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ABSTRACT

In this work, we propose a stochastic model for curvilinear
structure reconstruction using morphological pro�les of path
opening operator. We apply the support vector machine clas-
si�er to obtain initial probabilities to belong to line network
for each pixel. Then, we formulate a stochastic optimization
problem that detects line segments corresponding to the la-
tent curvilinear structure in a scene. Experimental results on
DNA �lament and remote sensing images validate the effec-
tiveness of the proposed algorithm when compared to other
recent methods.

Index Terms— curvilinear structure modeling, morpho-
logical pro�les, object detection, point process

1. INTRODUCTION

Understanding of the latent curvilinear structure has been a
challenging problem in computer vision. In biomedical imag-
ing, line detection algorithms have been proposed to analyze
complex linear shape of DNA �laments [1] and to diagnose
vascular diseases [2]. Road extraction algorithms to interpret
geographical information have been studied for remote sens-
ing applications [3].

Template matching algorithms compute linearity scores of
the pixels by the inner-product between given image data and
prede�ned line shapes. For example, steerable �lters of elon-
gated Gaussian kernel ef�ciently highlight rotated gradient
magnitudes which correspond to curvilinear structure [1, 4].
Morphological �ltering [3, 5] is popularly employed to detect
hidden linear structure with simple shape prior, i.e., adjacency
graph to de�ne geography. T̈uretkenet al. [6] formulated an
optimization problem with integer programming to connect
scattered control points belonging to line networks.

While the automation of the cuvilinear structure extrac-
tion tasks has become a critical issue due to the rapid growth
of imaging systems, the above mentioned algorithms have fol-
lowing drawbacks: 1) A threshold value is needed to �nalize
binary classi�cation of the curvilinear structure in both tem-
plate matching and morphological operator; and 2) Choosing
initial conditions and parameter learning are time consuming
if an algorithm seeks for a high dimensional solution space.

In [7], stochastic inference of the curvilinear structure has
been studied by point process with shape prior constraints.
The authors assumed that the entire line network can be dis-
joint into small line segments. Although this assumption al-
lows to apply the algorithm in various types of dataset, in
some cases, straight line segments are inef�cient to represent
intricate line networks. We extend the probabilistic model of
the curvilinear structure [7] by employing a rich curvilinear
feature descriptor. We perform a morphological operation [8]
to analyze the local structure. It is inspired by Valeroet al.'s
work [3]. While Valeroet al. proposed dynamic threshold-
ing scheme based on the statistics of morphological pro�les,
we determine the criteria of being curvilinear structure using a
supervised learning algorithm. In addition, the line network is
reconstructed as an unordered set of line segments to provide
vectorized information instead of pixelwise classi�cation.

We want to develop a curvilinear feature descriptor and a
fully automatic curvilinear structure extraction algorithm. For
this purpose, we construct the feature descriptor which con-
sists of pixel intensity and morphological �ltering responses
with different length parameters [3]. We also study the op-
timal dimensionality of the feature vector and the minimum
length parameter for the morphological pro�les. A support
vector machine (SVM) classi�er [9] is applied to obtain pix-
elwise posterior probabilities to belong to the line network.
Finally, we minimize the energy on con�guration space of
line segments to reconstruct salient curvilinear structure in the
scene. We validate the proposed algorithm by comparing its
performances on DNA �lament and remote sensing images
with the state-of-the-art approaches.

The rest of this paper is organized as follows: Section 2 re-
views path opening operator and morphological pro�les. Sec-
tion 3 proposes the stochastic curvilinear structure modeling
with the proposed feature descriptor. Section 4 provides ex-
perimental results. Finally, we conclude in Section 5.

2. CURVILINEAR FEATURE DESCRIPTOR WITH
MORPHOLOGICAL PROFILES

This section reviews the preliminary techniques of path open-
ing operator [8] and morphological pro�les [3, 10] to de-
scribe curvilinear features, on which the proposed algorithm
is based.



(a) DNA (b) Truth (c) L = 50 (d) L = 60 (e) L =100 (f) L =150

(g) ROAD (h) Truth (i) L = 50 (j) L =100 (k) L =130 (l) L =150

Fig. 1. Left to right : Input image, ground truth, and path
opening [8] results with different length parameterL . First
and second rows correspond to results on DNA and ROAD,
respectively. The path opening operator removes small bright
objects which are not belonging to a valid path.

2.1. Path opening

Given a binary imageB 2 R2, a morpho-
logical operator seeks for similar structural
elements on the adjacency graph (�gure on
the left shows an example of the adjacency
graph and a valid path on the graph). Let

� (u) = f v 2 B ; u 7! vg be the structuring function which
de�nes a path for a given lengthL , whereu 7! v denotes a
directed edge going from nodeu to v. Then, a valid� -path of
lengthL is represented asL-tupleu = ( u1; : : : ; uL ) that sat-
is�es uk+1 2 � (uk ) for k = 1 ; : : : ; L � 1. Thepath opening
operator is de�ned as the union of all valid� -paths ofL in the
image.

To generalize the binary path opening operator to grey
level image, we decompose in input grey level image into bi-
nary images with decreasing order of threshold values. For
each decomposed binary image, the morphological operator
looks for the longest path� max for all pixels. Finally, the
threshold value which corresponds to in�mum of the longest
path � max among decomposed binary images is assigned as
the outcome of the morphological �ltering.

2.2. Curvilinear feature descriptor

The path opening operator highlights structural similarity of
pixels according to the adjacency graph that encodes a curvi-
linear shape prior. On the other hand, the operator removes
bright pixels if such pixels belong to a path shorter than the
length parameter (� max < L ). Let I (i ) be an intensity value
of the pixeli andM (i ; L ) be the path opening result ati with
length parameterL . In this paper, we employ a feature de-
scriptor f i which combines the pixel intensity and the mor-
phological pro�les with increasing order of length parameter
L . That is

f i =
�
I (i ); M (i ; L 1); : : : ; M (i ; L # )

� |
:

We assume that pixels belonging to the curvilinear structure
are brighter than their neighborhoods. Otherwise, we invert
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Fig. 2. Precision-and-recall curves for two datasets (DNA
and ROAD) by controlling the dimensionality of the feature
descriptor ((a) and (c)) and the minimum length parameters
L � and increment values� ((b) and (d)).

the intensity level of the input image before applying the mor-
phological operator. Comparing to [3], our feature vector
needs half size of their morphological pro�les; thus, it yields
faster computation.

Fig. 1 compares path opening results with different length
parameters. With a larger value of the length parameterL ,
we can retrieve longer chain of line structure and remove un-
expected noise. IfL is too large, the curvilinear structure is
considered as a noisy component and then it begins to disap-
pear (L = 150 for DNA image). Therefore, a suitable length
parameter should be taken into account when we build an ef�-
cient feature descriptor. We observe the effect of the parame-
ter � = ( L � ; � ; #) on line detection performance (precision-
and-recall curve) for all test images, whereL � , � , and# de-
note the minimum length, increment, and the number of mor-
phological operations, respectively. Fig. 2 (a) and (c) compare
the performances by increasing the dimensionality of the fea-
ture descriptor, for DNA and ROAD datasets, respectively.
Fig. 2 (b) and (d) show the effects ofL � and � . We see
that the best performance is reached when the feature vector
includes promising path opening results for a given dataset.
We apply path opening operator on the DNA images with
� 1 = (50 ; 10; 8) and ROAD images with� 2 = (100; 30; 8),
respectively. Please recall Fig. 1 to see the correspondence
between our choice of� and visual results. Also, the values
of the feature descriptor are normalized to a range of[0; 1].

3. STOCHASTIC IMAGE MODEL FOR
CURVILINEAR STRUCTURE RECONSTRUCTION

3.1. Support Vector Machines for initial estimation

We employ SVM [9] for an initial classi�cation of the linear
structure. LetD = f (f i ; yi )gK

i =1 be a training set, wheref i

denotes our feature descriptor andyi 2 f� 1; 1g is a corre-
sponding label of the data point. In practice, we randomly
select50 training data points for positive and negative sam-
ples, respectively. To obtain a linear hyperplane, we solve
following quadratic programming problem:

min
b;w;�

1
2

kwk2
2 + C

KX

i =1

� i (1)

s:t : yi (w| f i + b) � 1 � � i ; � � 0; i = 1 ; : : : ; K



(a) Input (b) Truth (c) SVM (pi ) (d) SVM (yi ) (e) Proposed

Fig. 3. For the input image (a), we compare the manually
labeled result (b), outcome of the SVM classi�er as the pos-
terior probabilities (c) and binary classi�cation (d). The pro-
posed stochastic model (e) re�nes the weak points of the SVM
by sampling line segments with geometry prior constraints.

wherew is support vector,K is the total number of training
data,b represents the bias of the hyperplane, and� denotes
slack variables for regression.C controls the importance of
such regression term.

The distance of the data point from the hyperplane can be
considered as a probability to belong to curvilinear structure.
In [11], a posterior probability is approximated by a sigmoid
function:

pi = Pr( yi = 1 jf i ) =
1

1 + exp( �g i + � )
; (2)

wheregi = w| f i + bis the decision function of the SVM clas-
si�er, and the labelyi = sign(gi ). The parameters for regu-
larization (� and� ) are estimated by maximum likelihood.

3.2. Stochastic modeling of curvilinear structure

The outcomes of the SVM show holes and jitters due to the
misclassi�cation. The linear SVM fails to classify the curvi-
linear structure if the training dataset is badly chosen or test
data points lie within the margin (see Fig. 3).

To make up for such drawbacks, we propose a stochas-
tic model which employs the curvilinear feature of morpho-
logical pro�les (Sec. 2.2) and the simple spatial interaction
term. We recursively sample short line segments correspond-
ing to the latent line network, where each line segment is
expressed in a tuple of image coordinate, length, and orien-
tation: ` i = ( i; l i ; � i ). Then, we design the data likelihood
energy to make line objects agree with the image data, and
the shape prior constraints to prevent the congestion of line
segments. The data likelihood is de�ned as:

Edata (` i ) =
X

j 2 ` i

kf j � �f k2
2 � �

X

j 2 ` i

pj ; (3)

where�f =
P

k;y k =1 pk f k
P

k;y k =1 pk
is the centroid of the positive labeled

data points, and� controls the relative importance of two
terms. More speci�cally, the �rst term measures the similar-
ity between the SVM classi�cation results and feature vectors
belonging to the line segment` i . The second term regulates
the sampling space depending on the initial estimation.

(a) (b) (c) (d) (e)

Fig. 4. Spatial interactions of the line segments are illustrated
in the increasing order ofEprior . Our system prefers to choose
a smooth curvature and connected line con�guration.

We propose the shape prior constraints based on intersec-
tion and union of the augmented line segmentsr (`), and the
end-to-end distanced(`m ; `n ), given by

Eprior (`m ; `n ) =

(
d(`m ; `n ) + j r ( ` m ) \ r ( ` n ) j

j r ( ` m ) [ r ( ` n ) j if 9`m � `n ;
� otherwise;

(4)
wherejr (�)j counts the number of pixels falling in the area.
`m � `n denotes symmetric relation between two line seg-
ments if their center distance is closer thanl m + l n

2 . A singular
line segment will be penalized by a constant value� for the
absence of neighborhood. Fig. 4 shows examples of spatial
interactions of line segments.

Algorithm 1
1: Create curvilinear feature descriptorsf with morphological pro-

�les of the path opening
2: Train SVM classi�er to obtain the initial posterior probability

belonging to line network for each pixel:

pi = Pr( yi = 1 jf i )

3: Minimize the following energy function via RJMCMC:

argmin
`

X

i

Edata (` i ) +
X

i � j

Eprior (` i ; ` j ) (5)

Output : ^̀ = f `1 ; : : : ; ` N g line con�guration corresponding to
the latent line network

Algorithm 1 summarizes the procedure to reconstruct line
network using the proposed stochastic curvilinear structure
model. We minimize the given energy function (5) over the
con�guration space via Reversible jump Markov chain Monte
Carlo (RJMCMC) sampler [12, 13]. We refer the reader to [7]
for implementation details of the RJMCMC optimization.

4. EXPERIMENTAL RESULTS

We test the proposed algorithm on DNA �lament images1 and
road networks in remote sensing images2. To evaluate its per-
formances, we compare the proposed method with Valeroet
al.'s algorithm [3], which proposes morphological pro�les to

1https://www.biochem.wisc.edu/faculty/inman/empics/dna-prot.htm
2http://cvlab.ep�.ch/data/delin



Table 1. Quantitative evaluation of Valeroet al.'s algorithm [3], Jeonget al.'s algorithm [7], and the proposed algorithm.
Boldfaced numbers denote the best performance in each test.

Recall Precision Accuracy
[3] [7] Proposed [3] [7] Proposed [3] [7] Proposed

DNA1 49.11 62.22 71.17 88.08 67.55 73.00 97.14 97.96 98.43
DNA2 63.47 73.81 77.47 85.12 84.78 84.22 97.53 98.49 98.23
DNA3 56.42 66.13 71.29 89.94 57.83 72.25 97.36 97.62 98.12
ROAD1 61.29 - 88.52 90.42 - 88.13 94.62 - 98.12
ROAD2 43.50 - 81.81 88.87 - 85.13 90.97 - 97.59
ROAD3 48.69 - 73.49 94.99 - 85.70 93.20 - 97.07

(a) Input (b) Truth (c) [3] (d) [7] (e) Proposed

Fig. 5. Visual comparisons of the proposed algorithm with
manually labeled ground truth, Valeroet al.'s algorithm [3],
and Jeonget al.'s algorithm [7] for DNA �lament images. Top
to bottom: DNA1, DNA2, and DNA3.

detect road networks, and Jeonget al.'s model [7], which em-
ploys rotatable gradient information as data term.

In this work, we use LibSVM [14] to solve eq. (1), and
C is �xed to 0:1 to control the relative importance between
two terms of eq. (1). For parameters of the energy function,�
is set to255and� is upon the dataset type:2500for remote
sensing and250 for DNA �lament images. The area of the
augmented line segment is de�ned asr (` i ) = f x : kx � i k <
l i
2 g (see Fig. 4 (c)).

For visual comparisons, Fig. 5 and Fig. 6 show the line
detection results of DNA �lament and road network, respec-
tively. Jeonget al.'s algorithm [7] cannot detect road network,
where the gradient magnitude inside of the road is �at. It
means that the gradient information is insuf�cient to describe
curvilinear structure in the case of remote sensing applica-
tions. In addition, due to the fussy prior constraints, the out-
come of [7] makes discontinuities on the line. The dynamic
thresholding algorithm using morphological pro�les shows
misclassi�cation around impurities, e.g., tree, car, and noise.
The proposed algorithm well visualizes structural information
without redundancies.

We also provide the quantitative evaluation with the fol-
lowing measurements:

Recall = T P
T P + F N ;

Precision = T P
T P + F P ;

Accuracy = T P + T N
T P + T N + F P + F N ;

(a) Input (b) Truth (c) [3] (d) Proposed

Fig. 6. Visual comparisons of the proposed algorithm with
manually labeled ground truth, and Valeroet al.'s algo-
rithm [3] for remote sensing images. Top to bottom: ROAD1,
ROAD2, and ROAD3.

whereTP, TN , FP , andFN denote the true positive, true
negative, false positive, and false negative rates, respectively.
Table 1 summarizes the quantitative results. The proposed
algorithm shows the highest recall and accuracy performances
in general.

5. CONCLUSIONS

We proposed a new curvilinear structure reconstruction algo-
rithm which exploits morphological pro�les of path opening
operator. We studied the parameters of the curvilinear feature
descriptor to �nd the optimal dimensionality for our system.
We performed a weakly supervised method to estimate the
posterior probabilities of being a line network for each pixel.
To correct the uncertainty of pixelwise classi�cation, we for-
mulated an energy optimization problem that maximizes in-
ner class similarities with the simple geometric shape con-
straints. We demonstrated experimental results on DNA �l-
ament and road network images to compare performances of
proposed algorithm with other methods.
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