Modeling Leucine’s Metabolic Pathway and Knockout Prediction Improving the Production of Surfactin, a Biosurfactant from Bacillus Subtilis

Abstract : A Bacillus subtilis mutant strain overexpressing surfactin biosynthetic genes was previously constructed. In order to further increase the production of this biosurfactant, our hypothesis is that the surfactin precursors, especially leucine, must be overproduced. We present a three step approach for leucine overproduction directed by methods from computational biology. Firstly, we develop a new algorithm for gene knockout prediction based on abstract interpretation, which applies to a recent modeling language for reaction networks with partial kinetic information. Secondly, we model the leucine metabolic pathway as a reaction network in this language, and apply the knockout prediction algorithm with the target of leucine overproduction. Out of the 21 reactions corresponding to potential gene knockouts, the prediction algorithm selects 12 reactions. Six knockouts were introduced in B. subtilis 168 derivatives strains to verify their effects on surfactin production. For all generated mutants, the specific surfactin production is increased from 1.6 to 20.9 fold during the exponential growth phase, depending on the medium composition. These results show the effectiveness of the knockout prediction approach based on formal models for metabolic reaction networks with partial kinetic information, and confirms our hypothesis that precursors supply is one of the main parameter to optimize surfactin overproduction.
Type de document :
Article dans une revue
Biotechnology Journal, Wiley-VCH Verlag, 2015, 10 (8), pp.1216-34
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01153704
Contributeur : Inria Links <>
Soumis le : jeudi 9 juillet 2015 - 11:16:04
Dernière modification le : vendredi 13 avril 2018 - 01:24:53
Document(s) archivé(s) le : mercredi 26 avril 2017 - 00:51:51

Fichier

1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01153704, version 1

Collections

Citation

François Coutte, Joachim Niehren, Debarun Dhali, Mathias John, Cristian Versari, et al.. Modeling Leucine’s Metabolic Pathway and Knockout Prediction Improving the Production of Surfactin, a Biosurfactant from Bacillus Subtilis. Biotechnology Journal, Wiley-VCH Verlag, 2015, 10 (8), pp.1216-34. 〈hal-01153704〉

Partager

Métriques

Consultations de la notice

510

Téléchargements de fichiers

300