
HAL Id: hal-01151823
https://inria.hal.science/hal-01151823

Submitted on 13 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Submodular Losses with the Lovász Hinge
Jiaqian Yu, Matthew Blaschko

To cite this version:
Jiaqian Yu, Matthew Blaschko. Learning Submodular Losses with the Lovász Hinge. International
Conference on Machine Learning, Jul 2015, Lille, France. �hal-01151823�

https://inria.hal.science/hal-01151823
https://hal.archives-ouvertes.fr


Learning Submodular Losses with the Lovász Hinge

Jiaqian Yu jiaqian.yu@centralesupelec.fr
Matthew B. Blaschko matthew.blaschko@inria.fr
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Abstract

Learning with non-modular losses is an im-
portant problem when sets of predictions are
made simultaneously. The main tools for
constructing convex surrogate loss functions
for set prediction are margin rescaling and
slack rescaling. In this work, we show that
these strategies lead to tight convex surro-
gates iff the underlying loss function is in-
creasing in the number of incorrect predic-
tions. However, gradient or cutting-plane
computation for these functions is NP-hard
for non-supermodular loss functions. We pro-
pose instead a novel convex surrogate loss
function for submodular losses, the Lovász
hinge, which leads to O(p log p) complexity
with O(p) oracle accesses to the loss function
to compute a gradient or cutting-plane. As a
result, we have developed the first tractable
convex surrogates in the literature for sub-
modular losses. We demonstrate the utility
of this novel convex surrogate through a real
world image labeling task.

1. Introduction

Statistical learning has largely addressed problems in
which a loss function decomposes over individual train-
ing samples. However, there are many circumstances
in which non-modular losses can lead to better end re-
sults. This is the case when multiple outputs of a pre-
diction system are used as the basis of a decision mak-
ing process that leads to a single real-world outcome.
These dependencies in the effect of the predictions
(rather than a statistical dependency between predic-
tions themselves) are therefore properly incorporated
into a learning system through a non-modular loss
function. In this paper, we aim to provide a theoretical
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and algorithmic foundation for a novel class of learning
algorithms that make feasible learning with submodu-
lar losses, an important subclass of non-modular losses
that is currently infeasible with existing algorithms.

Convex surrogate loss functions are central to the
practical application of empirical risk minimization.
Straightforward principles have been developed for the
design of convex surrogates for binary classification
and regression (Bartlett et al., 2006), and in the struc-
tured output setting margin and slack rescaling are
two principles for defining convex surrogates for more
general output spaces (Tsochantaridis et al., 2005).
Despite the apparent flexibility of margin and slack
rescaling in their ability to bound arbitrary loss func-
tions, there are fundamental limitations to our abil-
ity to apply these methods in practice: (i) they pro-
vide only loose upper bounds to certain loss functions,
(ii) computing a gradient or cutting plane is NP-hard
for submodular loss functions, and (iii) consistency re-
sults are lacking in general (McAllester, 2007; Tewari
& Bartlett, 2007). In practice, modular losses, such as
Hamming loss, are often applied to maintain tractabil-
ity, although non-modular losses, such as the intersec-
tion over union loss have been applied in the struc-
tured prediction setting (Blaschko & Lampert, 2008;
Nowozin, 2014).

Non-modular losses have been (implicitly) considered
in the context of multilabel classification problems.
(Cheng et al., 2010) uses the Hamming loss and subset
0-1 loss which are modular, and a rank loss which is su-
permodular; (Petterson & Caetano, 2011) introduces
submodular pairwise potentials, not submodular loss
functions, while using a non-submodular loss based on
F-score. (Li & Lin, 2014) uses (weighted) Hamming
loss which is modular, but also proposes a new tree-
based algorithm for training; (Doppa et al., 2014) uses
modular losses e.g. Hamming loss and F1 loss which
is non-submodular. However, non-supermodular loss
functions are substantially more rare in the literature.

In this work, we introduce an alternate principle to
construct convex surrogate loss functions for submod-
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ular losses based on the Lovász extension of a set func-
tion. The Lovász extension of a submodular function
is its convex closure, and has been used in other ma-
chine learning contexts e.g. (Bach, 2010; Iyer & Bilmes,
2013). We analyze the settings in which margin and
slack rescaling are tight convex surrogates by finding
necessary and sufficient conditions for the surrogate
function to be an extension of a set function. Al-
though margin and slack rescaling generate extensions
of some submodular set functions, their optimization
is NP-hard. We therefore propose a novel convex sur-
rogate for submodular functions based on the Lovász
extension, which we call the Lovász hinge. In con-
trast to margin and slack rescaling, the Lovász hinge
provides a tight convex surrogate to all submodular
loss functions, and computation of a gradient or cut-
ting plane can be achieved in O(p log p) time with a
linear number of oracle accesses to the loss function.
We demonstrate empirically fast convergence of a cut-
ting plane optimization strategy applied to the Lovász
hinge, and show that optimization of a submodular
loss results in lower average loss on the test set.

In Section 2 we introduce the notion of a submodu-
lar loss function in the context of empirical risk min-
imization. The Structured Output SVM is one of the
most popular objectives for empirical risk minimiza-
tion of interdependent outputs, and we demonstrate
its properties on non-modular loss functions in Sec-
tion 3. In Section 4 we introduce the Lovász hinge,
and we empirically demonstrate its performance on an
image labeling task on the Microsoft COCO dataset
in Section 5.

2. Submodular Loss Functions

In empirical risk minimization (ERM), we approxi-
mate the risk, R of a prediction function f : X 7→ Y by
an empirical sum over losses incurred on a finite sam-
ple, using e.g. an i.i.d. sampling assumption (Vapnik,
1995):

R̂(f) :=
1

n

n∑
i=1

∆(yi, f(xi)) (1)

Central to the practical application of the ERM prin-
ciple, one must approximate, or upper bound the dis-
crete loss function ∆ with a convex surrogate. We will
identify the creation of a convex surrogate for a spe-
cific loss function with an operator that maps a func-
tion with a discrete domain to one with a continuous
domain. In particular, we will study the case that the
discrete domain is a set of p binary predictions. In this

case we denote

Y = {−1,+1}p (2)

f(x) = sign(g(x)) (3)

∆ : {−1,+1}p × {−1,+1}p 7→ R+ (4)

B∆ : {−1,+1}p × Rp 7→ R (5)

where B is an operator that constructs the surro-
gate loss function from ∆, and g : X 7→ Rp is a
parametrized prediction function to be optimized by
ERM.

A key property is the relationship between B∆ and
∆. In particular, we are interested in when a given
surrogate strategy B∆ yields an extension of ∆. We
make this notion formal by identifying {−1,+1}p with
a given p-dimensional unit hypercube of Rp (cf. Defini-
tion 3). We say that B∆(y, ·) is an extension of ∆(y, ·)
iff the functions are equal over the vertices of this unit
hypercube. We focus on function extensions as they
ensure a tight relationship between the discrete loss
and the convex surrogate.

2.1. Set Functions and Submodularity

For many optimization problems, a function defined
on the power set of a given base set V , a set function
is often taken into consideration to be minimized (or
maximized). Submodular functions play an important
role among these set functions, similar to convex func-
tions on vector spaces.

Submodular functions may be defined through several
equivalent properties. We use the following defini-
tion (Fujishige, 2005):

Definition 1. A set function l : P(V ) 7→ R is sub-
modular if and only if for all subsets A,B ⊆ V ,
l(A) + l(B) ≥ l(A ∪B) + l(A ∩B).

A function is supermodular iff its negative is submod-
ular, and a function is modular iff it is both submod-
ular and supermodular. A modular function can be
written as a dot product between a binary vector in
{0, 1}p (where p = |V |) encoding a subset of V and a
coefficient vector in Rp which uniquely identifies the
modular function. By example, Hamming loss is a
modular function with a coefficient vector of all ones,
and a subset defined by the entries that differ between
two vectors.

Necessary to the sequel is the notion of monotone set
functions

Definition 2. A set function l : P(V ) 7→ R is in-
creasing if and only if for all subsets A ⊂ V and
elements x ∈ V \A, l(A) ≤ l(A ∪ {x}).
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In this paper, we consider loss functions for multiple
outputs that are set functions where inclusion in a set
is defined by a corresponding prediction being incor-
rect:

∆(y, ỹ) = l({i|yi 6= ỹi}) (6)

for some set function l. Such functions are typically in-
creasing, though it is possible to conceive of a sensible
loss function that may be non-increasing.

With these notions, we now turn to an analysis of
margin and slack rescaling, and show necessary and
sufficient conditions for these operators to yield an ex-
tension to the underlying discrete loss function.

3. Existing Convex Surrogates

A general problem is to learn a mapping f from inputs
x ∈ X to discrete outputs (labels) y ∈ Y. The Struc-
tured Output SVM (SOSVM) is a popular framework
for doing so in the regularized risk minimization frame-
work. The approach that SOSVM pursues is to learn
a function h : X × Y 7→ R over input/output pairs
from which a prediction can be derived by maximizing
f(x) = arg maxy h(x, y) over the response from a given
input x. The SOSVM framework assumes h to be rep-
resented by an inner product between an element of
a reproducing kernel Hilbert space (RKHS) and some
combined feature representation of inputs and outputs
φ(x, y),

h(x, y;w) = 〈w, φ(x, y)〉 (7)

although the notions of margin and slack rescaling may
be applied to other function spaces, including random
forests and deep networks.

A bounded loss function ∆ : Y × Y → R quantifies
the loss associated with a prediction ỹ while the true
value is y, and is used to re-scale the constraints. The
margin-rescaling constraints and slack-rescaling con-
straints are:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi, ∀i,∀ỹ ∈ Y : (8)

〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹ)〉 ≥ ∆(yi, ỹ)− ξi (9)

or 〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹ)〉 ≥ 1− ξi
∆(yi, ỹ)

(10)

respectively.

In the sequel, we will consider the case that each
xi ∈ X is an ordered set of p elements in a RKHS,
H, and that yi ∈ Y is a binary vector in {−1,+1}p.
We consider feature maps such that

〈w, φ(xi, yi)〉 =

p∑
j=1

〈wj , xji 〉y
j
i . (11)

Given this family of joint feature maps, we may iden-
tify the jth dimension of g (cf. Equation (3)) with
〈wj , xji 〉. Therefore arg maxy h(x, y;w) = sign(g(x))
and h(x, y) = 〈g(x), y〉.

3.1. Analysis of Margin and Slack Rescaling

We now turn to the problem of determining necessary
and sufficient conditions for margin and slack rescaling
to yield an extension of the underlying set loss func-
tion. We denote the operators for margin and slack
rescaling that map the loss function to its convex sur-
rogate M and S, respectively. These operators have
the same signature as B in Equation (5).

M∆(y, g(x)) := max
ỹ∈Y

∆(y, ỹ) + 〈g(x), ỹ〉 − 〈g(x), y〉

(12)

S∆(y, g(x)) := max
ỹ∈Y

∆(y, ỹ)
(
1 + 〈g(x), ỹ〉 − 〈g(x), y〉

)
(13)

respectively.

In order to analyse whether M∆ and S∆ are exten-
sions of ∆, we construct a mapping to a p-dimensional
vector space using following definition:

Definition 3. A convex surrogate function B∆(y, ·) is
an extension when B∆(y, ·) = ∆(y, ·) on the vertices of
the 0-1 unit cube under the mapping to Rp (cf. Fig. 1):

i ={1, . . . , p}, [u]i = 1− 〈w, xi〉yi (14)

In the sequel, we will use the notation for l : P(V ) 7→ R
as in Equation (6). Note that at the vertices, ∆(y, ·)
has the following values:

l(∅) at 0p (15)

l(I) at {v|v ∈ {0, 1}, vi = 1⇔ i ∈ I} (16)

We call (16) the value of l at the vertex I.

3.2. Slack rescaling

Proposition 1. S∆(y, ·) is an extension of a set func-
tion ∆(y, ·) iff ∆(y, ·) is an increasing function.

Proof. First we demonstrate the necessity. Given
S∆(y, ·) an extension of ∆(y, ·), we analyse whether
∆(y, ·) is an increasing function. Specifically, there
are two cases to determine the values of S∆(y, ·):

1. if u = 0, S∆(y, g(x)) = l(∅) according to Equa-
tion (6), where u is defined as in Equation (14).

2. if u ∈ Rp \ {0}, let I = {i|ui 6= 0}, then according
to Equation (13), S∆(y, g(x)) takes the value of
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the following equation:

max
I∈P(V )

l(I)
(
1−

∑
i∈I

〈w, xi〉yi
)

(17)

As S∆(y, g(x)) is an extension of ∆(y, sign(g(x))), by
Definition 3, S∆(y, g(x)) = ∆(y, sign(g(x))) at the
vertices as in (15) and (16). Note that it is trivial
when u = 0 so the first case is always true for arbi-
trary (including increasing) l.

Considering the second case when S∆(y, g(x)) is equal
to Equation (17), let I2 = arg maxI∈P(V ) l(I)

(
1 −∑

i∈I〈w, xi〉yi
)
. As S∆(y, g(x)) is an extension,

S∆(y, g(x)) = ∆(y, sign(g(x))) at the vertex I2.

∀I1 ∈ P(V ) \ {∅}, l(I2) ≥ l(I1) (1− |(V \ I2) ∩ I1|)
(18)

This leads also to two cases,

1. if |(V \ I2) ∩ I1| = 0, (V \ I2) ∩ I1 = ∅, which
implies I1 ⊆ I2, then from Equation (18) we get
l(I2) ≥ l(I1). This implies that l and therefore ∆
are increasing;

2. if |(V \ I2) ∩ I1| ≥ 1, this means the rhs of Equa-
tion (18) is negative, then it turns out to be re-
dundant with l(I2) ≥ 0 which is always true.

To conclude, given S∆(y, ·) is an extension of a set
function ∆(y, ·), it is always the case that ∆ is in-
creasing.

To demonstrate the sufficiency, we need to show Equa-
tion (18) is always true if l is increasing. We note that
(18) holds if |(V \ I2) ∩ I1| = 0, because if I1 ⊆ I2
then l(I2) ≥ l(I1). Then if |(V \ I2) ∩ I1| ≥ 1, (18)
always holds even for arbitrary l. We conclude that
S∆(y, g(x)) = ∆(y, sign(g(x))) at the vertices when
Equation (16) holds. As for the case of Equation (15),
it is trivial as u = 0. So S∆(y, ·) yields a extension of
∆(y, ·) if ∆(y, ·) is increasing.

3.3. Margin rescaling

It is a necessary, but not sufficient condition that
∆(y, ỹ) be increasing for margin rescaling to yield an
extension. However, we note that for all increasing
∆(y, ỹ) there exists a positive scaling γ ∈ R such that
margin rescaling yields an extension. This is an im-
portant result for regularized risk minimization as we
may simply rescale ∆ to guarantee that margin rescal-
ing yields an extension, and simultaneously scale the
regularization parameter such that the relative contri-
bution of the regularizer and loss is unchanged at the
vertices of the unit cube.

Proposition 2. For all increasing set functions l such
that ∃y for which M∆(y, ·) is not an extension of
∆(y, ·), we can always find a positive scale factor γ
specific to l such that margin rescaling yields an exten-
sion. We denote Mγ∆ and γ∆ as the rescaled func-
tions.

Proof. Similar to Proposition 1, we analyse two cases
to determine the values of Mγ∆(y, g(x)):

1. if u = 0, Mγ∆(y, g(x)) = γl(∅) where u is de-
fined as in Equation (14). It is typically the case
that l(∅) = 0, but this is not a technical require-
ment.

2. if u 6= 0, let I = {i|ui 6= 0}, then Mγ∆(y, g(x))
takes the value of the following equation:

max
I∈P(V )

γl(I)−
∑
i∈I

〈w, xi〉yi (19)

To satisfy Definition 3, we must find a γ > 0 such
that Mγ∆(y, g(x)) = γ∆(y, sign(g(x))) at the ver-
tices. Note that it is trivial when u = 0 so the first
case is true for arbitrary γ > 0.

For the second case as in Equation (19), let
I2 = arg maxI∈P(V )

(
l(I) −

∑
i∈I〈w, xi〉yi

)
. We have

Mγ∆(y, g(x)) = ∆(y, sign(g(x))) at the vertices I2
according to the extension. The scale factor should
satisfy:

∀I1 ∈ P(V )\{∅}, γ
(
l(I2)−l(I1)

)
≥ −|(V \I2)∩I1| (20)

which leads to the following cases:

1. if |(V \ I2) ∩ I1| = 0, we have (V \ I2) ∩ I1 = ∅,
which implies I1 ⊆ I2. Equation (20) reduces to

γ
(
l(I2)− l(I1)

)
≥ 0 (21)

and l is an increasing function so l(I1) ≤ l(I2) and
Equation (21) is always true as γ > 0.

2. if |(V \ I2) ∩ I1| 6= 0, we need to discuss the rela-
tionship between l(I1) and l(I2):

(a) if l(I2) = l(I1), then Equation (21) becomes
0 ≥ −|(V \ I2) ∩ I1|, for which the rhs is
negative so it is always true.

(b) if l(I2) > l(I1), then

γ ≥ −|(V \ I2) ∩ I1|
l(I2)− l(I1)

(22)

for which the rhs is negative so it is redundant
with γ > 0 .
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(c) if l(I2) < l(I1), then

γ ≤ −|(V \ I2) ∩ I1|
l(I2)− l(I1)

(23)

for which the rhs is strictly positive so it be-
comes an upper bound on γ .

In summary the scale factor γ should satisfy the fol-
lowing constraint for an increasing loss function l:

∀I1, I2 ∈ P(V ) \ {∅}, 0 < γ ≤ −|(V \ I2) ∩ I1|
l(I2)− l(I1)

Finally, we note that the rightmost ratio is always
strictly positive.

3.4. Complexity of subgradient computation

Although we have proven that slack and margin rescal-
ing yield extensions to the underlying discrete loss un-
der fairly general conditions, their key shortcoming is
in the complexity of the computation of subgradients
for submodular losses. The subgradient computation
for slack and margin rescaling requires the compu-
tation of arg maxỹ ∆(y, ỹ)(1 + h(x, ỹ) − h(x, y)) and
arg maxỹ ∆(y, ỹ) + h(x, ỹ), respectively. Both of these
functions require the maximization of the loss, which
corresponds to supermodular minimization in the case
of a submodular loss. This computation is NP-hard,
and such loss functions are not feasible with these ex-
isting methods in practice. Furthermore, approximate
inference, e.g. based on (Nemhauser et al., 1978), leads
to poor convergence when used to train a structured
output SVM resulting in a high error rate (Finley &
Joachims, 2008). We therefore introduce the Lovász
hinge as an alternative operator to construct feasible
convex surrogates for submodular losses.

4. Lovász Hinge

We now construct a convex surrogate for submodu-
lar losses. This surrogate is based on a fundamental
result by Lovász relating submodular sets and piece-
wise linear convex functions. The Lovász extension
allows the extension of a set-function defined on the
vertices of the hypercube {0, 1}p to the full hypercube
[0, 1]p (Lovász, 1983):

Definition 4. The Lovász extension l̂ of a set function
l, l̂ : [0, 1]p → R, is defined as follows: for sπ ∈ [0, 1]p

with decreasing components sπ1 ≥ sπ2 ≥ · · · ≥ sπp

ordered by a permutation π = (π1, π2, · · · , πp), l̂(s) is
defined as:

l̂(s) =

p∑
j=1

sπj (l ({π1, · · · , πj})− l ({π1, · · · , πj−1}))

(24)

It has been proven that a set-function l is submodu-
lar iff its Lovász extension is convex (Lovász, 1983).
Based on this definition, we propose our novel convex
surrogate for submodular functions:

Definition 5. The Lovász hinge, L, is defined as the
unique operator such that, for l submodular

L∆(y, g(x)) := (25)max
π

p∑
j=1

sπj (l ({π1, · · · , πj})− l ({π1, · · · , πj−1}))


+

where (·)+ = max(·, 0), π is a permutation,

sπj = 1− gπj (x)yπj , (26)

and gπj (x) is the πjth dimension of g(x).

If l is increasing, when s
πj

i becomes negative we may
threshold the corresponding components to zero as in
standard hinge loss. By thresholding negative s

πj

i to
zero, we have that the Lovász hinge coincides exactly
with slack rescaling in the special case of a modu-
lar loss, and coincides with an SVM in the case of
Hamming loss. In the case that l is non-increasing,
the thresholding strategy no longer coincides with the
Lovász extension over the unit cube, and will not yield
an extension. We therefore will not apply threshold-
ing in the non-increasing case, but we still have that
L∆ ≥ 0 and is convex.1

As the computation of a cutting plane or loss gradient
is precisely the same procedure as computing a value
of the Lovász extension, we have the same computa-
tional complexity, which is O(p log p) to sort the p co-
efficients, followed by O(p) oracle accesses to the loss
function (Lovász, 1983). This is precisely an applica-
tion of the greedy algorithm to optimize a linear pro-
gram over the submodular polytope (Edmonds, 1971).
In our implementation, we have employed a one-slack
cutting-plane optimization with `2 regularization anal-
ogous to (Joachims et al., 2009). We observe empirical
convergence of the primal-dual gap at a rate compara-
ble to that of a structured output SVM (Fig. 3).

4.1. Visualization of convex surrogates

For visualization of the loss surfaces, in this section we
consider a simple binary classification problem with
two elements with a non-modular loss function l:

X := Rd×2 Y := {−1,+1}2

1Source code is available for download at https://
sites.google.com/site/jiaqianyu08/lovaszhinge.

https://sites.google.com/site/jiaqianyu08/lovaszhinge
https://sites.google.com/site/jiaqianyu08/lovaszhinge
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Figure 1. We introduce a novel convex surrogate for submodular losses, the Lovász hinge. We show here the Lovász
hinge, margin and slack rescaling surfaces with different loss functions l from different views; the x and y axes represent
the value of s1i and s2i in Eq. (26); the z axis represents the value of the convex surrogate; the solid red dots represent the
values of l at the vertices of the unit hypercube. The convex surrogate strategies yield extensions of the discrete loss.

Then with different values for l(∅), l({1}), l({2}) and
l({1, 2}), we can have different modularity or mono-
tonicity properties of the function l which then de-
fines ∆. We illustrate the Lovász hinge, slack and
margin rescaling for the following cases: (i) sub-
modular increasing: l(∅) = 0, l({1}) = l({2}) =
1, l({1, 2}) = 1.2, (ii) submodular non-increasing:
l(∅) = 0, l({1}) = l({2}) = 1, l({1, 2}) = 0.4, and
(iii) supermodular increasing: l(∅) = 0, l({1}) =
l({2}) = 1, l({1, 2}) = 2.8.

In Fig. 1, the x axis represents the value of s1i , the y
axis represents the value of s2i in Eq (26), and the z
axis is the convex loss function given by Equation (12),
Equation (13), and Definition 5, respectively. We plot

the values of l as solid dots at the vertices of the hy-
percube. We observe that all the solid dots touch the
surfaces, which empirically validates that the surro-
gates are extensions of the discrete loss. Here we set
l as symmetric functions, while the extensions can be
also validated for asymmetric increasing set functions.

5. Experimental Results

In this section, we consider a task in which multiple la-
bels need to be predicted simultaneously and for which
a submodular loss over labels is to be minimized. If a
subsequent prediction task focuses on detecting a din-
ner scene, the initial multi-label prediction should em-
phasize that all labels e.g. people, dinning tables, forks,
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(a) (b) (c)

Figure 2. Examples from the Microsoft COCO dataset.
Fig. 2(a) contains all the categories of interest (cf. Sec-
tion 5); Fig. 2(b) contains dining table, fork and cup;
Fig. 2(c) is not a dining scene but contains people.

and knifes must be correct within a given image. This
contrasts with a traditional multi-label prediction task
in which a loss function decomposes over the individ-
ual predictions. The misprediction of a single label,
e.g. person, will preclude the chance to predict cor-
rectly the combination of all labels. This corresponds
exactly to the property of diminishing returns of a sub-
modular function. Fig. 2 shows example images from
the Microsoft COCO dataset (Lin et al., 2014).

While using classic modular losses such as 0-1 loss, the
classifier is trained to minimize the sum of incorrect
predictions, so the complex interaction between label
mispredictions is not considered. In this work, we use
a new submodular loss function and apply the Lovász
hinge to enable efficient convex risk minimization.

Microsoft COCO The Microsoft COCO
dataset (Lin et al., 2014) is an image recogni-
tion, segmentation, and captioning dataset. It
contains more than 70 categories, more than 300,000
images and around 5 captions per image. We have
used frequent itemset mining (Uno et al., 2004) to
determine the most common combination of categories
in an image. For sets of size 6, these are: person, cup,
fork, knife, chair and dining table.

For the experiments, we repeatedly sample sets of im-
ages containing k (k = 0, 1, 2, · · · , 6) categories. The
training/validation set and testing set have the same
distribution. For a single iteration, we sample 1050
images for the training/validation set including 150
images each for sets containing k (k = 0, 1, 2, · · · , 6) of
the target labels. More than 12,000 images from the
entire dataset are sampled at least once as we repeat
the experiments to compute statistical significance.

We use Overfeat (Sermanet et al., 2014) to extract
image features following the procedure of (Razavian
et al., 2014). Overfeat has been trained for the im-
age classification task on ImageNet ILSVRC 2013, and
has achieved good performance on a range of image
classification problems including the Microsoft COCO

dataset.

Submodular Losses In this task, we first define a
submodular loss function as follows:

∆(y, ỹ) := 1− exp (−α|I|) (27)

where I is the set of mispredicted labels. 1−exp (−|I|),
is a concave function depending only on the size of I,
as a consequence it is a submodular function. The
empirical results with this submodular loss are shown
in Table 1 and Fig. 3(a).

We have carried out experiments with another sub-
modular loss function:

∆(y, ỹ) := 1− exp (−|I|) + 〈β, (1− y � ỹ)/2〉 (28)

where � is the Hadamard product. The final sum-
mand is a modular function that penalizes labels pro-
portionate to the coefficient vector β > 0. In the
experiments, we order the category labels as person,
dining table, chair, cup, fork, and knife. We set
β = [1 0.8 0.7 0.6 0.5 0.4]T according to the size of
the object. The results with this submodular loss are
shown in Table 2 and Fig. 3(b). We also train and test
with the 0-1 loss, which is equivalent to an SVM.

We compare different losses employed during train-
ing and during testing. msub and ssub denote the use
of the submodular loss with margin and slack rescal-
ing, respectively. As this optimization is NP-hard, we
have employed the simple application of the greedy ap-
proach as is common in (non-monotone) submodular
maximization (e.g. (Krause & Golovin, 2014)).

Results We repeated each experiment 10 times with
random sampling in order to obtain an estimate of the
average performance. Table 1 and Table 2 show the
cross comparison of average loss values (with standard
error) using different loss functions during training and
during testing for the COCO dataset. As predicted by
theory, training with the same loss function as used
during testing yields the best results. Slack and mar-
gin rescaling fail due to the necessity of approximate
inference, which results in a poor discriminant func-
tion. By contrast, the Lovász hinge yields the best per-
formance when the submodular loss is used to evaluate
the test predictions. We do not expect that optimizing
the submodular loss should give the best performance
when the 0-1 loss is used to evaluate the test predic-
tions. Indeed in this case, the Lovász hinge trained on
0-1 loss corresponds with the best performing system.

Fig. 3(a) and Fig. 3(b) show for the two experiments
the primal-dual gap as a function of the number of
cutting-plane iterations using the Lovász hinge with
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submodular loss, as well as for a SVM (labeled 0-
1), and margin and slack rescaling (labeled msub and
ssub). This demonstrates that the empirical conver-
gence of the Lovász hinge is at a rate comparable to
an SVM, and is feasible to optimize in practice for
real-world problems.

testing loss
lsub 0-1

tr
a
in

in
g

lo
ss lsub 0.7908± 0.0113 1.3035±0.0182

0-1 0.7941±0.0102 1.2863± 0.0175
ssub 0.8739±0.0133 1.4397±0.0219
msub 0.8722±0.0115 1.4365±0.0206

Table 1. Comparison of average loss values (with standard
error) using different loss functions during training and
during testing. lsub is as in Equation (27). Training with
the same loss function as used during testing yields the
best results. Slack and margin rescaling fail due to the
necessity of approximate inference, which results in a poor
discriminant function. The Lovász hinge trained on the ap-
propriate loss yields the best performance in both cases.

testing loss
lsub 0-1

tr
a
in

in
g

lo
ss lsub 1.3767± 0.0143 1.3003±0.0176

0-1 1.3813±0.0135 1.2975± 0.0152
ssub 1.4711±0.0153 1.3832±0.0156
msub 1.4811±0.0117 1.4016±0.0136

Table 2. The cross comparison of average loss values (with
standard error) using different loss functions during train-
ing and during testing. lsub is as in Equation (28) (cf.
comments for Table. 1).

6. Discussion & Conclusions

In this work, we have introduced a novel convex sur-
rogate loss function, the Lovász hinge, which makes
tractable for the first time learning with submodu-
lar loss functions. In contrast to margin and slack
rescaling, computation of the gradient or cutting plane
can be achieved in O(p log p) time. Margin and slack
rescaling are NP-hard to optimize in this case.

We have proven necessary and sufficient conditions for
margin and slack rescaling to yield tight convex surro-
gates to a discrete loss function. These conditions are
that the discrete loss be a (properly scaled) increasing
function. However, it may be of interest to consider
non-increasing functions in some domains. The Lovász
hinge can be applied also to non-increasing functions.

We have demonstrated the correctness and utility of
the Lovász hinge on a natural image categorization
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Figure 3. The primal-dual gap as a function of the num-
ber of cutting-plane iterations using the Lovász hinge with
submodular loss, a SVM (labeled 0-1), and margin and
slack rescaling with greedy inference (labeled msub and
ssub). Fig. 3(a) for the experiment using Equation (27)
and Fig. 3(b) for Equation (28). This demonstrates that
empirical convergence of the Lovász hinge is at a rate com-
parable to an SVM, and is feasible to optimize in practice
for real-world problems.

task. We have shown that training by minimization of
the Lovász hinge applied to multiple submodular loss
functions results in a lower empirical test error than
existing methods, as one would expect from a correctly
defined convex surrogate. Slack and margin rescaling
both fail in practice as approximate inference does not
yield a good approximation of the discriminant func-
tion. The causes of this have been studied in a dif-
ferent context in (Finley & Joachims, 2008), but are
effectively due to (i) repeated approximate inference
compounding errors, and (ii) erroneous early termina-
tion due to underestimation of the primal objective.
We empirically observe that the Lovász hinge delivers
much better performance by contrast, and makes no
approximations in the subgradient computation. Ex-
act inference should yield a good predictor for slack
and margin rescaling, but sub-exponential optimiza-
tion only exists if P=NP. Therefore, the Lovász hinge
is the only polynomial time option in the literature for
learning with such losses.

The introduction of this novel strategy for constructing
convex surrogate loss functions for submodular losses
points to many interesting areas for future research.
Among them are then definition and characterization
of useful loss functions in specific application areas.
Furthermore, theoretical convergence results for a cut-
ting plane optimization strategy are of interest.
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