Classification of Multiple Sclerosis Lesions using Adaptive Dictionary Learning

Hrishikesh Deshpande 1 Pierre Maurel 1 Christian Barillot 1
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of Multiple Sclerosis (MS) lesions in Magnetic Resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra-and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include White Matter (WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification.
Type de document :
Article dans une revue
Computerized Medical Imaging and Graphics, Elsevier, 2015, pp.1-15. 〈10.1016/j.compmedimag.2015.05.003〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01151695
Contributeur : Hrishikesh Deshpande <>
Soumis le : vendredi 22 mai 2015 - 11:10:35
Dernière modification le : mercredi 16 mai 2018 - 11:23:11

Fichier

Hrishikesh_CMIG_Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Hrishikesh Deshpande, Pierre Maurel, Christian Barillot. Classification of Multiple Sclerosis Lesions using Adaptive Dictionary Learning. Computerized Medical Imaging and Graphics, Elsevier, 2015, pp.1-15. 〈10.1016/j.compmedimag.2015.05.003〉. 〈hal-01151695v2〉

Partager

Métriques

Consultations de la notice

884

Téléchargements de fichiers

368