ESPRIT Method Enhancement for Real-time Wind Turbine Fault Recognition

Saad Chakkor 1, * Mostafa Baghouri 1 Abderrahmane Hajraoui 1
* Auteur correspondant
1 Communication and Detection Systems Laboratory
Communication and Detection Systems Laboratory
Abstract : Early fault diagnosis plays a very important role in the modern energy production systems. The wind turbine machine requires a regular maintenance to guarantee an acceptable lifetime and to minimize production loss. In order to implement a fast, proactive condition monitoring, ESPRIT-TLS method seems the correct choice due to its robustness in improving the frequency and amplitude detection. Nevertheless, it has a very complex computation to implement in real time. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method were employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current. The proposed algorithm has been evaluated by computer simulations with many fault scenarios. Study results demonstrate the performance of Fast-ESPRIT allowing fast and high resolution harmonics identification with minimum computation time and less memory cost.
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01152449
Contributeur : Saad Chakkor <>
Soumis le : lundi 18 mai 2015 - 14:24:50
Dernière modification le : vendredi 26 juin 2015 - 19:55:04
Document(s) archivé(s) le : mardi 15 septembre 2015 - 01:10:47

Fichier

7018-16726-1-PB.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

  • HAL Id : hal-01152449, version 1

Citation

Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui. ESPRIT Method Enhancement for Real-time Wind Turbine Fault Recognition. International Journal of Power Electronics and Drive System (IJPEDS) , IAES, 2015, pp.552-567. 〈hal-01152449〉

Partager

Métriques

Consultations de la notice

74

Téléchargements de fichiers

106