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Abstract: The k-set agreement problem is a generalization of the consensus problem where
processes can decide up to k different values. Very few papers have tackled this problem in
dynamic networks, and to the best of our knowledge, every algorithm proposed so far for k-set
agreement in dynamic networks assumed synchronous communications or made strong failure
pattern assumptions. Exploiting the formalism of the Time-Varying Graph model, this paper
proposes a new quorum-based failure detector for solving k-set agreement in dynamic networks
with asynchronous communications. We present two algorithms that implement this new failure
detector using graph connectivity and message pattern assumptions. We also provide an algorithm
for solving k-set agreement using our new failure detector.

Key-words: k-set agreement, failure detectors, dynamic networks, time-varying graphs, asyn-
chronous communications, evolving membership.



Un Détecteur de Défaillances pour le k-Accord dans les
Systèmes Dynamiques

Résumé : Le problème du k-accord est une généralisation du problème du consensus dans
lequel les processus peuvent décider jusqu’à k différentes valeurs. Très peu de papiers ont
étudié ce problème dans des réseaux dynamiques, et tous les algorithmes de k-accord dynamique
dont nous avons connaissance font l’hypothèse de communications synchrones ou d’un nombre
de fautes limité. En utilisant le formalisme du Time-Varying Graph, ce papier propose un
nouveau détecteur de défaillances résolvant le k-accord dans les réseau dynamiques avec des
communications asynchrones. Nous présentons deux algorithmes qui implémentent ce nouveau
détecteur de défaillances, sous réserve d’hypothèses à motif de messages et sur la connectivité
du graphe. Nous fournissons également un algorithme résolvant le k-accord en utilisant notre
nouveau détecteur.

Mots-clés : k-accord, détecteurs de défaillances, réseaux dynamiques, time-varying graphs,
communications asynchrones.
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1 Introduction
Modern distributed architectures such as clouds or ad-hoc networks are characterized by their
high number of nodes and strong dynamics. On the other hand, traditional models and algorithms
of distributed computing are not always adapted to face the challenges brought by those new
architectures. Indeed, they rely on static and known membership networks, where the commu-
nication graph does not change for the whole duration of the run and every process knows the
number of processes in the system and each of their unique identifiers. By contrast, in dynamic
networks, nodes can join and leave the system during the run and communication between them
varies over the time.

Agreement problems such as consensus are the keystone of distributed computing problems
and have numerous applications. Notably, machine state replication in a distributed system
requires to solve an agreement problem. However, these problems have been less studied in
dynamic models than they have been in traditional ones. In this paper, we are interested in
a particular agreement problem, namely k-set agreement [13], and how to solve it in dynamic
systems with asynchronous communications. The k-set agreement problem is a generalization of
the consensus problem where processes eventually agree on at most k proposed different values.
However, it cannot be solved in asynchronous systems prone to f failures when k ≤ f . In order
to circumvent such an impossibility, solutions enriched with failure detectors have been exploited.
Failure detectors [12] are distributed oracles that provide processes with information, not always
correct, on processes failures. They address questions such as the minimal information about
failures needed to implement agreement problems.

In asynchronous message passing model with n nodes and f < n, it has been proved in [15]
that the weakest failure detector for solving consensus (i.e., 1-set agreement) is the class of
eventual leader failure detector, denoted Ω, combined with the quorum failure detector, denoted
Σ [14]. For k-set agreement, the weakest failure detector in message passing systems is unknown
but the failure detector Σk was proved to be necessary [6].

Recently, Rieutord et al. [24] proposed the failure detector Σ⊥, which is an adaptation of
Σ [14] in the absence of initial information regarding system membership. It is, therefore, suitable
for implementations in dynamic networks. Hence, our proposal in this paper is to combine the
properties of both Σk and Σ⊥ in order to solve k-set agreement in dynamic systems.

For modeling the dynamics of the system and evolving communication between nodes, we
exploit the formalism of the Time-Varying Graphs (TVG), proposed by Casteigts et al. in [10].
In this article, the authors defined several classes of TVGs and compare them according to the
strength of the assumptions made on graph connectivity. Thus, by introducing new classes,
which are extensions of TVG class 5 (recurrent connectivity), we can express our required model
assumptions.

Contributions. This paper brings four main contributions:

1. The conception of new TVG classes for efficiently implementing k-set agreement in dynamic
systems with asynchronous communications.

2. The new failure detector Σ⊥,k, which combines the properties of both Σk and Σ⊥.

3. Two algorithms for the failure detector Σ⊥,k, making different connectivity and message
pattern assumptions.

4. An algorithm for solving k-set agreement in our model, using Σ⊥,z with k ≥ n − b n
z+1c.

The algorithm is adapted from a protocol proposed in [7], solving k-set agreement in static
networks with known membership.
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Our system model is dynamic in different aspects: firstly, processes can join or leave the
system during the run. Secondly, network links can be activated or deactivated during the run,
which means that the communication graph evolves over time.

Roadmap. The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 presents background on models and the formal definition of the k-set agreement problem.
Section 4 introduces the failure detector class Σ⊥,k and Section 5 presents the new TVG classes
used by our Σ⊥,k algorithms whose implementations are presented in Section 6. Section 7 proposes
an algorithm solving k-set agreement using Σ⊥,k and Section 8 concludes the paper.

2 Related Work

Dynamic system models. In order to solve problems in modern dynamic networks, a number
of papers in the literature have introduced formalisms to express dynamic system models.

In [1], Aguilera presents different system models where an infinite number of processes can
join the system during a given run.

Cao et al. presented in [8] a model made of two sets of nodes: fixed support stations forming
a static complete graph, asynchronous but entirely known, and mobile hosts which follow the
finite arrival model of [1] and communicate through the support stations.

Ferreira introduced in [17] a model, namely Evolving Graphs, in which the communication
graph evolves over time. Based also on communication graph evolution, Casteigts et al. presented
in [10] the formalism of the Time-Varying Graph (TVG) and defined several classes of TVGs,
according to different graph connectivity assumptions. As our work uses the TVG model, its
formalism is described in Section 3.

Kuhn et al. proposed in [20] a model considering an evolving communication graph where
connectivity assumptions rely on stable subgraphs connected for a certain number of synchronous
rounds. Biely et al. presented in [4] a dynamic model, which is close to the model of Kuhn et
al. [20], but based on directed graphs and weaker connectivity assumptions.

A survey of dynamic system models can be found in [22] and [19].

Algorithms solving consensus in dynamic systems Some algorithms have been presented
to solve the consensus problem in dynamic systems. Those solutions make strong assumptions on
either the timeliness of communications or the number of process failures.

An algorithm for consensus exploiting the model of Kuhn et al. [20] is provided in [21], along
with an algorithm for simultaneous consensus (all the nodes decide in the same synchronous
round) and another one for ∆-coordinated consensus (all the nodes decide within ∆ rounds of
each other).

An algorithm for consensus is also presented in [4], considering assumptions on vertex-stable
root component : in every synchronous round, there must be exactly one strongly connected
component that has only out-going links to some of the remaining processes and can reach every
process in the system.

Recently, an algorithm for consensus in asynchronous dynamic systems has been presented in
[3]. The solution makes use of the One-Third Rule algorithm and epidemic routing. It assumes
that no more than a third of the processes involved in the consensus crash.

Several implementations of the eventual leader failure detector Ω [11], which is necessary to
solve consensus, have been adapted for dynamic systems in [8, 2, 19]. The algorithm in [19] relies
on partial synchrony assumptions, whereas the ones in [8, 2] are asynchronous and use message
pattern assumptions.

Inria
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Algorithms solving k-set agreement in dynamic systems Very few articles have at-
tempted to solve the k-set agreement problem in dynamic networks.

Exploiting the formalism of [20] and considering an upper bound on the number of processes,
Sealfon and Sotiraki present in [25] an algorithm for solving k-set agreement in partitioned
dynamic networks.

Biely et al. in [5] proposed in their model [4] an algorithm for consensus which gracefully
degrades to k-set agreement whenever network conditions do not guarantee consensus. We should
point out that both algorithms assume synchronous communications between processes: to the
best of our knowledge, there is no algorithm in the literature that solves the k-set agreement
problem in dynamic networks with asynchronous communications.

3 Models and Definitions

3.1 Process Model
The system is made up of a finite set of n processes denoted Π = {p1, p2, ..., pn}. Processes in the
system are uniquely identified, but are initially only aware of their own identity. We assume that
there is a bound on the relative speed of processes: the latter are, therefore, synchronous.

Assuming that processes are synchronous may appear as an strong assumption, but it is very
weak compared to synchronous communication. Indeed, if communications are not bounded, to
the other processes point of view the synchrony of processes cannot be used for inter-process
synchronization. To the opposite, if communications are synchronous and processes asynchronous,
a message sent to all neighbors will arrive to all in a fixed range of time and may be used to
synchronize their local estimation of time. This difference between the computation synchrony
and communication synchrony power is used in Dwork et al. paper on partial synchrony [16].

Processes follow the n-arrival model of [1]: processes may join and leave the system, but
only a total of n processes can join the system in a run. A run is a sequence of steps executed
by the processes while respecting the causality of operations (each received message has been
previously sent). A process may leave the system and rejoin it later, but then a new identity will
be attributed to it: for all intents and purposes, it will be treated as a new process.

A process that never leaves the system in a run is said to be correct in that run, otherwise
it is faulty : we make no difference between a process that crashes and a process that purposely
leaves the system. The set of all correct processes in a run is denoted C.We assume an upper
bound f < n on the number of faulty processes in the system.

3.2 Communication Model
Time-Varying Graph. We model the system dynamics using the formalism of the Time-
Varying Graph (TVG), as introduced in [10]. The topology of the network is dynamic, which
means that the relations between two nodes take place over a time span T = N.

Definition 1 (Time-Varying Graph). A time-varying graph is a tuple G = (V,E, T , ρ, ζ, ψ) where
(1) V = Π is the set of nodes in the system, (2) E ⊆ V × V is the set of edges, (3) T = N is a
time span, (4) ρ : E × T → {0, 1} is the edge presence function, indicating whether a given edge
e ∈ E is active at a given time t ∈ T , (5) ζ : E × T → N is the latency function, indicating the
time taken to cross an edge e ∈ E if starting at given time t ∈ T , (6) ψ : V × T → {0, 1} is the
node presence function, indicating whether a given node p ∈ V is present in the system at a given
time t ∈ T .

Note that the edges in E can be directed or not.

RR n° 8727



6 Denis Jeanneau, Thibault Rieutord, Luciana Arantes, Pierre Sens

The graph G(V,E) is the underlying graph of G, indicating which nodes have a relation at
some time in T .

Although we make use of the latency function ζ to express communication constraints,
processes do not have access to ζ and its values are expected to be finite but not necessarily
bounded: communications in the system are thus asynchronous.

Journeys. The connectivity assumptions of our model are expressed in terms of journeys, as
defined using the formalism of the TVG model.

Definition 2 (Journey). A journey is a sequence of couples J = {(e1, t1), (e2, t2), ..., (em, tm)}
such that {e1, e2, ..., em} is a walk in G and:

∀i, 1 ≤ i < m : (ρ(ei, ti) = 1) ∧ (ti+1 ≥ ti + ζ(ei, ti)) .

t1 is denoted departure(J ) and tm + ζ(em, tm) is denoted arrival(J ). Intuitively, a journey
is a path over time. As such, it has both a topological length (|J | = m, the length of the path in
G) and a temporal length (arrival(J )− departure(J )).

If a journey exists between two nodes u and v, we say that u can reach v, which is denoted
u v. We denote J ∗(u,v) all the journeys starting at node u and ending at node v.

Definition 3 (Direct journey). A direct journey J is a journey such that every next edge in J
is directly available:

∀i, 1 ≤ i < |J | : ρ(ei+1, ti + ζ(ei, ti)) = 1 .

Broadcast primitive. Processes communicate by using a broadcast primitive. When a process
pi initiates a broadcast of message m, it simply sends m to every process currently in its direct
neighborhood, including itself. This is therefore a low-level broadcast, which notably does not
handle message forwarding (forwarding will be explicitly handled by our algorithms).

Channels. Channels are fair-lossy, which means that messages may be lost, but, if a process pi
broadcasts a message m infinitely often such that, infinitely often, the edge connecting pi and a
correct process pj is active at the time of one of these broadcasts and for the entire transfer time,
then pj will receive m an infinite number of times. There is no creation or alteration of messages,
but messages may be duplicated (provided that each message is only duplicated a finite number
of times) or arrive in any order (in particular, we do not require channels to be FIFO).

TVG classes. Several classes of TVGs have been defined in [10] with respect to temporal
properties on the network dynamics. They imply necessary conditions and impossibility results
for distributed computing and algorithms. We are particularly interested in class 5:

Definition 4 (Class 5: recurrent connectivity). TVGs of class 5 ensure that every process can
reach every other process infinitely often:

∀u, v ∈ V,∀t ∈ T ,∃J ∈ J ∗(u,v) : departure(J ) > t .

3.3 The k-Set Agreement Problem
The problem of k-set agreement was introduced by Chaudhuri in [13] as a generalization of the
consensus problem for 1 ≤ k ≤ n− 1. Each process starts by proposing a value, and each correct
process eventually decides a value in such a way that the following three properties are satisfied:

Inria
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• Validity. A decided value is a proposed value.

• Termination. Every correct process eventually decides a value.

• Agreement. At most k different values are decided.

4 A New Failure Detector: �⊥,k

The quorum failure detector Σ [14] provides every process with a set of process identities, denoted
quorum, such that any two quorums formed at any time necessarily intersect, and eventually all
quorums are included in C. Note that this property must hold over time: two quorums formed at
two different times by two different processes must intersect.

Similarly, the quorum failure detector family Σk [6] provides processes with quorums of process
identities such that two out of any k+ 1 quorums necessarily intersect, and eventually all quorums
are included in C.

Given that Σk was proved in [6] to be necessary for solving k-set agreement in asynchronous
systems, it seems natural to attempt to implement it using the TVG formalism as a stepping
stone towards dynamic k-set agreement. However, the intersection property of Σk requires to be
fulfilled from the start of the run, which poses a problem in a dynamic system where processes do
not necessarily know each other’s identities from the start.

A solution to this problem for the case of Σ (k = 1) was proposed in [24] by the Σ⊥ failure
detector, which outputs either the normal output of Σ or the special value ⊥. A process can
return ⊥ instead of a quorum to indicate that it has not yet gathered sufficient knowledge of
the system to form a quorum. We apply the same concept to Σk in order to propose a failure
detector which can be used to solve k-set agreement in dynamic asynchronous systems.

The Σ⊥,k detector provides each process p with a set of process identities (denoted Σ⊥,k,p(t)
at time t) such that the following properties are satisfied:

Property 1 (Intersection). Out of any k+1 non-⊥ quorums, at least two intersect: ∀t1, ..., tk+1 ∈
T ,∀p1, ..., pk+1 ∈ Π,∃i, j :

1 ≤ i 6= j ≤ k + 1, (Σ⊥,k,pi
(ti) 6= ⊥ ∧ Σ⊥,k,pj

(tj) 6= ⊥)
⇒ Σ⊥,k,pi

(ti) ∩ Σ⊥,k,pj
(tj) 6= ∅ .

Property 2 (Completeness). Eventually, all quorums are different from ⊥ and contain only
correct processes: ∃τ ∈ T ,∀p ∈ C,∀t ∈ T , t ≥ τ :

Σ⊥,k,p(t) 6= ⊥ ∧ Σ⊥,k,p(t) ⊆ C .

Intuitively, Σ⊥,k ensures the same properties as Σk except that initially, the detector can
return the special value ⊥ instead of a quorum to indicate that sufficient knowledge about process
identities has not been reached, and therefore the intersection property is not expected to hold
yet. By convention, a crashed process returns ⊥ forever.

For the sake of simplicity, we assume that processes always include themselves in their
respective non-⊥ quorums. Our algorithms in Section 6 will implement such an inclusion.

5 New TVG Classes for reliable message transmission
As described in Section 3, TVGs of class 5 (recurrent connectivity) ensure that every process can
reach every other process infinitely often. However, the latter is insufficient to guarantee that a
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8 Denis Jeanneau, Thibault Rieutord, Luciana Arantes, Pierre Sens

message will eventually cross an edge, even if the message is sent infinitely often: the edge could
be present only in between two emissions of the message. A naive solution would be to send the
message constantly, such that at any instant there is a message being sent. This assumption is
unrealistic, as it would require processes to send an infinite number of messages in a finite time.

A solution to this problem, proposed in [9], is to assume that when an edge appears or
disappears, the adjacent nodes are notified of the corresponding event without delay. With this
information, it is possible to implement a send_retry primitive which re-sends the message upon
reappearance of the edge. Eventual message reception is thus ensured, provided that there is a
long enough edge activation period in the future.

In [18], Gómez-Calzado et al. consider that the assumption of instantaneous edge detection
is too strong. Instead, they define β-journeys, in which edges are guaranteed to stay active at
least β time, with β strictly longer than the message transmission time. However, the authors
consider synchronous communications and therefore define β-journeys using an upper bound on
the transmission time. To overcome these drawbacks, we define γ-journeys.

Similarly to β-journeys, γ-journeys assume that every edge stays active strictly longer than
the transfer delay in order to give the sender process the necessary time to send the message.

Definition 5 (γ-Journey). A γ-journey J (where γ > 0 is a time duration) is a journey such
that every node on the path can wait up to γ units of time after the next edge becomes active
before forwarding the message. Since the message may be sent at any time during the γ time
window and the channel latency may vary during that time, the edge must remain active long
enough for the worst case duration.

• ∀i, 1 ≤ i ≤ |J |, ei stays active from time ti until, at least, time ti+max0≤j≤γ{j+ζ(ei, ti+j)}.

• ∀i, 1 ≤ i < |J |, ti+1 ≥ ti +max0≤j≤γ{j + ζ(ei, ti + j)} .

We then define direct γ-journeys similarly to direct journeys. We call J γ(u,v) the set of all

γ-journeys from u to v, and J dγ(u,v) the set of all direct γ-journeys from u to v. We then obtain
the following new class of TVGs:

Definition 6 (Class 5-γ: γ-recurrent connectivity). TVGs of class 5-γ ensure that every process
can reach every other process infinitely often through γ-journeys:

∀u, v ∈ V,∀t ∈ T ,∃J ∈ J γ(u,v) : departure(J ) > t .

Class 5-γ’ (γ-direct recurrent connectivity) is defined similarly, except that it uses J dγ(u,v)

instead of J γ(u,v).
Class 5-γ is strictly stronger than class 5. Trivially, ∀γ1, γ2 : γ1 ≥ γ2 ⇒ class 5-γ1 ⊆ class 5-γ2

(class 5 would be equivalent to “class 5-0”, if γ could be equal to 0 in Definition 5).
Class 5-γ’ is significantly stronger than class 5-γ, as the assumption of recurrent direct journeys

considerably reduces the dynamics of the system.
Although classes 5-γ and 5-γ’ present the advantage of being easily comparable to class 5,

they are slightly too strong for our algorithms: we only require a limited number of nodes to be
connected. To this end, we define two more TVG classes:

Definition 7 (Class 5-(α, γ): (α, γ)-recurrent connectivity). Every process can reach and be
reached through γ-journeys infinitely often by at least α correct processes, including itself.

∀pi ∈ C,∃Pi ⊆ C, |Pi| ≥ α,∀t ∈ T ,∀pj ∈ Pi,
∃Ji ∈ J γ(pi,pj)

: departure(Ji) ≥ t ∧
∃Jj ∈ J γ(pj ,pi)

: departure(Jj) ≥ t .

Inria



A Failure Detector for k-Set Agreement in Dynamic Systems 9

Definition 8 (Class 5-(α, γ)′: (α, γ)-direct recurrent receiver connectivity). Every process can be
reached through direct γ-journeys infinitely often by at least α correct processes, including itself.

∀pi ∈ C,∃Pi ⊆ C, |Pi| ≥ α,∀t ∈ T ,∀pj ∈ Pi,
∃J ∈ J dγ(pj ,pi)

: departure(J ) ≥ t .

Note that class 5-(α, γ) requires two-way recurrent connectivity, whereas class 5-(α, γ)′ does
not. The latter, however, requires direct γ-journeys.

6 Algorithms for �⊥,k in Dynamic Networks

In this section, we present two implementations of Σ⊥,k using the TVG classes presented in
Section 5, relying on message pattern assumptions. The first algorithm requires a TVG of class
5-(α, γ)′ whereas the second requires class 5-(α, γ).

The principle of both algorithms is the following: each process broadcasts their identity
regularly and, infinitely often, waits for messages from α processes and forms a new quorum with
the received process identities. Since our broadcast primitive does not handle forwarding, each
process needs to rebroadcast the information it receives. The properties of class 5-(α, γ) and class
5-(α, γ)′ ensure that correct processes will always receive enough messages to form quorums.

The algorithms are compatible with any value of α that fits the definition of our TVG classes,
but the processes are required to know the same α value (α ≤ |C|). γ is the maximum delay
between two broadcasts of the same message by a process. We also require processes to receive
their own broadcast messages within γ units of time. Note that the bound value of γ implies that
the relative speed of processes must be bounded: processes are therefore synchronous.

Since we make use of infinite rebroadcasts, messages originally issued by faulty processes will
be continuously retransmitted by the other correct processes, even after all faulty processes have
left the system preventing the satisfaction of the completeness property. As both algorithms use
different solutions to this problem, it will be discussed further in the subsections presenting the
algorithms themselves.

6.1 Message pattern

In order to ensure the intersection property, some assumptions must be added. Instead of using a
constraint on the ratio of correct processes, we present here assumptions based on the message
pattern approach proposed by Mostéfaoui et al. [23].

The message pattern model consists in assuming some properties on the relative order of
message deliveries. When a certain number of messages (α) are waited by processes for continuing
algorithm progress, the principle is to assume that the message from some specific process will
be among the first received. This model provides asynchronous implementations and avoid
timer-based approaches.

We propose two different message pattern assumptions, either of which is sufficient to implement
Σ⊥,k. Both are generalizations of the message pattern assumption used by Rieutord et al. in [24]
applied to k-set agreement.

Assumption 1 (Multiple winning quorums).
∃Qw1, Qw2, ..., Qwk ⊆ Π : ∀p ∈ Π, every time p attempts to form a new quorum, ∃i ∈ [1, k] such
that Qwi 6= ∅ and out of the next α processes from which p receives a message, at least b |Qwi|

2 c+ 1
of them are in Qwi.

RR n° 8727



10 Denis Jeanneau, Thibault Rieutord, Luciana Arantes, Pierre Sens

We refer to the Qwi sets as winning quorums. The property on the size of each winning
quorum ensures that any two processes forming a quorum using the same winning quorum will
necessarily intersect. Since there are only k different such winning quorums, two out of any k + 1
quorums formed by the algorithm will intersect. Assumption 1 implies that there is at least one
winning quorum Qwi such that a strict majority of the processes in Qwi are correct.

Assumption 2 (Global winning quorum). ∃Qw ⊆ Π, Qw 6= ∅ : ∀p ∈ Π, every time p attempts
to form a new quorum, out of the next α processes from which p receives a message, at least
b |Qw|
k+1 c+ 1 of them are in Qw.

This assumption implies that at least b |Qw|
k+1 c+ 1 processes in Qw are correct. Assumption 2

requires a single winning quorum, but the constraint on the size of Qw is weaker than the one of
Assumption 1. It can be shown that these two assumptions are not equivalent.

Theorem 1. Assumption 1 and Assumption 2 are incomparable and none is weaker than the
other one.

Proof. Assumption 2 6=⇒ Assumption 1 : Consider k = 2 and α = 2. The single winning
quorum provided by Assumption 2, Qw, can contain at most 5 processes. Consider that for such
a winning quorum of size 5, two winning quorums can be found satisfying Assumption 1. Such
quorums must contain at most 3 elements with 2 responses required, or of size 1 and 1 response.
Among the possible couple of responses of processes from Qw, the case of winning quorums of
size 3 can cover for at most 3 possible couples satisfying the condition of Assumption 1 and the
one of size 1 can cover for at most 4. So Assumption 1 can cover for at most 8 possible selection
of couple of responses from Qw, but there is 10 possible combinations for selecting 2 elements in
a set of 5.

Assumption 1 6=⇒ Assumption 2 : Let us consider α = 2 and that all of Assumption 1
winning quorums are disjoints and composed of three processes. Due to size considerations, if
Assumption 2 is verified, the associated winning quorum Qw must be composed of at most 2k + 1
processes and thus cannot contain all 3k processes of Assumption 1 winning quorums. Therefore,
a quorum formed with only one of Qw process may be formed respecting Assumption 1, implying
that |Qw| ≤ k. Furthermore, this imply that a Qwi with at most one process in Qw exists and
so a valid quorum can be formed with the two processes of Qwi that are not in Qw. In such a
scenario no winning quorum respecting Assumption 2 can be found.

Note that if α ≥ b n
k+1c + 1, then Assumption 2 is trivially verified with Qw = Π. This

particular case is the method used to implement Σk in static networks in [7].
The two algorithms that we present in the following require either Assumption 1 or Assump-

tion 2 to hold.

6.2 A Message Expiration-Based Algorithm for �?;k

Algorithm 1 provides completeness by limiting the number of times a message can be rebroadcast.
It requires a TVG of class 5-(α, γ)′.

Notations. Broadcast messages contain the parameters: (1) src, the identity of the original
sender of the broadcast and (2) age, the number of times this message has been already broadcast.

Process pi uses the following local variables: (1) recv_fromi, a set that serves as a buffer to
contain the quorum currently being formed, and (2) Σi, the quorum returned by the algorithm.
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Algorithm 1 Implementation of Σ⊥,k with message expiration for process pi
1: init recv_fromi ← {pi}; Σi ← ⊥
2:
3: task T1: repeat forever
4: broadcast(pi, 1)
5: end task
6:
7: task T2: upon reception of message(src, age) from pj
8: recv_fromi ← recv_fromi ∪ {src}
9: if |recv_fromi| ≥ α then

10: Σi ← recv_fromi; recv_fromi ← {pi}
11: end if
12: if age < α− 1 then broadcast(src, age+ 1) end if
13: end task

Algorithm Description. Initially, the return value Σi of process pi is ⊥.
The algorithm keeps two parallel tasks: T1 is an infinite loop that simply keeps broadcasting

query messages at least once every γ units of time; T2 handles any incoming message.
Every process identity received in a message by T2 is simply added to the quorum buffer

recv_fromi. If the latter contains α identities or more, then its size ensures a valid quorum. In
this case, pi saves the recent computed quorum and resets the quorum buffer in order to start the
computing of the next quorum (lines 11 and 12).

The received message is then rebroadcast unless it has already been broadcast α− 1 times.
The mechanism of message expiration requires a TVG of class 5-(α, γ)’, which implies direct

journeys. In the algorithm, every non faulty process rebroadcasts the messages it receives: if the
next edge of the journey was not active yet, as it might happen in class 5-(α, γ), the only way the
message could “wait” would be to locally rebroadcast it in the meantime, which would imply in
increasing its age. As a result, the message might not reach the number of processes necessary
for each process to form a quorum.

6.3 A Round-Based Algorithm for �?;k

Algorithm 2 presents an implementation of Σ⊥,k requiring a TVG of class 5-(α, γ). Since it does
not make use of the message expiration mechanism, it does not require class 5-(α, γ)’ and relies
on asynchronous rounds to eliminate old messages from faulty processes. Its implementation uses
a query-response mechanism.

Notations. A message contains the following parameters: (1) src: the identity of the original
sender of the broadcast, (2) qr: the identities of every process which received the message and
retransmitted it, (3) mid_src: the timestamp of the quorum that the last query issued by src is
attempting to form (corresponding to the midi of process src).

Besides recv_fromi and Σi, similarly to Algorithm 1, pi keeps the following two other local
variables:

• midi: a round counter used to timestamp every quorum formed by process pi. Every time
a new quorum is completed, midi is incremented.

• last_knowni: the knowledge pi has of the round counter of other processes. It is used to
prevent pi from uselessly rebroadcasting outdated messages. The variable contains tuples
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Algorithm 2 Implementation of Σ⊥,k with asynchronous rounds for process pi
1: init midi ← 0; last_knowni ← ∅; recv_fromi ← {pi}; Σi ← ⊥
2:
3: task T1: repeat forever
4: broadcast(pi, {pi}, midi)
5: end task
6:
7: task T2: upon reception of message(src, qr, mid_src) from pj
8: if src = pi and mid_src = midi then . RESPONSE
9: recv_fromi ← recv_fromi ∪ qr

10: if |recv_fromi| ≥ α then
11: Σi ← recv_fromi; recv_fromi ← {pi}
12: midi ← midi + 1
13: end if
14: else if src 6= pi then . QUERY
15: if 〈src, last_mid〉 ∈ last_knowni
16: and last_mid ≤ mid_src then
17: if last_mid < mid_src then
18: replace in last_knowni 〈src, last_mid〉
19: with 〈src,mid_src〉
20: end if
21: broadcast(src, qr ∪ {pi}, mid_src)
22: else if 〈src,−〉 /∈ last_knowni then
23: last_knowni ← last_knowni∪
24: {〈src,mid_src〉}
25: broadcast(src, qr ∪ {pi}, mid_src)
26: end if
27: end if
28: end task

of the form 〈pj ,midj〉 where pj is a process identity and midj is the last round number
known by pi for pj .

Algorithm Description. Initially, the return value Σi of process pi is ⊥.
The algorithm keeps two parallel tasks: T1 is an infinite loop that simply keeps broadcasting
query messages at least once every γ units of time. T2 handles any incoming message, considering
two main cases:

Case 1: if the source process identity contained in the message is pi, then the message is
considered as a response to a query previously broadcast by pi. If the round number is the current
one, then the identities contained in the message are added to the quorum buffer recv_fromi. If
the latter contains α identities or more, its size ensures a valid quorum (line 10). The task then
saves the recently computed quorum, resets the quorum buffer recv_fromi, and increments the
round number in order to start computing a new quorum (lines 11 – 12).

Case 2: if the source process identity is different from pi, then the message is considered as a
query broadcast by another process which pi needs to forward and respond to. If last_knowni
contains a more recent round number than the one received by pi in the message, pi ignores the
message. Otherwise, it updates last_knowni (lines 19 and 24) and broadcasts the same message
with its own identity added in the qr parameter of the message (lines 21 and 25). This broadcast
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acts both as a response mechanism and as a forward of the query which allows other processes to
respond to it.

6.4 Comparison between Algorithms 1 and 2

Although the two algorithms solve the same problem, they present different strengths. Algorithm 2
does not make the strong assumption of direct journeys, as opposed to Algorithm 1. However,
Algorithm 2 has the inconvenient of requiring two-way recurrent connectivity. Algorithm 1 also
has the advantage of simplicity.

6.5 Proof of Correctness of Algorithms 1 and 2

Theorem 2. Algorithms 1 and 2 ensure the intersection property of Σ⊥,k.

Proof. By lines 9 and 10 of Algorithm 1 and lines 10 and 11 of Algorithm 2, a process only returns
quorums of size ≥ α.

If Assumption 1 holds, then it follows that any two quorums using the same winning quorum
Qwi intersect, since each quorum contains at least b |Qwi|

2 c+ 1 process identities taken from Qwi.
Given that there are only k different winning quorums, at least two out of any k + 1 quorums
contain the majority of the same winning quorum and therefore intersect.

If Assumption 2 holds, then it follows trivially that at least two out of k+ 1 quorums intersect
since both contain b |Qw|

k+1 c+ 1 process identities taken from Qw.

Lemma 1. Every correct process executing Algorithm 1 forms a new quorum infinitely often.

Proof. Our algorithm imposes a size of at least α for every quorum: as a result, a process may
not be able to form new quorums after some time. Thus, every correct process must be reached
by α processes infinitely often. The message expiration mechanism can prevent a process from
receiving messages from α processes, even in a class 5-(α, γ) TVG, simply because a message
can age needlessly by waiting for an edge to be activated. As a result, the (α, γ)-direct recurrent
receiver connectivity of class 5-(α, γ)’ is needed to ensure that Algorithm 1 will form quorums
infinitely often. This class guarantees direct γ-journeys, which means that messages can cross all
the necessary edges without waiting.

Lemma 2. Every correct process executing Algorithm 2 forms a new quorum infinitely often.

Proof. Since it uses a query-response mechanism, Algorithm 2 requires every correct process to
reach and be reached by α processes infinitely often. This is exactly the guarantee provided
by the (α, γ)-recurrent connectivity property of TVG class 5-(α, γ). Even if a journey includes
waiting time during which the process holding the message is isolated, the process keeps memory
of the message by rebroadcasting it to itself, and transmits it to other processes as soon as it it
stops being isolated. As a result, every correct process will receive messages from α infinitely
often.

Lemma 3. There is a time τ ∈ T after which every new quorum formed by Algorithms 1 and 2
contains only correct processes.

Proof. By definition, faulty processes will crash or leave the system in a finite time. Messages
arrive in a finite time and in the case of Algorithm 1, are rebroadcast a finite number of times.
Therefore with Algorithm 1, there is a time after which no information related to faulty processes
remains in the system. Since processes form new quorums from fresh messages infinitely often
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(Lemma 1), there is a time after which every new quorum formed will contain only correct
processes.

For Algorithm 2, let t ∈ T be the time at which the last faulty process crashes or leaves the
system: since f < n, there are correct processes in the system. Lemma 2 ensures that each of
these processes will form a new quorum sometime after t. Let τ ∈ T be a time such that τ > t
and every remaining process has formed a quorum between t and τ . Therefore, every quorum
being currently built at τ has been started after t, which means no faulty process can possibly
respond to the corresponding query message. As a result, every new quorum formed after τ
contains only correct processes.

Theorem 3. Algorithms 1 and 2 ensure the completeness property of Σ⊥,k.

Proof. The proof for completeness follows directly from Lemmas 1, 2 and 3.

6.6 Necessity of (α, γ)-recurrent connectivity and (α, γ)-direct recurrent
receiver connectivity

Theorem 4. The (α, γ)-recurrent connectivity property is a necessary requirement for Algorithm 2
and the (α, γ)-direct recurrent receiver connectivity is a necessary requirement for Algorithm 1.

Proof. Let us assume a TVG model that does not belong to class 5-(α, γ) or class 5-(α, γ)′. By
definition, in such a model there is a correct process pi that is unable to communicate with α
correct processes infinitely often. Thus, there is a time τ ∈ T at which pi will stop forming new
quorums, since both algorithms need α processes to form a quorum.

Let pj be a faulty process. We can imagine a run where pj broadcasts a message before
crashing, and pi uses this message, and therefore includes pj ’s identity in its last formed quorum
before τ . As a result pi will forever keep a faulty process in its quorum, thus violating the
completeness property of Σ⊥,k.

7 An Algorithm for k-Set Agreement in Dynamic Networks
Using �⊥,z

Algorithm 3 is derived from the algorithm presented by Bouzid and Travers in [7]. Similarly to
the original one, processes are partitioned into z + 1 disjoint sets of processes A1, ..., Az+1 such
that ∀i, j, i 6= j, Ai ∩Aj = ∅;

S
Ai = Π;

∀i ∈ [1..z]|Ai| = b n
z+1c; |Az+1| = b n

z+1c+ nmod(z + 1).
The original algorithm requires Σz with k ≥ n− b n

z+1c while ours relies on Σ⊥,z (with the
same value for k). Our algorithm requires the following assumption to hold:

Assumption 3 (Quorum recurrent connectivity). ∀i, j ∈ C, if the Σ⊥,z quorums formed by i
and j intersect infinitely often, then there is a recurrent connectivity from i to j: ∀τ ∈ T ,∃J ∈
J γ(i,j) : departure(J ) > τ .

Similarly to Algorithms 1 and 2, γ is the maximum delay between two broadcasts of the same
message by a process. We also require processes to receive their own broadcast messages within γ
units of time.

Note that many implementations of Σ⊥,z ensure quorum recurrent connectivity, as is the case
with Algorithm 2. Therefore, Assumption 3 consists in relying on the assumptions already made
to implement the failure detector instead of introducing new ones. This is not an additional
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assumption compared to the original algorithm: the connectivity it implies is still weaker than
the full recurrent connectivity of a static network.

For the conception of the new version of the algorithm, we have had to cope with the following
constraints of the original algorithm: (1) The use of one-time broadcasts and eventual reception
of the message by other processes. To fulfill this in a TVG, processes need to rebroadcast received
messages. (2) The use of a selective multicast (line 1 of the original algorithm). We can translate
this mechanism in a dynamic network by having every process broadcasting the message to their
respective current neighbors while destination processes filter it and may not deliver it. (3) The
assumption that every process knows, from the start, the identifiers of those processes which
belong to its own partition. In the new version of the algorithm, every process knows, at the
start, just the number of the partition to which it belongs and, during the run, it dynamically
gets knowledge of its partition membership (or part of it).

Intuitively, at the algorithm initialization, every process has its own proposed value and
whenever a process decides, it broadcasts the decided value. Notice that processes do not stop
after deciding but must keep broadcasting their decision.

Algorithm 3 Solving k-set agreement with Σ⊥,z: p ∈ Ai
1: init v ← initial value; dec← false; known← {p}
2:
3: task T0: repeat every γ
4: if dec then broadcast DEC(v)
5: else broadcast VAL(p, i, v) end if
6: end task
7:
8: task T1: upon reception of message VAL(src, j, w)
9: if dec 6= true then

10: if i > j then
11: v ← w; dec← true; decide(v)
12: else if i = j then
13: known← known ∪ {src}
14: end if
15: broadcast VAL(src, j, w)
16: end if
17: end task
18:
19: task T2: repeat X ← Σ⊥,z until X ⊆ known
20: if dec 6= true then
21: dec← true; decide(v)
22: end if
23: end task
24:
25: task T3: upon reception of message DEC(w)
26: if dec 6= true then
27: v ← w; dec← true; decide(v)
28: end if
29: end task
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Notations. The algorithm uses the following local variables: (1) v: variable that contains the
value that process p expects to decide, or has decided, (2) dec: a boolean variable indicating
whether p has decided or not, thus preventing p from deciding twice, (3) known: the current
knowledge that p has of the processes in partition Ai. We denote Σ⊥,z the process identities (or
special value ⊥) returned by the Σ⊥,z failure detector.

Two types of messages are defined: (1) DEC(v): A message indicating that the sender has
decided value v. Any process receiving such a message will immediately decide v in turn, unless
it has already decided. (2) VAL(p, i, v): A message indicating that a process p of partition
Ai proposed the value v. Processes of partitions Aj with j < i will ignore this message, but a
process of a higher partition receiving the message will immediately decide v unless it has already
decided, and a process of partition Ai receiving this message will add p to its set known.

Algorithm Description. Initially, v is set to the initial value proposed by p and dec is set to
false. The algorithm keeps four parallel tasks:

Task T0 keeps broadcasting messages at least once every γ units of time. Before p has decided
(dec = false), it broadcasts VAL(p, i, v) messages informing processes in higher partitions of its
initial value v and processes of partition Ai that they belong to the same partition as p. After p
has decided (dec = true), T0 broadcasts DEC(v) messages informing neighbors of the decided
value.

Tasks T1 and T3 handle the reception of messages of type VAL(.) and DEC(.) respectively.
T3 checks if p has already decided and if not, p decides the received value, updates v and switches
dec to true. T1 only handles VAL(.) messages coming from lower (or the same) partitions. If
the receiver process is in a higher partition and has not decided yet, then it acts exactly as just
described for T3. If the sender of the message (src) belongs to the same partition of p (Ai), p
adds src to known. Unless p has already decided, it always rebroadcasts the VAL(.) messages it
receives.

Finally, T2 is a safety mechanism that allows decision in the case when all correct processes
are in the same partition. This case is detected using Σ⊥,z and known, which is p’s estimation
of the membership of partition Ai. When and if it occurs, p just decides its initial value and
switches dec to true.

In order to prevent a process from deciding multiple values, the deciding blocks (lines 10–11,
20–21 and 26–27) need to be executed atomically.

7.1 Proof of Correctness of Algorithm 3

The proof strongly relies on the proof of the original algorithm provided in [7]. Nevertheless, a
few adaptations and additional assumptions needed to be made.

Lemma 4 (Validity). A decided value is a proposed value.

Proof. The proof for validity is trivial and similar to the one presented for the original algorithm
in [7]. A process decides either its own proposed value (line 21) or a value proposed by another
process (lines 11 and 27).

Lemma 5 (Termination). Every correct process eventually decides a value.

Proof. For any correct process p, let Rp be the set of correct processes such that Rp = {q ∈
C | ∀τ ∈ T ,∃τp, τq > τ : qr

τp
p ∩ qrτq

q 6= ∅}. Note that p ∈ Rp, therefore Rp cannot be empty. It
follows from Assumption 3 that there is recurrent connectivity within each set Rp.
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If one correct process p decides, it will continuously broadcast a DEC(.) message. All processes
in Rp will eventually receive this message, thus deciding in turn. Hence, it is sufficient to prove
that one process in each Rp group decides.

For every correct process p, let mp = max{i | Ai ∩Rp 6= ∅}. We consider two cases:

• 8i 6= mp; Ai \Rp = ;. Since there is recurrent connectivity within Rp, all the processes in
Amp

∩Rp will eventually receive each other’s V AL(.) messages. Hence, there exists a time
after which ∀q ∈ Amp

∩Rp, Rp = Amp
∩Rp ⊆ known. It then follows from the completeness

property of Σ⊥,z and the definition of Rp that each q ∈ Amp
∩Rp will eventually exit the

repeat loop of task T2 and decide.

• 9l 6= mp : Al \ Rp 6= ;. Let r ∈ Al∩Rp and q ∈ Amp ∩Rp. r will send a V AL(.) message
which will be received by q at some point thanks to the recurrent connectivity within Rp.
Since mp > l, q will decide upon reception of the message.

Lemma 6 (Agreement). At most k different values are decided.

Proof. In order to account for the difference between Σz and Σ⊥,z, we need to take the convention
that ∀i,⊥ /∈ Ai. The proof for agreement in [7] relies only on the properties of the chosen
partitioning of processes (which is the same as the one used for our algorithm), Σz, and the
assumption that k ≥ n− b n

z+1c. Most importantly, no assumption is made on graph connectivity,
which allows the original proof to hold for our algorithm as well. The usage of known instead of
Ai in task T2 cannot possibly break the agreement property, because we ensure by construction
that known ⊆ Ai.

Theorem 5. Algorithm 3 solves k-set agreement

Proof. The proof follows from Lemmas 4, 5 and 6

8 Conclusion
This paper provided an algorithm to solve the k-set agreement problem in dynamic networks with
asynchronous communications, where both system membership and the communication graph
evolve over time.

To this end we extended class 5 (recurrent connectivity) of TVG, defined a new failure detector
Σ⊥,k, and provided two implementations for the latter.
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