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Abstract. A Bacillus subtilis mutant strain overexpressing surfactin
biosynthetic genes was previously constructed. In order to further in-
crease the production of this biosurfactant, our hypothesis is that the sur-
factin precursors, especially leucine, must be overproduced. We present
a three step approach for leucine overproduction directed by methods
from computational biology. Firstly, we develop a new algorithm for
gene knockout prediction based on abstract interpretation, which ap-
plies to a recent modeling language for reaction networks with partial
kinetic information. Secondly, we model the leucine metabolic pathway
as a reaction network in this language, and apply the knockout predic-
tion algorithm with the target of leucine overproduction. Out of the 21
reactions corresponding to potential gene knockouts, the prediction al-
gorithm selects 12 reactions. Six knockouts were introduced in B. subtilis
168 derivatives strains to verify their effects on surfactin production. For
all generated mutants, the specific surfactin production is increased from
1.6 to 20.9 fold during the exponential growth phase, depending on the
medium composition. These results show the effectiveness of the knock-
out prediction approach based on formal models for metabolic reaction
networks with partial kinetic information, and confirms our hypothesis
that precursors supply is one of the main parameter to optimize surfactin
overproduction.
Keywords : Abstract interpretation, Bacillus subtilis, Modeling lan-
guage, Knockout prediction, Surfactin.

1 Introduction

In this paper we develop and implement genetic engineering methods with the
objective to overproduce surfactin by B. subtilis. Surfactin is one of the most
powerful biosurfactant known and it displays several biological activities of in-
terest (antiviral, antimycoplasmic, elicitor, etc) [19]. This promising molecule
? These two authors contributed equally to this work.



Figure 1: Schematic repre-
sentation of surfactin [20]

is assembled by a non ribosomal mechanism involving multifunctional proteins
called Non Ribosomal Peptide Synthesis (NRPS). The substrates of theses en-
zymes are amino acids or fatty acids residues present in the cytoplasm of the
cell. The surfactin is composed of a ring of seven amino acid residues connected
to a β-hydroxylated fatty acid chain of different length and isomery [19, 20]. The
peptide moiety contains four leucines (Figure 1). Genetic engineering of B. sub-
tilis have already been made in order to increase the lipopeptide production.
In previous work [8], the overproduction of surfactin was obtained by replacing
the native promoter of the surfactin operon (srfA) by a constitutive one and
disrupted the plipastatin operon (ppsA) to save the precursor availability. The
same approach was recently developed for the mycosubtilin production [2]. Sun
et al. [40] replaced the srfA promoter by Pspac. Liu et al. [26] explore feeding
strategies of amino acid to modify the peptide moiety of the lipopeptide. How-
ever, there is no work directly related to the orientation of the metabolism to
increase the supply precursor without modifying the extracellular medium. The
hypothesis of the present work is that any further increase of surfactin produc-
tion can only be achieved by increasing the production of these precursors, and
in particular leucine.

The branched chain amino acids, i.e. leucine, valine, and isoleucine are pro-
duced by a metabolic pathway with complex regulatory mechanisms. The ques-
tion is how to adapt this pathway of B. subtilis by gene knockouts, in order
to overproduce leucine. Our hope is that one can predict such gene knockouts
from models of the pathway by methods from computational biology, in order



to narrow down the testing duties in wet lab. Model-based knockout prediction
for metabolic pathways, however, requires to overcome a number of difficulties.

Flux balance analysis is the most prominent approach for model-based pre-
diction [1, 9, 13]. The idea is to infer flux balance equations from the models
[34], and to analyze the space of their solutions. Flux balance equations are linear
equations with variables for fluxes, i.e., real numbers that design the speed of a
reaction in a steady state. The problem is that the number of variables exceeds
the number of equations in the system by far, so that the spaces of solutions
are huge. Therefore, particular solutions must be filtered, typically by imposing
optimization criteria in various manners. One can try to optimize the biomass
[24, 35, 6], that is the production of metabolites that are needed for an optimal
growth of the cells. Or else, one may apply metabolic flux analysis [45] in order
to measure experimentally the sizes of a sufficient number of metabolic flows.
However, the specific growth conditions used in the experiments strictly limit the
applicability of the results. The advantage of flux balance analysis is that it can
be applied to models of reaction networks without any kinetic information. But
this is also problematic, since flux balance equations cannot express any kinetic
information. Therefore, they cannot distinguish the various kinds of modifiers
such as enzymes and inhibitors, that is positive from negative regulatory effects,
which are available in more recent models of metabolic networks [15]. On the
other hand, these models lack any clear formal semantics which makes them
useless for formal reasoning.

Constraint-based approaches such as [35, 6] derive boolean constraints from
reaction networks, which mainly state the dependencies of where a reaction is on
or off from the presence of its reactants or modifiers. Such boolean constraints
can be seen as an abstraction of the steady state equations used by flux balance
analysis. But the underconstraindness problem remains as with flux balance
analysis, so that one needs to impose further restrictions on the solution space.
This can be done for instance by adding negative constraints stating that the re-
action is off if one of its inhibitors is present. Note that such negative constraints
are often too strong, since an inhibitor often slows down a reaction in a steady
state, but does not shut it down totally at least not in average.

Alternatively, pathway analysis techniques may help to discover genetically
independent pathways [33, 17]. Among these, elementary mode analysis is also
based on flux balance equations. The idea is change the basis of the flux balance
equations, so that they constraint the speeds of pathways, i.e., of paths from
an inflow to an outflow in a reaction graph, rather than the speeds of the reac-
tions themselves. When adding boolean constraints in addition, on can express
information about inhibitors of reactions too [22]. This method is known to be
problematic for networks with many pathways, that is for metabolic networks
with many paths from inflows to outflows, such as in our case.

A more systematic analysis of reaction networks with partial kinetic informa-
tion was proposed in [21]. Steady state equations are inferred from the reaction
networks, which besides the usual flux balance equations contain equations for
the reaction speeds. These equations contain constrained variables for the par-



tially known kinetic functions. Abstract interpretation is then applied in order
to abstract away the variables on the kinetic knowledge. It produces difference
constraints, that can state that the speed of a reaction will increase if the con-
centration of one of its inhibitors decreases, and conversely. This is contrast to
the previous treatments of inhibitors by boolean constraints, where one can only
reason about reactions being on or off. Difference constraints are particular finite
domain constraints. This makes it possible to use finite domain constraint solv-
ing to predict gene knockouts that will speed up a target reaction. The approach
of [21], however, is too restrictive since it is limited to networks of reactions
with mass action kinetics, for which the rate constants are unknown. In order
to overcome this restriction, Niehren et al. [31] proposed a modeling language
for reaction networks with partial kinetic information, which supports unknown
kinetic functions up to a similarity constraint that captures activating or inhibit-
ing effects. Reaction networks modeled in this language can still be analyzed by
abstract interpretation while generalizing on [21]. And the finite domain con-
straints inferred from the models can be used to predict flux changes based
on finite domain constraint solving. However, no knockout prediction algorithm
along these lines have been proposed yet.

As a first contribution in this article, we develop a knockout prediction algo-
rithm for reaction networks in this modeling language. Basically, the algorithm is
obtained by the combination of the ideas of the two previous papers [21, 31]. For
the sake of self-containedness, we elaborate these ideas from scratch, and illus-
trate the algorithm obtained at the example reaction network modeling the reg-
ulation of the ilv-leu operon promoter (PIlv−Leu). As we argue, its correctness
can be reduced to the previous results. Our algorithm is based on finite-domain
constraint solving to enumerate the solutions of a difference constraint obtained
by abstract interpretation. The maximal number of changes in a solution must
be fixed by the user. From the set of solutions obtained, the algorithm then
filters those that correspond to single knockouts in a straightforward manner.
The result is a list of a reactions that are predicted for single knockout. All this
can be done fully automatically, when given the reaction network, the knockout
candidates, the overproduction target, and the maximal number of changes in a
solution.

The second contribution is an implementation of all these algorithms. This
is obtained by extending the finite domain constraint solver for difference con-
straints from [21], which is written in Scala, as well as the tools for the modeling
language from [31], which are written in Xslt. More precisely, these tools allow
the validation of reaction networks in Xml, convert them into a nice graphical
output (see e.g. Figure 3), compute the steady state equations, and infer the dif-
ference constraints by abstract interpretation. Finally, the knockout predictions
are obtained by filtering the solutions of the difference constraints corresponding
to single knockouts by yet another Xslt script.

Our third contribution is a model of the quite complex leucine metabolic
pathway [38, 43, 44, 5, 4] in the modeling language from [31]. This is obtained
by rewriting the model from SubtiWiki [15, 28] into this formal modeling lan-



guage, while adding few missing reactions. We then applied the new prediction
algorithm to this model. It predicts 14 reaction knockouts from the 21 given can-
didates, but only for 12 of these reactions, the effect of a knockout is plausible
with respect to the model. It might be possible to rule out the two unplausible
predictions based on the model too, but for now we do not know how to do this
automatically.

Our fourth contribution is a successful experimental verification in-vivo of
the 6 predicted knockouts with the most direct effects by genetic engineering of
B. subtilis. It turns out that for all generated mutants the specific surfactin pro-
duction is increased by a factor ranging from 1.6 to 20.9 during the exponential
growth phase, depending on the gene knockout and on the medium composition.
These results show the effectiveness of the knockout prediction and confirms our
hypothesis that precursors supply is one of the main parameter to optimize sur-
factin overproduction.

2 Materials and Methods

2.1 In-vivo experiments and genetic engineering of B. subtilis

2.1.1 Metabolic effect of leucine feeding In order to test the working
hypothesis that an increase in the intracellular pool of leucine led to an increase
of the surfactin production, the strain B. subtilis BBG111 [8] was cultivated in
presence of leucine. Two different cultures were carried-out in Erlenmeyer flask at
37◦C with 160 rpm of agitation. The first medium used was Landy [25] with 3.6
g/L (NH4)2SO4 (instead of glutamate) and the second one Landy with 2.3 g/L
(NH4)2SO4 and 2.5 g/L of leucine (instead of glutamate). Medium were supple-
mented with tryptophan (16 mg/L) and buffered at pH 7.0 with MOPS 0.1M.
Sample were withdrawn after 6 hours of culture. Biomass and optical density
measurement were carried out as described previously [8]. Surfactin production
was measured by RP-HPLC in the centrifugated and filtered samples, according
to Coutte et al. [8] and using pure surfactin as the standard (Lipofabrik, Vil-
leneuve d’Ascq, France). Cultures were performed in triplicate and results are
expressed as mean value with standard deviation. The results given in Section
3.5 confirmed the working hypothesis.

2.1.2 Genetic engineering of B. subtilis 168 derivative strains
We introduced gene knockout in the leucine metabolic pathway using the

pop-in pop-out technique [41]. Construction of all deletion mutant strains were
carried out as described in Table 1. A modified B. subtilis BSB1 strain [30] was
constructed using the genomic Dna of TF8A strain by introducing a neomycin-
resistance gene under the control of the Lambda Pr promoter (λPr-neo). All
deletions were introduced in the master strain by homologous replacement of
the targeted chromosome region by a Dna fragment called “cassette upp-phleo-
cI ”, carrying the phleomycin-resistance gene for positive selection of cassette
integration and Psak-λcI genes for counterselection. After deletion of a particular



Table 1: Strains used or constructed in this work.
Strains of Genotype Genotype knock- Reference/
B. subtilis before modification out source
BBG111 trpC2, amyE::sfp-cat derived from 168 [8]
BSB1 1 [30]
SRB94 ilvBp4 derived from SMY1 [5]
SRB87 ilvBp∆T2 derived from SMY1 [5]
BBG251 IlvBp4 amyE::sfp-cat r1 newly derived from SRB94
BBG252 IlvBp∆T2 amyE::sfp-cat r40 newly derived from SRB87
BBG253 trpC2, amyE::sfp-cat ∆bcd r10 newly derived from BBG111
BBG254 trpC2, amyE::sfp-cat ∆codY r15 newly derived from BBG111
BBG255 trpC2, amyE::sfp-cat ∆bkL 2 r11 newly derived from BBG111
BBG256 trpC2, amyE::sfp-cat ∆tnrA r16 newly derived from BBG111

1 The strains SMY and BSB1 are propototroph and 168 lineage.
2 Whenever we talk about a knockout for the bkL operon, we mean the lpdV gene of
this operon.

fragment the chromosomal arrangement was confirmed by replica plate method
as well as through Pcr analysis and gel electrophoresis on 0.8% agarose gel.

Then, two sets of primer pairs were designed for upstream and downstream
region of the gene to be deleted (using the sequence from SubtiList World-Wide
Web Server and supplied by Eurofins Genomics, Ebersberg, Germany). These
two sets of primers were named (forward1,reverse1) for the upstream gene and
(forward2,reverse2) for the downstream gene respect to the gene of interest. Dur-
ing the design of the primers sets, direct repeat sequence are either added to the
primer sequence reverse1 or forward2 as well as complement sequence of 5’ and
3’ region of the cassette upp-phleo-cI are also added to the primer sequence of
reverse1 and forward2 (see Table 10 in supplementary materials). Polymerase
chain reaction was carried out using specific primer pair (forward1,reverse1) and
(forward2,reverse2) (0.5 µM final each) and 200 ng of master strain chromoso-
mal Dna under standard condition to produce Dna fragments of least 1.0 kb
long. The primers used for amplification are listed in Table 10 in supplementary
materials. The Pcr was carried out under following condition: 5 min at 94◦C;
(30s at 94◦C, 30s at 55◦C, 2 min at 72◦C) for 25 cycles; 5 min at 72◦C. The
Pcr products were purified using gel extraction kit (Qiagen, Hilden, Germany).
The Dna fragments generated using (forward1,reverse1) and (forward2,reverse2)
was mixed equally with higher proportion of upp-cI-phleo cassette and joining
Pcr reaction was conducted under the following conditions: 5 min at 94◦C; (15
s at 94◦C, 15 s at 55◦C, 12 min at 65◦C) for 12 cycles; (15 s at 94◦C, 15 s at
55◦C, 12 min at 65◦C) for 25 cycles; 10 min at 72◦C in the presence of forward1
and reverse2 (0.1 µM final). The resultant product was confirmed through elec-
trophoresis on 0.8% agarose gel and further used to transform competent cells
of the master strain.



Positive selection of deletion mutants was carried out through phleomycin
resistance on LB medium plates, which were incubated at 37◦C up to 24 hours.
Colonies, with proper cell morphology were streaked twice on the same medium
along with on neomycin-LB medium plates in order to purify the colony. Each
clone was checked for the absence of the deleted chromosomal region through
Pcr using primer pair forward1 and reverse2 respectively. Strains constituting
the expected deleted chromosomal structure were preserved in glycerol stock at
-80◦C.

All deletion obtained in modified B. subtilis BSB1 strain were introduced
in B. subtilis BBG111 [8] through transformation of genomic Dna of deletion
strain into B. subtilis BBG111 through natural competence transformation [37].
The deletion was confirmed through replica plate method using phleomycin,
neomycin and phleomycin/neomycin antibiotic plates (Phleomycin was supplied
by Euromedex, Souffelweyersheim, France, and Neomycin by Sigma-Aldrch, St
Louis, USA). The constructions of the mutant strains are provided Table 1. This
procedure was followed for the knockout of the genes bcd , codY , bkL2 and tnrA,
giving rise to mutants strains named B. subtilis BBG253, BBG254, BBG255 and
BBG256.

Two remaining strains were obtained from the strains constructed in the
Sonenshein Lab [5]. The first modified one was SRB94, in which site directed
mutagenesis have been carried to generate A10C and C7G mutation in the region
II of CodY binding site at ilv-leu promoter. The second modified one was SRB87,
in which the author implemented overlapping Pcr technique to develop a mutant
strain devoid of stem-loop terminator structure responsible for leucine-dependent
transcriptional regulation. These strains were converted into surfactin producer
by the introduction of sfp gene of B. subtilis ATCC 21332 in the amyE locus by
homologous recombination using pBG129 plasmid [8]. The strain were specified
as B. subtilis BBG251 and BBG252, respectively. All the strains used in this
paper are listed in the Table 1.

2.1.3 Culture conditions and analysis
Each mutant obtained was cultivated in high-throughput system of fermen-

tation Biolector (Mp2-labs GmbH; Baesweiler; Germany) available on RealCat
platform of the University of Lille. Culture were carried-out in 48 wells flower
plate designed for the Biolector (containing pH, dissolved oxygen and biomass
probes). Cultures were performed at 37◦C, under shaking (1100 rpm). Landy
medium with 3.6 g/L (NH4)2SO4 and TSS medium supplemented by 16 amino-
acids were used in these experiments [5]. These media were supplemented with
tryptophan at 16 mg/L and buffered at pH 7.0 with MOPS 0.1 M. Samples
were withdrawn after 6 hours of culture. Biomass measurement for Biolector
calibration and surfactin production were carried out as described previously
(see Section 2.1.1). Experiments were carried out in triplicate and two biological
replicate were performed. Results are expressed as mean value with standard
2 Whenever we talk about a knockout for the bkL operon, we mean more precisely the

lpdV gene of this operon.



deviation and statistical analysis of these data is made using one-way ANOVA
using a Student-Newman-Keuls post hoc test (p value = 0.05). Different letters
are use to indicate significant differences between groups.

2.2 A Modeling Language for Reaction Networks

We first recall the modeling language for reaction networks with partial kinetic
information from [31], and illustrate it at the regulation network of the promoter
PIlv−Leu, which is central for leucine production.

2.2.1 Graphical Syntax
Most aspects of modeling language for reaction networks from [31] are quite

standard in systems biology. The exception are the treatments of partially known
kinetic functions and of exchange flows by which the network interacts with its
context.

A reaction network with partial kinetic knowledge consists of a finite set of
species, a subset of inflow species, a subset of outflow species, and a finite set
of reactions. A reaction is a multiset of pairs between species and roles. In the
present paper, we fix the following set of roles: reactant, product, activator, ac-
celerator, or inhibitor. A species is called a modifier of a reaction if its role is
equal to activator, accelerator, or inhibitor. Modifiers are neither consumed nor
produced, but the presence of a modifier affects the rate of the reaction. Note
that the same species can be used several times in the same reaction and with
different roles.

The partial knowledge on the kinetics of a reaction is given by the roles that
are assigned to its species. The intuition is as follows. The rate of a reaction is
increased by reactants, activators, and accelerators, and it is decreased by in-
hibitors. A reaction is enabled only if all its reactants and activators are present,
i.e. have nonzero concentrations, while some or the accelerators may be absent.
We next explain the steady state semantics of a reaction network with partial
kinetic information informally, before giving a formal definition in Section 2.2.3.

As usual in deterministic semantics, we consider chemical solutions as func-
tions from species to nonnegative real numbers including zero. For most kinds
of species, this number represents the concentration of the species, but in other
cases it may also denote the activity of a promoter or the activity of a promoter
binding site. Reactions can be applied to chemical solutions. In this case, its re-
actants are consumed and its products are produced, respectively as many times
as they occur in the reaction. A reaction can only be applied if all its activa-
tors are present (have a nonzero concentration), while its accelerators may be
absent. The higher the concentration of an accelerator or activators, the higher
will be the rate of the reaction. A reaction is applicable even if some inhibitors
are present, but the higher the concentration the slower will be the rate of the
reaction.

Reaction networks are usually situated in a context, which may be adjacent
reaction networks, or the “chemical medium” from which some species may inflow



and to which some species may outflow during wet lab experimentation. The
exchange with the context is modeled by the set of inflow and outflow species of
the network: inflow species may inflow from the context, while outflow species
may outflow into the context. The precise rate laws of inflows and outflows are
unknown, except that we assume that the outflow rate must increase with the
concentration of the outflow species.

Reaction networks in our modeling language can be represented as graphs
similar to Petri nets1. These graphs contain two kinds of nodes, round nodes
for representing its species and boxed nodes for representing its reactions. More
precisely, any species S is represented by a round node S and any reaction with

name r by a boxed node r . Solid edges either link a reactant to its reaction

S r , or a reaction to one of its products r S . There are three
kind of dashed edges, which start at the three kinds of modifiers. An accelerator
edge links an accelerator to a reaction S r , an activator edge links an

activator to a reaction S r , and an inhibitor edge links an inhibitor to a

reaction S r . Whenever a species plays the same role serveral times in
the same reaction, the multiplicity will be annotated to the corresponding edge.
But this will not be the case in any of our examples.

An inflow edge S points from the context to an inflow species S, while
an outflow edge S points from an outflow species S to the context. For

convenience, we have introduced a last kind of edges r S as a shortcut
for a product that is degraded by a hidden reaction, i.e., as a shortcut for:
r S r′ .

An example network is given in Figure 2. There we use species nodes with
three different colors, which indicate their biological roles. The dynamics of the
network is not concerned by the colors though. In yellow, we draw metabolites
such Leu and in blue proteins such CodY . There is a third color for “artificial
species” that serve for modeling regulation, such as for instance the promoter
of the ilv-leu operon PIlv−Leu . The real number that a chemical solution
will assign to this artificial species will correspond to the activity of promoter
PIlv−Leu in the solution (and not to its concentration).

In our graphs, we will annotate in orange, reactions that are potential candi-
dates for knockouts. Dark orange indicates candidates that have been selected by
our knockout prediction, while light orange indicates candidates that have not.
We note again that node colors are irrelevant for the dynamics of the network.

2.2.2 Modeling the Regulation of PIlv-Leu Promoter
The ilv-leu operon contains the main genes involved in the production of

branched chain amino acids and specially the leucine as shown in simplified
1 The concrete syntax of our reaction networks is based on XML, from which the
graphs are computed. The XML representation is also the input for the prediction
algorithm. See the complementary material for examples.
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Figure 2: Reaction network of PIlv-Leu regulation.

manner in Figure 2. The ilv-leu operon is subject to multiple forms of regulation
at its promoter PIlv−Leu, as studied in a series of articles. Here we recall the
model from [31] which considers the inhibition and activation events of the pro-
moter, without explaining in detail how they are raised by binding to different
promoter sites. The same abstraction was adopted earlier in one of the models
for leucine production from the SubtiWiki [15], but these models lack a formal
semantics as required for reasoning approaches.

We use the species Leu modeling the concentration of the metabolite leucine,
that we want to overproduce and let outflow to the context. We also introduce
the species PIlv−Leu modeling the activity of the ilv-leu promoter. Reaction r8
states that the expression of PIlv−Leu will finally lead to the expression of Leu in
any case. This is an over-simplification adopted by this model, whose purpose is
precisely to ignore the complex metabolic network behind the leucine production
and its regulation. However, the promoter PIlv−Leu is also down-regulated by
Leu in terms of ribosome-mediated attenuation mechanism T-box [5, 16], which
is captured by that Leu is an inhibitor of r2, which activates PIlv−Leu.

The regulation of PIlv−Leu is modeled by reaction r2 that activates it. The
degree of activation can also be degraded by the implicit reaction r2′ . Following
[43, 5, 14], there are two proteins that down-regulate the activity of PIlv−Leu
by binding to different sites upstream region of the promoter and inhibiting
the RNA polymerase [3]. These are CodY (transcriptional pleiotropic regula-
tor, which regulates the transcription of early-stationary-phase genes [36]) and
TnrA (nitrogen pleiotropic transcriptional regulator), that we model by the ac-
tors BSCodY and BSTnrA respectively. The values of the corresponding variables



zBSCodY
and zBSTnrA

represent the activity degrees of these binding sites. It can
be increased by applying reactions r1 and r7 respectively, and decreased by ap-
plying the implicit degradation reactions r1′ and r7′ . The degradation reactions
r51 and r52 are necessary to balance the constant influxes of CodY or TnrA in
steady states.

There is a further protein CcpA (Carbon catabolite control protein A), which
is expressed by reaction r14 and can be degraded by the implicit reaction r14′ .
Protein CcpA can bind to a site BSCcpA of PIlv−Leu by reaction r9. This binding
site overlaps with that of CodY [38]. Therefore, both proteins cannot bind simul-
taneously to the promoter, which we model by letting the reaction r1 that binds
CodY be subject to inhibition by CcpA. In addition, the binding of CcpA to
the promoter PIlv−Leu accelerates the promoter [38, 43, 14]. Therefore, BSCcpA

is an accelerator of reaction r2. The catabolite acceleration by BSCcpA can be
inhibited when BSTnrA is active, since then the active binding sites BSTnrA and
BSCcpA can bind to each other while forming a Dna loop, which inhibits the
acceleration. Therefore, BSTnrA inhibits reaction r9.

The reactions of the network that can be disabled by gene knockouts are
drawn in orange color. These are all reactions modelling gene expressions, that
is r8 and r14, and the reactions modeling promoter binding of the inhibitors, that
is r1 and r7.

2.2.3 Steady-State Equations
We are interested in the deterministic steady state semantics of a reaction

network, but projected to variables for exchange fluxes. Let R+ be the set of
nonnegative real number including zero. For networks with n inflow species and
m outflow species, the deterministic semantics of the network will be an exchange
relation in (R+)

n+m. In our example, we have n = 2 and m = 1. However, it
is never possible to determine the steady state semantics completely, given that
we have only partial kinetic knowledge. Furthermore, note that we don’t know
about any initial concentrations, so it may by possible that different steady states
are reached with different initial concentration, even if we had complete kinetic
knowledge otherwise.

In addition, we are usually given a set of k reactions that are knockout
candidates, but do not know which of them will be knocked out. In our example,
we had k = 4 knockout candidates. In this case, the steady state semantics will
be enriched with unknowns for knockout candidates, and the projection will be
to variables for both knockout candidates and exchange fluxes. We thus obtain
a richer knockout-exchange relation in (R+)

k+n+m.
Given a species s of the network, we will introduce a variable zs for its con-

centration (or activity) in a steady state. For any inflow species we will introduce
an influx variable xs for the rate of its inflows, and for any outflow variable we
will introduce an outflux variable ys for the rate of its outflux. Furthermore, we
will use variables vri for the rate of reaction ri in a steady state, and knock-
out variables ori with values in {0, 1}, stating whether reaction ri is off or on
respectively.



One possible kinetic functions kinS,Act,Acc,I for a reaction, with set of with
substrates S, activators Act, accelerators Acc and inhibitors I is equal to:

kinS,Act,Acc,I((zs)s∈S∪Act∪Acc∪I) =
∏
s∈S

zs
∏
a∈Act

za
(1 +

∑
a′∈Acc za′)

1 +
∑
i∈I zi

The function kinS,Act,Acc,I satisfies the basic requirements, which beside its well
definedness for all possible concentrations, are that:

– it is monotonic in the concentrations of all substrates, activators, and accel-
erators, and

– it is anti-monotonic in the concentrations of all inhibitors, and
– it is 0 if the concentration of one of the activators or substrates becomes 0.

However, all the constants in the definition of kinS,Act,Acc,I all equal to 1. This
is clearly randomly chosen, so there is no reason to belief that kinS,Act,Acc,I
will be to the true kinetic function of any chemical reaction in our example
or elsewhere. In order to face this situation, we will assume that the kinetic
functions of reactions with substrates S, activators Act, accelerators Acc, and
inhibitors I are similar to kinS,Act,Acc,I . The precise definition of similarity in
Definition 1 will be such that the above properties are satisfied.

So let kin(i) be a variable for the kinetic function of reaction ri. Any steady
state of the PIlv−Leu regulation network must then satisfy the equations in
Table 2. The first equation states that the speed vr1 of reaction r1 is equal
to 0 if the reaction is knocked out, so that or1 = 0, and equal to kin(1)(i :
zCcpA, act : zCodY) otherwise. In addition, the model imposes the constraint that
unknown function kin(1) is similar to the known function kin∅,{CodY},∅,{CcpA}.
The equations for the speeds of all other reactions are similar. Note that the roles
of arguments are always indicated by attributes (i:inhibitor in I, act:activator in
Act, acc:accelerator in Acc, s: substrate in S).

In a (limit) steady state, we need that all species are consumed and pro-
duced at equilibrium. For CcpA for instance, this requires that vr14′ = vr14 and
for CodY that vr51 = xCodY. Finally, we have to impose that the rate of an out-
flow species increase monotonically with its concentrations. For Leu this means
that yLeu = kin(o)(s : zLeu) for some kinetic function kin(o) that is similar to
kin{Leu},∅,∅,∅. Without such an outflow model, we would lack any relation be-
tween the concentration of the species zLeu and the outflux of yLeu. This would
spoil our knockout predictions for leucine overproduction in particular.

The flux balance equations can be used to simplify the remaining equations
by replacing equal by equal, while removing some local variables (those for re-
action speeds vri and species concentrations zS). The simplified equations are
given in Table 3. It should be noticed that such simplifications before abstract
interpretation improve the precision of this analysis.

2.2.4 Similarity



Table 2: Steady state equations.

Reaction Speeds

vr1 = or1kin
(1)(i : zCcpA, act : zCodY)

vr1′ = kin(1′)(s : zBSCodY )

vr2 = kin(2)(i : zBSCodY , acc : zBSCcpA , i : zLeu, i : zBSTnrA)

vr2′ = kin(2′)(s : zPIlv−Leu)

vr7 = or7kin
(7)(act : zTnrA)

vr7′ = kin(7′)(s : zBSTnrA)

vr9 = kin(9)(act : zCcpA, i : zBSTnrA)

vr9′ = kin(9′)(s : zBSCcpA)

vr51 = kin(51)(s : zCodY)

vr52 = kin(52)(s : zTnrA)

vr14 = or14kin
(14)()

vr14′ = kin(14′)(s : zCcpA)

vr8 = or8kin
(8)(s : zPIlv−Leu)

Flux Balance Equations

yLeu = vr8
vr14′ = vr14
vr51 = xCodY

vr52 = xTnrA

vr1′ = vr1
vr2′ + vr8 = vr2
vr7′ = vr7
vr9′ = vr9

Outflow Model

yLeu = kin(o)(zLeu)

When doing flux analysis or knockout prediction, we are interested in what
may happens with the steady states, when the model is changed, either by chang-
ing some influx or outflux, or by knocking out some of the reactions, or both.

The state space for the change of a concentrations or of a reaction speed
R+ × R+. We partition this space into the 6 difference relations in ∆ = {↑, ↓,⇑
,⇓,∼,≈}. The increase relation ↑= {(x, y) | 0 < x < y} contains all increases
but not from zero, while the increase-from-zero relation ⇑= {(0, y) | 0 < y}
contains all other increases. The relation ↓ captures all decreases but not to
zero, while ⇓ covers all decreases to zero. There are also two ways of no-change,
those at a value different to zero ∼= {(x, x) | x 6= 0} and the no-change at zero
≈= {(0, 0)}.

Let R be a relation in (R+)
p for some p ≥ 0. We define the abstract inter-

pretation of R over ∆ as follows:

R∆ = {(δ1 . . . , δp) ∈ ∆p | ∃(x1, . . . , xp) ∈ R, (y1, . . . , yp) ∈ R,
(x1, y1) ∈ δ1 . . . , (xp, yp) ∈ δp}

Since kinetic functions κ : (R+)
p−1 → R+ can be seen as p-ary relations, their

abstract interpretations κ∆ are well defined.

Definition 1. We call two kinetic functions κ1, κ2 : (R+)
p−1 → R+ similar if

and only if κ∆1 = κ∆2 .

It can now be verified that all kinetic functions similar to kinS,Act,Acc,I satisfy
the three properties required above. Furthermore, similarity is preserved when
changing the parameter of mass action kinetics. It can even be seen, that the
binary mass action kinetics is similar to the Michaelis-Menten kinetics.



Table 3: Simplified steady state equations.

vr1 = or1kin
(1)(i : zCcpA, act : zCodY)

vr1 = kin(1′)(s : zBSCodY )

vr2 = kin(2)(i : zBSCodY , acc : zBSCcpA ,
i : zLeu, i : zBSTnrA)

vr2 = kin(2′)(s : zPIlv−Leu) + vr8
vr7 = or7kin

(7)(act : zTnrA)

vr7 = kin(7′)(s : zBSTnrA)

vr9 = kin(9)(act : zCcpA, i : zBSTnrA)

vr9 = kin(9′)(s : zBSCcpA)

xCodY = kin(51)(s : zCodY)

xTnrA = kin(52)(s : zTnrA)

vr14 = or14kin
(14)()

vr14 = kin(14′)(s : zCcpA)

yLeu = or8kin
(8)(s : zPIlv−Leu)

yLeu = kin(o)(s : zLeu)

3 Results

3.1 Knockout prediction algorithm

We now generalize the knockout prediction algorithm from [21] so that it applies
to all reaction networks modeled in the language recalled in Section 2.2. The
difficulty compared to there is to overcome the limitation to reactions with mass
action kinetics. This will be done by extending the reasoning methods from [31]
for our modeling language so that we can predict reaction knockouts, instead of
changes of influxes or outfluxes only.

We have already prepared this extension by adding the following two aspects
from [21] to our presentation of the modeling language from [31]. Firstly, we
insert knockout variables ori into steady state equations in Section 2.2.3. And
secondly, we have chosen the domain with the six elements ∆ = {↑, ↓,⇑,⇓,∼,≈}
for abstract interpretation in Section 2.2.4, rather than the three element domain
∆′ = {<,=, >}. The intuition is that the change performed by the knockout of
a reaction ri can be reflected by a difference constraint ori =⇓, meaning that ri
was on before and off after the change.

3.1.1 Abstract Interpretation
Abstract interpretation can be lifted to the steady state equations as obtained

from a reaction network. For this, all variables get interpreted over ∆ (instead of
R+), and all arithmetics functions are interpreted abstractly over ∆ (instead of
R+) as defined in Section 2.2.4: Addition is interpreted as +∆, multiplication as
·∆ and unknown kinetic functions kin(i) as the fully known functions (kin(i))∆ =
(kinS,Act,Acc,I)

∆. It should be noticed that functions can become set valued
by abstract interpretation. For instance, +∆(↑, ↓) = {↑, ↓,∼}, so that abstract
interpretation will produce difference constraints of the form z1 ∈ z2 + z3.

The abstract interpretation of the simplified steady state equations in Table
3, for instance, are given in Table 4. Most importantly, we could replace the vari-
ables kin(i) by the definition of kinS,Act,Acc,I , since (kin(i))∆ = (kinS,Act,Acc,I)

∆.
In this way, we sucessfully abstracted away the lacking kinetic knowledge.



Table 4: Difference constraints obtained by abstract interpretation, where
inh(x) = 1/acc(x) and acc(x) = 1 + x.

vr1 ∈ or1 · inh(zCcpA) · zCodY

vr1 = zBSCodY

vr2 ∈ inh(zBSCodY + zLeu + zBSTnrA) · acc(zBSCcpA)
vr2 ∈ zPIlv−Leu + vr8
vr7 ∈ or7 · zTnrA

vr7 = zBSTnrA

vr9 ∈ zCcpA · inh(zBSTnrA)
vr9 = zBSCcpA

xCodY = zCodY

xTnrA = zTnrA

vr14 = or14
vr14 = zCcpA

yLeu ∈ or8 · zPIlv−Leu

yLeu = zLeu

We next recall the main insight from John et al. [21], which states that the
difference assignment between two steady states of a given the reaction network
must satisfy the abstract interpretation of its steady state equations. Indeed, the
proposition is slightly more general, so that it remains independent of the choice
of the modeling language. For any two variable assignments ν, ν′ into R+ and
any variable x they consider the unique difference relation δ(x) ∈ ∆ such that
(ν(x), ν′(x)) ∈ δ(x).

Proposition 1 (John et al. [21]). If ν and ν′ are two solutions of the arith-
metic equations φ over R+ then their difference assignment δ satisfies the ab-
stract interpretation of φ over ∆.

The solutions ν and ν′ of interest are the steady states of a reaction network
with simplified steady state equations φ. More precisely, ν should be a solution
of φ without any knockout and ν′ another solution of φ with some knockout.
The abstract interpretation of φ must then be satisfied by all possible changes δ
from ν to ν′.

3.1.2 Knockout prediction by abstract interpretation
A knockout prediction problem receives as inputs a reaction network, a subset

of reactions that are candidates for knockouts, and an overproduction target. In
the case of the PIlv−Leu network, the knockout candidates are r1, r7, r8, and
r14, and the overproduction target is yLeu =↑. The questions then is which of
the knockout candidates can be knocked out in the network, while satisfying the
overproduction target.

Let φ be the simplified steady state equations of the network. The question
then is whether there exists two variable assignments ν and ν′ solving φ such that
ν(ori) = 1 for all knockout variables in φ, and such that the difference assignment
of ν and ν′ satisfies the overproduction target. In this case, a solution for the
knockout problem is the subset of all reactions ri such that ν′(ori) = 0.

In order to search for two variable assignments satisfying φ and the over-
production target, we can apply Proposition 1. It shows that it is sufficient to



Table 5: The top-4 solutions of the difference constraints
in Table 4 and the overproduction target yLeu =↑.

solution or1 or7 or8 or14 xCodY xTnrA yLeu penalty

1. ∼ ∼ ∼ ∼ ↓ ∼ ↑ 2
2. ∼ ∼ ∼ ∼ ∼ ↓ ↑ 2
3. ⇓ ∼ ∼ ∼ ∼ ∼ ↑ 2
4. ∼ ⇓ ∼ ∼ ∼ ∼ ↑ 2

For any i and S, ori =⇓means a knockout of reaction
ri, xS =↓ a decrease of the influx of species S (but
not to zero), and yS =↑ an increase of the outflux of
S (but not from zero).

search for a variable assignment satisfying the abstract interpretation of φ over
∆. Furthermore, we require to be satified the overproduction target, the con-
straints ori = {⇓,∼} for all reactions ri that can be knocked out, and ori = {∼}
for all others, and the flux restrictions xS, yS ∈ {↑, ↓,∼} for all species S.

The number of solutions is often huge. Therefore, we are interested only
in those solutions where the overall number of knockouts, influx changes, and
outflux changes is as small as possible. The hope is that the solutions with the
minimal number of changes contain exactly those changes that are really needed
to satisfy the overproduction target. In order to restrict the search space further,
we will rule out all solutions in ori =⇓ for more than one i.

3.2 Application to PIlv-Leu example network

We define the penalty of a solution as the number of global variables mapped to
↑, ↓, or ⇓. As argued above, the lower is the penalty, the better is the solution,
since no irrelevant changes were added besides those that are really needed.

The top-n solutions of a difference constraint can be computed by a finite
domain constraint solver with branch and bound optimization. The top-4 solu-
tions of the difference constraints for the PIlv−Leu network are given in Table 5;
these are exactly all solutions with penalty 2. Of course, there are many further
solutions with higher penalties, but the top-4 solutions indeed correspond to the
most interesting predictions in this case:

1. Decrease influx of CodY, or
2. Decrease influx of TnrA, or
3. Knockout reaction r1, or
4. Knockout reaction r7.

What is predicted for this small network are 2 flux changes and 2 single
knockouts. However, a decrease of the fluxes xCodY and xTnrA can be obtained
by knocking out the respective genes in the context, i.e., reaction r15 and r16 in
the larger leucine network in Figure 3. Therefore, the 4 predictions for the small



PIlv−Leu network correspond to 4 single knockout predictions for the larger
leucine model. This illustrates the modularity of our approach. It is obtained by
admitting inflow and outflow species for the interaction of a module of a network
with its context, without need to model the whole network.

3.3 Modeling of leucine metabolic pathway

A larger and more realistic model of leucine production is presented in Figure 3.
It describes the metabolic transformations of Thr, Pyr and Akb into Ile, Val, and
Leu, concomitantly with its regulation. Our model mainly follows the abstraction
level chosen by the previous work in [15, 28], but the regulation is expressed more
cleanly within our formal modeling language. In the supplementary material,
we list the metabolites, proteins and actors of this model in Table 11, and all its
reactions in Table 12.

Generally, we will assume that the precise kinetics are unknown, but hope
that we still have good knowledge on inhibitors and activators of the reactions.
We do not have to know all inhibitors and activators, but the more we know the
better predictions we can expect. This is an important departure from previous
methods purely based on flux balance equations.

In order to group several proteins that all participate in the same reactions,
we introduce artificial species that we call protein clusters, and draw them as
for instance BkL . This protein cluster presents all the proteins generated by
the bkL operon.

We will slightly enrich our graphical syntax with some syntactic suggar, in
order to keep bigger models readable. This suggar can be compiled away in a
preprocessing step. First, we use split-points that link different copies of the

same species. For instance, we have one copy of Leu, which are drawn as Leu

and linked together with the original Leu over a split point. Logically, there is
no difference between a species and its copies; it just allows nicer graphs with
fewer intersections of edges. Second, we use edge-clusters that group several with
the same sources or targets (for instance the activator edges from BkL and YwaA
to r35, r32, and r29 are clustered).

Production of Isoleucine, Valine, and Leucine. For clarity, we here only consider
those intermediates that produce the outflow species of the pathway, i.e. Keta
for Ile in r26, Ketb for Val in r36, and Ketc for Leu in r45. All three reactions
must be activated by YwaA+YbgE, that is either by protein YwaA (r6) or protein
YbgE (r5) which are exchangeable catalysts following [42]. There are also inverse
reactions r29, r32, r35, but with different activators, the proteins Bcd and YwaA.
The intermediates Keta, Ketb, and Ketc can be transformed alternatively into
Acyl−CoA by reactions r28, r31, and r34, which can then outflow to the context
for fatty acid biosynthesis. This is regulated by protein BkL.

The creation of Ile, Val, and Leu from Keta, Ketb, Ketc is always coupled with
a parallel transformation of Glu into OxoGlu, and the inverse decompositions
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are coupled with the inverse transformation of OxoGlu into Glu. The required
Glu for the production of Ile, Val, and Leu, can inflow from the glutamate
biosynthesis cycle of the context (derived from OxoGlu) produced OxoGlu can
outflow from this pathway to the context (as for example used in the TCA cycle).

The intermediates are produced as follows: Keta is produced from Akb by
r27, Ketb from Pyr by r30, and Ketc from Ketb by r33. Akb can be produced
from Thr by reaction r41, which in turn can also inflow from the threonine
byosynthesis pathway of the context (which is linked to the glycolysis pathway
via the aspartate biosynthesis). Pyr can inflow from the glycolysis pathway of
the context. IlvA activates the conversion of Thr into Akb. IlvBH (a cluster of
IlvB and IlvH), IlvC and IlvD actives the transformation of Akb to Keta. The
proteins LeuA and LeuBCD (a cluster of LeuA, LeuB, and LeuC) perform a
sequence of reactions justifying the transformation of Ketb to Ketc [28]. The
genes of the proteins IlvBH, IlvC, LeuA, and LeuBCD are co-located in the
same operon (ilv-leu), so they are under the dependence of one and the same
promoter PIlv−Leu [43]. This specific regulation is detailed below.

Regulation. The expression of the different enzymes involved in the production
of branched chain amino acids (explained above) are denoted by the following
reactions: r22 for IlvA; r25 for IlvD; r23 for IlvBH; r24 for IlvC; r38 for LeuBCD;
r37 for LeuA; r11 for BkL; r10 for Bcd; r47 for YwaA and r46 for YbgE. All these
expression reactions are controlled by a complex regulation [5, 29, 27]. Indeed, we
consider proteins CcpA, CodY, TnrA, and BkdR that have regulatory functions
and are expressed respectively by the reactions r14, r15, r16 and r12, r13. The
expression reactions of these regulators can be modulated by different factors
from outside the context, which are not modelled here. Gtp come from the
context and can be degraded through the reaction r17. This metabolite increase
the affinity of CodY for its binding sites, as well as Ile and Val [38, 43, 44, 29, 27].

Expression of IlvA, IlvD, and YbgE are dependent on their own promoters
and their expressions are down-regulated by CodY at the transcriptional level
[29, 27], which is represented by reactions r22, r25, and r46, respectively. In [18]
it was further shown that IlvA is deactivated by both Ile and Val (reactions r20,
r21). The transcription of all proteins IlvC, IlvBH, LeuA, and LeuBCD starts
through the activation of their promoter PIlv−Leu, which controls the reactions
r23, r24, r37 and r38, respectively [5, 27]. Its regulation is captured by the reaction
r2 and is dependent on several mechanisms, which are described before. In addi-
tion to what has been described above we introduced here the down-regulation
of the promoter PIlv−Leu by Leu in terms of ribosome-mediated attenuation
mechanism Tbox (r40) [5, 16] and the deactivation of LeuA by Leu which is
represented by the reaction r39. Proteins BkL and Bcd lie under the action of
two common but independent promoters (Prmb and Prmc), whose activity level
is represented by actor OPBkL−Bcd. Among them one is constitutive (no regu-
lation, represented by the reaction r4), and the other is positively impacted by
BkdR and down-regulated by both TnrA and CodY, as reflected by reaction r3
[10]. Although not regulated on the transcriptional level, protein BkdR is acti-
vated by Ile and Val, which is modeled by introducing the two BkdR producing



Table 6: Top-2 solutions: no knockouts and 4 context
changes.

solution xGlu xPyr yAcyl−CoA yLeu yOxoGlu penalty

1. ↑ ↑ ∼ ↑ ↑ 4
2. ↑ ∼ ↓ ↑ ↑ 4

For any i and S, xS =↓ means a decrease of the influx of species
S (but not to zero), and yS =↑ an increase of the outflux of S
(but not from zero).

reactions r12 and r13. Proteins YbgE (expressed by the reaction r46) is down
regulated by CodY. However, no regulation is known for protein YwaA, which
is expressed by the reaction r47.

3.4 Knockout Prediction for leucine overproduction

As for the small model, our target for knockout prediction is leucine overpro-
duction, i.e., yLeu =↑. But in the big model, there are also some unwanted
possibilities to do so, which are to decrease the outfluxes of valine or isoleucine,
since the remaining valine and isoleucine could then be used to produce more
leucine. In order to rule out this, we add to our knockout prediction target that
the outfluxes of Val and Ile cannot decrease, i.e., yVal, yIle ∈ {∼, ↑}.

We first present the solutions of the solver for difference constraints, and then
show how they can be interpreted as knockout predictions. In all the solutions
we observed it holds that xGlu = yOxoGlu = yLeu =↑, so this seems to be always
the case. This shows that any increase of yLeu requires to increase the influx of
Glu and the outflux of OxoGlu. It implies for all solutions, that their minimal
overall penalty is at least 3.

The top-2 solutions presented in Tables 6 have penalty 4. These do not require
any reaction knockout. Besides the 3 necessary context changes discussed above,
we either have that yAcyl−CoA =↓, i.e. the outflux of Acyl−CoA is decreased, or
else that xPyr =↑, so that the influx of Pyr is increased. Both possibilities are
plausible, since for overproducing Leu, either the production of Leu by r45 must
be increased, and this requires more Pyr, or else the outflux of Leu into the fatty
acid pathway (via reactions r35 and r34) must be decreased, and this imposes a
higher outflux of Acyl−CoA.

All the single knockout solutions with penalty 5 are given in Table 7, with
numbers 3-28. Indeed, it turns out that they all extend on either of the top-2
solutions. This is a rather particular and surprising situation. It means that none
of these knockouts is strictly necessary to justify Leu overproduction, but that
they are all compatible with it. In other words, all other candidates which were
not selected are incompatible with a single knockout and 4 context changes. A
further single knockout if found with penalty 6 in the solutions with number 142
and 143.



Table 7: Next best solutions: a single knockout and 4 context changes.

solution knockouts context changes penalty
or1 or10 or12 or13 or3 or4 or7 xGlu xPyr yAcyl−CoA yLeu yOxoGlu

3. ⇓ ∼ ∼ ∼ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
4. ⇓ ∼ ∼ ∼ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
5. ∼ ∼ ∼ ∼ ⇓ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
6. ∼ ∼ ∼ ∼ ⇓ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
7. ∼ ∼ ∼ ∼ ∼ ⇓ ∼ ↑ ↑ ∼ ↑ ↑ 5
8. ∼ ∼ ∼ ∼ ∼ ⇓ ∼ ↑ ∼ ↓ ↑ ↑ 5
9. ∼ ∼ ∼ ∼ ∼ ∼ ⇓ ↑ ↑ ∼ ↑ ↑ 5
10. ∼ ∼ ∼ ∼ ∼ ∼ ⇓ ↑ ∼ ↓ ↑ ↑ 5
11. ∼ ⇓ ∼ ∼ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
12. ∼ ⇓ ∼ ∼ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
13. ∼ ∼ ⇓ ∼ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
14. ∼ ∼ ⇓ ∼ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
15. ∼ ∼ ∼ ⇓ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
16. ∼ ∼ ∼ ⇓ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5

solution knockouts context changes penalty
or47 or15 or16 or40 or46 or14 xGlu xPyr yAcyl−CoA yLeu yOxoGlu

17. ∼ ⇓ ∼ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
18. ∼ ⇓ ∼ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
19. ∼ ∼ ⇓ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
20. ∼ ∼ ⇓ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
21. ∼ ∼ ∼ ⇓ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
22. ∼ ∼ ∼ ⇓ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
23. ⇓ ∼ ∼ ∼ ∼ ∼ ↑ ↑ ∼ ↑ ↑ 5
24. ⇓ ∼ ∼ ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↑ 5
25. ∼ ∼ ∼ ∼ ⇓ ∼ ↑ ↑ ∼ ↑ ↑ 5
26. ∼ ∼ ∼ ∼ ⇓ ∼ ↑ ∼ ↓ ↑ ↑ 5
27. ∼ ∼ ∼ ∼ ∼ ⇓ ↑ ↑ ∼ ↑ ↑ 5
28. ∼ ∼ ∼ ∼ ∼ ⇓ ↑ ∼ ↓ ↑ ↑ 5

solution knockouts context changes penalty
or11 xGlu xThr yAcyl−CoA yIle yLeu yOxoGlu

142. ⇓ ↑ ↓ ↓ ∼ ↑ ↑ 6
143. ⇓ ↑ ∼ ↓ ↑ ↑ ↑ 6

For any i and S, oi = ⇓ means a knockout of reaction ri, xS =↓ a decrease of the influx
of species S (but not to zero), and yS =↑ an increase of the outlux of S (but not from
zero).

There are 38 further solutions with a penalty of 5 which do not require any
knockouts. Of these 12 are extensions of the top-2 solutions by further context
changes, and the others remove assign one knockout variable to ≈, meaning that
one reaction is removed from the model. There are many further solution with



Table 8: Single knockout predictions for leucine overproduction.
knock- description of reaction knockout effect mutant
out
r1 CodY binding to BSCodY increases PIlv−Leu activity BBG251
r3 bind BkdR to decrease Bcd and thus r35

BkL-Bcd promoter
r4 constitutive expression of decreases Bcd and thus r35

BkL-Bcd operon
r7 TnrA binding to BSTnrA increases PIlv−Leu activity
r10 Bcd expression deactivates reaction r35 BBG253
r11 BkL expression deactivates Keta, Ketb, Ketc BBG255

outflow via Acyl−CoA by r28, r31, r34
r12 activate BkdR by Ile decreases speed of r3 and thus Bcd
r13 activate BkdR by Val decreases speed of r3 and thus Bcd
r15 CodY expression increase PIlv−Leu activity BBG254
r16 TnrA expression increase PIlv−Leu activity BBG256
r40 Tbox of Leu attenuation increase PIlv−Leu activity BBG252
r47 expression of YwaA increase speed of r35
r14 expression of CcpA unclear
r46 expressions of YbgE unclear

penalty 6 ranging from 67-784 and many more solutions with penalty 7 ranging
from 785-4249. But these do not add further single knockout predictions. The
computation of all solutions up to penalty 7 requires about 6:21 minutes on a
MacBook Pro labtop (2.4 GHz Intel core i7). For higher penalties, our algorithm
is running out of memory.

All solutions corresponding to single knockouts are collected in Table 8. This
can be done automatically by our tools. In addition, we have added an informal
explanation of the positive effect of these single knockouts with respect to leucine
overproduction. These effect can be seen in the model rather easily. It turns out,
however that knockout of reactions r14 and r46 do not have clear positive effect.
The only effect of a knockout of reaction r46 is a deactivation of r45 producing
Leu, which is unwanted. The knockout of reaction r14 has a negative effect on
the activity of PIlv−Leu. This is not very plausible for leucine overproduction:
it could still be argued that a decrease of the activity of PIlv−Leu will decrease
the speed of r27 which in turn will increase the speed of r30, but at the same
time, it also has a negative effect on the activation of r30, which counter balances
this positive effect on the Leu production. Moreover, it have been demonstrated
previously that a knockout of ccpA causes a decrease of ilv-leu expression [5].

2 Whenever we talk about a knockout for the bkL operon, we mean the lpdV gene of
this operon.



3.5 Effect of leucine feeding in surfactin overproduction

In order to check the working hypothesis that an increase in the intracellular
pool of leucine led to an increase of the surfactin production, a preliminary ex-
periment was performed by adding leucine in the Landy medium (instead of
(NH4)2SO4). In the medium with only (NH4)2SO4 as the nitrogen source the
specific surfactin production reached 117.09±19.62 mg/g of DW. In contrast, the
presence of leucine in the medium led to 3-fold increase of the specific surfactin
production of BBG111 (328.41±31.94 mg/g of DW) (data not shown). This ex-
periment shows that an increase in the extracellular concentration of leucine
certainly produces an intracellular increase, which was beneficial for the produc-
tion of surfactin. This confims that intracellular concentration of the precursors
are one of the most limiting factor for surfactin overproduction. Therefore, the
computer modeling of the metabolic pathway of leucine and the knockout pre-
diction obtained appear consistent and can be checked by genetic engineering.

3.6 Genetic engineering of B. subtilis for the overproduction of
surfactin and one of its precursor

In this part, we present the different phenotypic profiles of the mutant strains
obtained through genetic engineering of B. subtilis in terms of growth and specific
surfactin production. These results were obtained in different culture media when
the cells were in the exponential growth phase (about 6 hours of culture). Indeed,
at this time the srfA operon’s promoter reaches its maximum activity [8, 11], as
well as the ilvB operon is highly expressed [28, 30].

3.6.1 Genetic engineering of B. subtilis and growth analysis
According to the prediction results based on the model, various genes were

deleted. Firstly, to inhibit the CodY binding to its high affinity site on the
PIlv−Leu promoter (r1) and secondly, to delete the codY expression (r15), the
strains BBG251 and BBG254 were constructed. TnrA also negatively regulates
the ilv-leu expression under nitrogen-limited condition, the knockout predictions
giving as the result the deletion of the TnrA binding on the PIlv−Leu promoter
(r7) and the expression of tnrA (r16). To achieve the same effect, we have chosen
to completely suppress the expression of tnrA (r16) in the mutant strain BBG256.
Leucine intracellular concentration can inhibits the expression of ilv-leu operon
via Tbox attenuator. In the mutant strain BBG252, Tbox was suppressed (r40),
as recommended by the predictions. Lastly, prediction have suggested to avoid
leucine degradation by the knockout of the reactions r3, r4, r12, r13 and r47. To
get this, the expression of bcd (r10) and bkL2 (r11) were suppressed, giving the
strains BBG253 and BBG255, respectively. Growth kinetics study was carried
out during the exponential growth phase in Landy medium supplemented with
(NH4)2SO4 and in TSS medium with 16 amino acids (Table 9). The specific
growth rate of the control strain BBG111 was found to be 0.47±0.06 h−1 and
0.55±0.05 h−1 in the former and later media respectively. The specific growth
rate of various mutant were not significantly different from the control strain



Table 9: Specific growth rate and specific surfactin production of the different
mutants strains derived from B. subtilis 168.

In TSS medium In Landy medium
Strains of Knock- Specific Specific Specific Specific
B. subtilis out growth rate surfactin production growth rate surfactin production

(h−1) (mg/g of DW) (h−1) (mg/g of DW)
BBG111 0.55±0.05 25.37±13.03 0.47±0.06 134.39±32.23
BBG251 r1 0.58±0.06 235.36±7.41 0.51±0.01 366.94±5.12
BBG252 r40 0.55±0.02 132.88±15.41 0.51±0.02 310.40±16.49
BBG253 r10 0.38±0.08 147.76±3.04 0.39±0.05 634.13±35.62
BBG254 r15 0.39±0.03 529.29±79.93 0.48±0.03 1300.21±177.76
BBG255 r11 0.58±0.07 63.78±7.89 0.54±0.04 580.46±58.22
BBG256 r16 0.59±0.01 42.03±12.14 0.47±0.12 817.99±59.01

BBG111 in the Landy medium supplemented with (NH4)2SO4. However in TSS
medium with 16 amino acids, only the specific growth rates of BBG253 and
BBG254 were lower and significantly different from that of the control strain.

3.6.2 Surfactin yield as an indicator for increase in intracellular leucine

Specific surfactin production for BBG111 along with the mutant strains are
provided in Figure 4A for TSS medium with 16 amino acids and in Figure 4B for
Landy medium supplemented with (NH4)2SO4 and summarized in Table 9. In
TSS medium with 16 amino acids, the specific surfactin production of the differ-
ent mutant strains is better than the control strain. Statistical analysis reveals
that the results obtained for BBG256 (tnrA deletion) and BBG255 (bkL2 dele-
tion) mutants was not significantly different from the control strain. Moreover,
the specific surfactin production of BBG251 (BSCodY deletion) and BBG253
(bcd deletion) can be considered in the same statistical group. In Landy medium
supplemented with (NH4)2SO4, the specific surfactin production of the different
mutant strains is also higher than the control strain. Statistical analysis reveals
that these results were significantly different from those obtained with the control
strain, except for the strain BBG251, in which the CodY high affinity binding
site was deleted (BSCodY). The specific surfactin production of this strain can
be also considered as close to those obtained with the strain BBG252 (Tbox
deletion). Moreover, the specific surfactin production of BBG253 (bcd deletion)
and BBG255 (bkL2 deletion), which are the two strains modified in the branched
chain amino acids degradation pathway can be considered in the same statistical
group.

4 Discussion

The metabolic flux analysis is a central method of cell engineering to increase
the productivity of host microorganisms such as bacteria, yeast and fungi. In



Figure 4: Specific surfactin production of the different knockout mutants strains
after 6 hours of culture in TSS medium containing mix of 16 amino acids as
nitrogen source (A) and in Landy medium containing (NH4)2SO4 as nitrogen
source (B). Results are expressed as mean value with standard deviation and
statistical analysis of these data was made using one-way ANOVA using a Student-
Newman-Keuls post hoc test (p value = 0.05). Different letters were used to
indicate significant differences between groups.



this area, many fundamental studies have been conducted on the pathways
regulations and metabolic flux analysis [32]. The use of bioinformatics in re-
cent years helped to develop tools for reconstruction of metabolic pathways and
genome scale metabolic modeling in order to overexpress metabolites, but most
of them are only applied to primary metabolites and not on secondary metabo-
lites [39, 15, 1, 24, 35]. In this work we are interested to overproduction of a
secondary metabolite, i.e., the surfactin biosynthesized by NRPS. In a previous
work, the problem of lipopeptide synthetase expression was avoided by replacing
the surfactin operon promoter by a constitutive one, and this revealed only a
small enhancement of surfactin production suggesting that the precursor sup-
ply is the problem for the surfactin overproduction in B. subtilis 168 derivative
strains and not the synthetase expression [8]. To overcome this limitation, we
have developed here for the first time an original and fully integrated approach of
synthetic biology to overproduce the secondary metabolite surfactin and its pre-
cursors. This approach was focused on a modeling language for reaction networks
with partial information and on a new knockout prediction algorithm based on
abstract interpretation, that applies to all models written in this language. We
have applied this new knockout prediction algorithm to the overproduction of
intracellular leucine production, which in turn was conjectured to increase the
production of surfactin in different mutants of B. subtilis 168.

To achieve our result, we have completely modeled one of the most com-
plex and regulated metabolic pathway of B. subtilis, i.e. the branched chain
amino acid metabolic pathway, in the new modeling language. When applied
to the regulation subnetwork of the ilv-leu operon, our prediction algorithm re-
turned 4 solutions corresponding to 4 single knockout predictions with respect
to the larger model. And when applied to the complete model, 12 plausible
single knockout predictions were returned, which included the 4 previous pre-
dictions. From these 12 predictions, we carried-out the 6 with most direct effect
and verified them in-vivo. Since, the peptide moiety of surfactin contains four
leucine molecules; we have measured the surfactin concentration as an indicator
to detect the intracellular level of leucine.

The regulation of the ilv-leu operon is dependent on the availability and na-
ture of carbon and nitrogen sources in the chemical medium (the context), since
these are involved in various global regulators i.e. CcpA (carbon), TnrA (nitro-
gen) and CodY (amino acids and Gtp) and other regulators which depends upon
the influence of these global regulators and change in concentration of various
intracellular metabolites [38, 44, 5, 4, 14]. Therefore, our results also depend
on the medium that is chosen. To analyse the specific surfactin production the
mutants strains were cultivated in two differents media, which contain a dif-
ferent composition in carbon and nitrogen sources. Indeed, TSS medium with
16 amino acid is low concentrated in glucose (5 g/L), but very rich in organic
nitrogen (4.5 g/L), unlike the Landy medium supplemented with (NH4)2SO4 is
very rich in glucose (20 g/L) and mainly contains inorganic nitrogen (3.6 g/L)
and a small amount of organic nitrogen (1 g/L yeast extract). As it shown on
the Figure 4 the difference in medium composition led to difference in specific



surfactin production. The production is increased for all the mutants in glucose-
rich medium (Landy), and this is also true for the control strain. This finding
confirm the prediction made without knockout (penalties 4; shown in Tables 6)
where an increase in pyruvate influx lead to an increase of leucine production.
Pyruvate is a direct result of glycolysis, we could consider that an increase in
glucose concentration in the medium may result in an increase of pyruvate in-
tracellular concentration. Otherwise, the difference in nitrogen supply reveal a
very different behavior of the mutants.

Most of the regulatory genes involved in the branched chain amino acid
metabolic pathway being pleiotropic regulators in B. subtilis, so the effect on
the growth of the strains in which these genes were deleted has also been stud-
ied. Growth analysis of the different mutant strains shows that the deletion of
tnrA and Tbox have no significant impact on the specific growth rate of the
strains. These data suggests that no significant influence was contributed by
these regulators on the growth of the mutants regardless of the carbon and ni-
trogen composition of the medium. The disruption of high affinity CodY binding
site has no effect on the growth of the strain but the codY deletion mutant has
detrimental effect on the growth in comparison to BBG111 in TSS medium with
16 amino acids. The delay in the growth of BBG254 in this medium may be due
to the impact of CodY on the growth of the strain in carbon limited condition.
Regarding the genes involved in the branched chain amino acid degradation bcd
and bkL2, which encodes for branched chain amino acid dehydrogenase and E3
lipoamide dehydrogenase (lpdV ) [10] the effects shown are different. Thus, a sig-
nificant reduction in the growth rate of the strain deleted for bcd (BBG253) was
observed in comparison to the control strain BBG111 in the TSS medium with
16 amino acids. This has also occurred to a lesser extent in the Landy medium.
bcd deletion may be leads a disturbance in the synthesis of branched-chain fatty
acids, which plays an important role in maintaining the fluidity of the membrane
lipids [23]. In contrast, in absence of lpdV, the production of α-keto acids occurs,
which suggests that lpdV is not essential as two other homologs of lipoamide de-
hydrogenase exist in B. subtilis complementing its function [10]. Although, for
some of these genes knocked out an effect on growth is observed, all the obtained
mutants are viable because these genes are not listed as essential for the cell [7].

The expression of ilv-leu operon is regulated by CodY in the presence of
branched chain amino acid and is known to respond to high content of Gtp
present in exponentially growing phase [36]. In the Landy medium supplemented
with (NH4)2SO4, there was an increase of 7 times in the specific surfactin pro-
duction with BBG254 (codY deleted; r15), which reached an exceptional value
of 1.3 g of surfactin produced per gram of dried biomass. This provides an ev-
idence for more expression of ilv-leu in the mutant strains. Thus, results in an
increase of intracellular pool of leucine. The production of the strain BBG251
(BSCodY deleted; r1) was not significantly different in this condition than the
control strain. But, in TSS medium with 16 amino acids, the difference between
CodY mutants and the control strain is more important. An enhancement of
21 times in the specific surfactin production was shown when codY is totally



deleted (BBG254) and 5 times when the CodY high affinity binding site is re-
moved (BSCodY; BBG251), in comparison to BBG111. These results highlight
the strong negative regulation provided by CodY on the branched chain amino
acids metabolism and specially when the medium is rich in amino acids. Shivers
and Sonenshein [38] have been reported that the presence of Ile and Val increase
the affinity of CodY for its binding site. In the case where CodY remains active,
we suppose that it could be able to repress the ilv-leu operon via its others bind-
ing sites. Indeed, the PIlv−Leu promoter contains four binding site for CodY,
in the promoter-proximal CodY-I+II (nt -84/-32) site is a high-affinity binding
site of CodY, while the promoter-distal CodY-III (nt-154/-107) and CodY-IV (-
185/-168) sites are low-affinity ones [38]. This shows that modification of CodY
regulation in the cell led to an enhancement of specific surfactin production
by increasing the production of leucine via the overexpression of ilv-leu operon.
This observation have been perfectly predicted by our modeling of the PIlv−Leu
regulation (r1 and decreasing the influx of CodY, see Table 5 and also in our
modeling of the complete metabolic pathway (r15)). Moreover the comparison
between the specific surfactin production of the strain BBG254 and the strain
BBG251 are consistent regarding the results previously published by Brinsmade
et al. [5]. In this study, the authors show that the copies of ilv-leu transcript for
CodY null mutant strain was 80 times more as well as for high-affinity CodY
binding site it was 28 times higher in TSS medium with 16 amino acids.

The PIlv−Leu is also subject to a negative regulation by TnrA through its
binding to the specific sites. This stimulates DNA binding inhibiting transcrip-
tion initiation and repressing the ilv-leu expression [14]. To avoid this regulation,
the prediction suggest to delete the inflow of TnrA (r16 or to suppress its binding
on the PIlv−Leu: r7). This repression was disrupted by the deletion of tnrA in
the strain BBG256. In TSS medium with 16 amino acids, the specific surfactin
production was increased twice, but this result was not considered as significant
reported to that of the control strain. But in Landy medium supplemented with
(NH4)2SO4, where the concentration of organic nitrogen was less than in the
latter medium, a 4 times increase in specific surfactin production was observed.
These results are quite logical since the impact of this regulator is bestowed only
in organic nitrogen limited conditions [12].

Intracellular concentration of leucine also downregulated the ilv-leu operon
using a feedback loop through an attenuator [5, 16]. This 80-bp leucine-dependent
stem-loop structure (Tbox) has been identified by the predictions as a target
to be deleted (r40). The effect of its deletion on specific surfactin production
of the BBG252 strain was clearly better in TSS medium with 16 amino acids
(9 fold increasing) than in the Landy medium supplemented with (NH4)2SO4

(1.5 fold increasing) in comparison to BBG111. Presence of leucine in the TSS
medium probably has the effect of inhibiting the expression of ilv-leu operon in
BBG111, regulation which does not occur in the Landy medium containing only
(NH4)2SO4 as nitrogen source. Brinsmade et al. [5] also found that the copies of
ilv-leu transcript were 19 times higher in Tbox mutant (SRB87) in comparison
to the wild type strain in TSS medium with 16 amino acids.



Most of the predictions newly obtained from the complete leucine network
were related to the genes involved in the leucine degradation: ywaA via r47, bkL
via r11 and bcd via r10, and the mechanism which activates the expression of these
two latter genes, i.e., expression of BkdR via Ile and Val activation via r12 and
r13 and its binding on the promoter via r3 or the constitutive expression of the
promoter by r4. All these knock-out predictions have same effect of interrupting
the two stages of reactions that allow the degradation of branched chain amino
acids to make fatty acid precursors (Figure 3). To test all these predictions, the
bcd and bkL2 were deleted in the strains BBG253 and BBG255, respectively.
Here, we have chosen not to interrupt ywaA because it is also involved in leucine
production through the reaction r45. However, YwaA action in this step might
be able to be offset by YbgE as these two enzymes are exchangeable and have
the same function [42]. In TSS medium with 16 amino acids, an increment of
6 times in the specific surfactin production was observed with BBG253 strain,
but no significant increase was detected with BBG255 strain. This small change
observed is perhaps due to the presence of its homologs in B. subtilis. Neverthe-
less, in Landy medium supplemented with (NH4)2SO4, the effect of knockout
on bcd and bkL2 led to the same result for both strains with an enhancement of
3 times in specific surfactin production. Finally, lpdV deletion seems to be the
right strategy because few effects on growth were observed and the impact on
the surfactin production was good.

All these results discussed above confirm the effeciency and the relevance
of the modeling language and the abstract interpretation algorithm developed
for gene knockout prediction. Indeed regarding the medium conditions all the
predicted knockouts led to an increase in surfactin production. There are many
questions for future work when it comes to the knockout prediction algorithm.
First, they could be extended to the whole metabolism of B. subtilis, but before
this, it would be very helpful to fully automatize the interpretation of the solu-
tions of the constraint solver. This includes better tools that can automatize the
presentation of the results. Second, we would like to point out that the quality of
the approximation obtained by abstract interpretation depends on the strength
of the simplification of the steady state equations, before applying the abstract
interpretation. In order to obtain reasonable guarantees for the quality of these
simplifications, the algorithm should investigated in greater depth. The question
is whether it can be formulated as a confluent term rewrite system. Third and
most importantly, the present prediction algorithm is purely qualitative, so that
it cannot predict anything quantitative on the size of the changes. Finding more
accurate quantitative abstract interpretations would be an important improve-
ment. New in-vivo metabolic engineering experiments should be performed with
the different mutants to determine the missing values of model parameters. This
in-depth metabolic study will be implemented in the models to the make it con-
sistent. In summary, this work opens numerous perspectives, firstly to improve
the models and secondly to apply this original approach to more complex sec-
ondary metabolites biosynthesis or more complex metabolic pathways such as
may be found in eukaryotic organisms.
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6 Supplementary materials

Table 10: Pcr primers used for gene deletion.
Gene Primer DNA-Sequence
bcd forward1 5’-ACAGCACCCTTAAGAGCTGGC-3’

reverse1 5’-CGACCTGCAGGCATGCAAGCTATCCAGATTG
TTCATCCTGGC-3’

forward2 5’-GCTCGAATTCACTGGCCGTCGCCAGGATGAA
CAATCTGGATAACGGCCACAGTGTATTAAGC-3’

reverse2 5’-AGCACAATCGCTTCAACTTCGC-3’
codY forward1 5’-GAGGCAATTACGCTTTGGCAG-3’

reverse1 5’-GCTCGAATTCACTGGCCGTCGAGAAAATC
TAAAATCTCATTAA-3’

forward2 5’-CGACCTGCAGGCATGCAAGCTTAATGAGATTTT
AGATTTTCTGATAAATAATCCTCCTAAACATTC
CTCGCTCGAATTCACTGGCCGTCGAGAAAATCT-3’

reverse2 5’-GCTGCAGTTAGAGAGATGCTAG-3’
bkL2 forward1 5’-AGAGCTGCAGCGATTTGACCG-3’

reverse1 5’-CGACCTGCAGGCATGCAAGCTGACTACGTCA
TACTCAGTTGC-3’

forward2 5’-GCTCGAATTCACTGGCCGTCGCAACTGAGTAT
GACGTAGTCATTTCACCCGCATCCAACGC-3’

reverse2 5’-CTATCTCATCGGACAGCAGGC-3’
tnrA forward1 5’-CAGTACAGCAAATTCAGTGG-3’

reverse1 5’-CGACCTGCAGGCATGCAAGCTCGGACTTTTA
TTATTTAACGGTCATTTTTCCACCCCTGGATG-3’

forward2 5’-GCTCGAATTCACTGGCCGTCGTTAAATAATAA
AAGTCCGGC-3’

reverse2 5’-AGCATTACACGGTAAAAGACG-3’

2 Whenever we talk about a knockout for the bkL operon, we mean more precisely the
lpdV gene of this operon.



Table 11: Molecules of leucine network.
Role Short name Chemical Species
Metabolites Ile Isoleucine

Leu Leucine
Val Valine
Akb L-2-amino-acetoacetate
Glu Glutamate
OxoGlu Oxogluterate
Gtp Guanosine triphosphate
Keta 2-keto-3-methylvalerate
Acyl−CoA Acyl Coenzime A
Ketb 2-keto-isovalerate
Ketc 2-keto-isocaproate
Pyr Pyruvate
Thr Threonine deshydratase

Proteines Bcd Branched chain amino-acid dehydrogenase
BkL 2-oxoisovalerate dehydrogenase
BkdR Transcriptional activator of BkL
CcpA Carbon catabolite control protein A
CodY Transcriptional pleiotropic regulator
IlvA Threonine deshydratase
IlvBH Acetolactate synthase
IlvC Ketol-acid reductoisomerase
IlvD Dihydroxy-acid dehydratase
LeuA 2-isopropylmalate synthase
LeuBCD 3-isopropylmalate dehydratase
TnrA Nitrogen pleiotropic transcrptional regulator
YbgE Branched chain amino-acid aminotransferase
YwaA branched chain amino-acid aminotransferase

Actors PIlv−Leu Activity of promoter of IlvBH IlvC LeuA LeuBCD operon
BSCodY Activity of CodY binding to promotor PIlv−Leu
BSTnrA Activity of TnrA binding to promoter PIlv−Leu
BSCcpA Activity of CcpA binding to promotor PIlv−Leu without BSTnrA loop
OPBkL−Bcd Activity of promoter of BkL Bcd operon
YwaA+YbgE Joint activity of YbgE and YwaA
Tbox Activity of tryptophan attenuation



Table 12: Reactions of leucine network.
Name Function
r1 bind CodY to PIlv−Leu for inhibition
r2 activate PIlv−Leu promoter
r3 bind BkdR to BkL Bcd promoter
r4 constitutive expression of BkL Bcd operon
r5 express YbgE
r6 express YwaA
r7 bind TnrA to PIlv−Leu promoter for inhibition
r9 bind CcpA to PIlv−Leu promoter without BSTnrA loop
r10 expression of Bcd, activated by OPBkL−Bcd

r11 expression of BkL, activated by OPBkL−Bcd

r12 activate BkdR by Ile
r13 activate BkdR by Val
r14 expression of CcpA
r15 express and accelerate CodY (to be explained acceleration)
r16 expression of TnrA
r17 Gtp degradation
r18 BkdR degradation
r19 YwaA+YbgE degradation
r20 disabeling of IlvA by Ile
r21 disabeling of IlvA by Val
r22 expression of IlvA inhibited by binding of CodY
r23 expression of IlvBH
r24 expression of IlvC
r25 expression of IlvD, inhibited by binding of CodY to promotor
r26 metabolic transformation of Keta to Ile activated by YwaA+YbgE,

after an amino addition taken from Glu, which becomes OxoGlu.
r27 metabolic transformation of Akb and Pyr into Keta
r28 prepare outflow of Keta activated by BkL
r29 degradation of Ile into Keta activated by YwaA and Bcd,

with an amino transfer from OxoGlu which becomes Glu.
r30 metabolic transformation from Pyr to Ketb,

activated by IlvD
r31 prepare outflow of Ketb activated by BkL
r32 degradation of Val into Ketb activated by YwaA and Bcd

with an amino transfer from OxoGlu which becomes Glu.
r33 metabolic transformation of Ketb into Ketc,

activated by LeuBCD and LeuA
r34 prepare outflow of Ketc activated by BkL
r35 degradation of Leu into Ketc ctivated by YwaA and Bcd

with an amino transfer from OxoGlu which becomes Glu.
r36 metabolic transformation of Ketb to Val activated by YwaA+YbgE,

after an amino addition from Glu which becomes OxoGlu
r37 expression of LeuA
r38 expression of LeuBCD
r39 deactivation of LeuA by Leu
r40 Leucine attenuation
r41 metabolic transformation of Thr into Akb using IlvA
r45 metabolic transformation of Ketc to Leu activated by YwaA+YbgE

after an amino addition from Glu, which becomes OxoGlu
r46 expression of YbgE, inhibited by binding of CodY to promoter
r47 expression of YwaA
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