness” about variables: every time a new vari-
able is generated, it has to come together with a set of other
assumptions and informations (about its type, its kind, etc.).
This points out that the current ToC can be generalized to
subsume all these small variants, and that there is a connec-
tion with Schürmann’s regular world assumption [30], which
should be investigated further.

6. REFERENCES
[1] M. Abadi and K.R.M. Leino. A logic of

object-oriented programs. In Proc. of TAPSOFT,
LNCS 1214, pages 682–696. Springer-Verlag, 1997.

[2] M. Abadi and L. Cardelli. A Theory of Objects.
Springer-Verlag, 1996.

[3] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and
I. Scagnetto. Consistency of the theory of contexts.
Submitted, 2001.

[4] R. Burstall and F. Honsell. Operational semantics in a
natural deduction setting. In Logical Frameworks,
pages 185–214. CUP, 1990.

[5] L. Cardelli. Obliq: A Language with Distributed
Scope. Computing Systems, 8(1):27–59, 1995.

[6] A. Ciaffaglione, L. Liquori, and M. Miculan.
Formalization of imperative object-calculi in
(co)inductive type theories. Submitted, 2003.

[7] A. Ciaffaglione, L. Liquori, and M. Miculan. The Web
Appendix of this paper, 2003. http://www.dimi.
uniud.it/~ciaffagl/Objects/Imp-varsigma.tar.gz.

[8] A. Ciaffaglione. Certified reasoning on Real Numbers
and Objects in Co-inductive Type Theory. PhD thesis,
DiMI, Univ. di Udine and LORIA-INPL, Nancy, 2003.

[9] Alberto Ciaffaglione, Luigi Liquori, and Marino
Miculan. On the formalization of imperative
object-based calculi in (co)inductive type theories.
Research Report RR-4812, INRIA, 2003.

[10] J. Despeyroux, A. Felty, and A. Hirschowitz.
Higher-order syntax in Coq. In Proc. of TLCA, LNCS
905, Springer-Verlag, 1995.

[11] J. Despeyroux and P. Leleu. Primitive recursion for
higher-order abstract syntax with dependant types. In
FLoC IMLA workshop, 1999.

[12] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax
and variable binding. In [20], pages 193–202.

[13] K. Fisher, F. Honsell, and J.C. Mitchell. A lambda
calculus of objects and method specialization. Nordic
Journal of Computing, 1994.

[14] M. J. Gabbay and A. M. Pitts. A new approach to
abstract syntax with variable binding. Formal Aspects
of Computing, 15:341–363, 2002.

[15] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. J.ACM, 40(1):143–184, 1993.

[16] M. Hofmann. Semantical analysis of higher-order
abstract syntax. In Proc. of LICS [20], pages 204–213.

[17] F. Honsell, M. Miculan, and I. Scagnetto. An
axiomatic approach to metareasoning on systems in
higher-order abstract syntax. In Proc. of ICALP,
LNCS 2076, pages 963–978. Springer-Verlag, 2001.

[18] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus
in (co)inductive type theory. Theoretical Computer
Science, 253(2):239–285, 2001.

[19] F. Honsell, M. Miculan, and I. Scagnetto. The theory
of contexts for first-order and higher-order abstract
syntax. In Proc. of TOSCA, ENTCS 62, pages
111–130. Elsevier, 2001.

[20] G. Longo, editor. Proc. of LICS, IEEE, 1999.

[21] O. Laurent. Sémantique Naturelle et Coq : vers la
spécification et les preuves sur les langages à objets.
Rapport de Recherche RR-3307, INRIA, 1997.

[22] M. Miculan. The expressive power of structural
operational semantics with explicit assumptions. In
Proc. of TYPES, LNCS 806, pages 292–320,
Springer-Verlag, 1994.

[23] M. Miculan. Developing (meta)theory of λ-calculus in
the Theory of Contexts. In Proc. of MERLIN, ENTCS
58.1, pages 1–22. Elsevier, 2001.

[24] M. Miculan. On the formalization of the modal
µ-calculus in the Calculus of Inductive Constructions.
Information and Computation, 164(1):199–231, 2001.

[25] A. Momigliano and S. J. Ambler. Multi-level
meta-reasoning with higher order abstract syntax. In
Proc. of FoSSaCS, LNCS 2620, pages 375–391.
Springer-Verlag, 2003.

[26] F. Pfenning and C. Elliott. Higher-order abstract
syntax. In Proc. of SLDI, pages 199–208, ACM Press,
1988.

[27] C. Röckl, D. Hirschkoff, and S. Berghofer.
Higher-order abstract syntax with induction in
Isabelle/HOL: Formalising the π-calculus and
mechanizing the theory of contexts. In Proc. of
FOSSACS, LNCS 2030, pages 359–373,
Springer-Verlag, 2001

[28] I. Scagnetto. Reasoning about Names In Higher-Order
Abstract Syntax. PhD thesis, DiMI, Università di
Udine, Italy, 2002.

[29] I. Scagnetto and M. Miculan. Ambient calculus and
its logic in the calculus of inductive constructions. In
Proc. of LFM, ENTCS 70.2. Elsevier, 2002.

[30] C. Schürmann. Recursion for higher-order encodings.
In Proc. of CSL, LNCS 2142, pages 585-599.
Springer-Verlag, 2001.

