ESPRIT Method Enhancement for Real-time Wind Turbine Fault Recognition

Saad Chakkor 1, * Mostafa Baghouri 1 Abderrahmane Hajraoui 1
* Auteur correspondant
1 Communication and Detection Systems Laboratory
Communication and Detection Systems Laboratory
Abstract : Early fault diagnosis plays a very important role in the modern energy production systems. The wind turbine machine requires a regular maintenance to guarantee an acceptable lifetime and to minimize production loss. In order to implement a fast, proactive condition monitoring, ESPRIT-TLS method seems the correct choice due to its robustness in improving the frequency and amplitude detection. Nevertheless, it has a very complex computation to implement in real time. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method were employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current. The proposed algorithm has been evaluated by computer simulations with many fault scenarios. Study results demonstrate the performance of Fast-ESPRIT allowing fast and high resolution harmonics identification with minimum computation time and less memory cost.
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger
Contributeur : Saad Chakkor <>
Soumis le : lundi 18 mai 2015 - 14:24:50
Dernière modification le : jeudi 2 août 2018 - 16:02:01
Document(s) archivé(s) le : mardi 15 septembre 2015 - 01:10:47


Fichiers éditeurs autorisés sur une archive ouverte


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License


  • HAL Id : hal-01152449, version 1


Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui. ESPRIT Method Enhancement for Real-time Wind Turbine Fault Recognition. International Journal of Power Electronics and Drive System (IJPEDS) , IAES, 2015, pp.552-567. 〈hal-01152449〉



Consultations de la notice


Téléchargements de fichiers