
HAL Id: hal-01153734
https://inria.hal.science/hal-01153734

Submitted on 20 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Subtyping for Extensible, Incomplete Objects
Viviana Bono, Michele Bugliesi, Mariangiola Dezani-Ciancaglini, Luigi Liquori

To cite this version:
Viviana Bono, Michele Bugliesi, Mariangiola Dezani-Ciancaglini, Luigi Liquori. A Subtyping for
Extensible, Incomplete Objects. Fundamenta Informaticae, 1999, 38 (4), pp.325–364. �hal-01153734�

https://inria.hal.science/hal-01153734
https://hal.archives-ouvertes.fr

XX (XXXX) 1–40 1

A Subtyping for Extensible, Incomplete Objects
To Helena Rasiowa: in memoriam

Viviana Bono∗

Dipartimento di Informatica

Università di Torino

C.so Svizzera 185, I-10149 Torino, Italy

bono@di.unito.it

Michele Bugliesi†

Dipartimento di Matematica

Università di Padova

Via Belzoni 7, I-35131 Padova, Italy

michele@math.unipd.it

Mariangiola Dezani-Ciancaglini‡

Dipartimento di Informatica

Università di Torino

C.so Svizzera 185, I-10149 Torino, Italy

dezani@di.unito.it

Luigi Liquori§

Dipartimento di Matematica ed Informatica

Università di Udine

Via delle Scienze 206, I-33100 Udine, Italy

liquori@dimi.uniud.it

Abstract. We extend the type system for the Lambda Calculus of Objects [16] with
a mechanism of width subtyping and a treatment of incomplete objects. The main
novelties over previous work are the use of subtype-bounded quantification to cap-
ture a new and more direct rendering of MyType polymorphism, and a uniform
treatment for other features that were accounted for via different systems in sub-
sequent extensions [7, 6] of [16]. The new system provides for (i) appropriate type
specialization of inherited methods, (ii) static detection of errors, (iii) width subtyp-
ing compatible with object extension, and (iv) sound typing for partially specified
objects.

Keywords: Objects, Type System, Subtyping, Type Soundness.

2 Bono et al. / Subtyping for Extensible Objects

1. Introduction

In the last ten years, many theoretical studies have addressed the problem of deriving
safe and flexible type systems for object-oriented languages. The interest of these stud-
ies has initially been centered around class-based languages like Smalltalk [18]; later it
has been directed towards object-based languages, such as Self [25]. Class-based and
object-based languages are distinguished by a main conceptual difference in the under-
lying object-oriented models. Briefly, in class-based languages, objects are created by
class instantiation, and inheritance takes place at the class level; in object-based models,
instead, objects are created from existing objects used as prototypes, and inheritance
occurs at the object level.

Despite this difference, the research on object-based languages has greatly benefited
from the experience gained on class-based languages. For instance, the typing of exten-
sible objects in [16, 7, 17, 6, 24, 21] relies essentially on the same notion of row-variable
introduced by [26] to type extensible records. Similarly, the notion of recursive record-
types, introduced to provide functional models of class-based languages [12, 9, 14, 13],
has then been refined into that of Self-types in type systems for object calculi supporting
method override and object subsumption [3].

A further notion that originated from the work of class-based languages is that of
bounded quantification. First introduced in [12], this notion has then been refined in
several papers to give a denotationally sound rendering of the class-extension mechanism
underlying subclassing. In [13] and [8], subclassing was modeled in terms of the related no-
tions of F-bounded quantification and matching. A higher-order variant of bounded quan-
tification has subsequently been exploited to provide for a mechanism of class-extension
in the Object Calculus of [3].

In this paper we study the role of bounded quantification in modeling inheritance for
the Lambda Calculus of Objects [16], a pure object-based language, where (i) method
extension occurs at the object level rather than at the class level, and (ii) inheritance
is rendered in terms of delegation between (prototypical) objects. The type system we
present in this paper develops on the original work of [16] and subsequent extensions
[7, 6]. We next briefly review these proposals and discuss the relations with our present
approach.

The Lambda Calculus of Objects is an untyped λ-calculus enriched with object forms
and three primitive operations on objects: method addition, to define new methods,
method override, to redefine methods, and method call, to send a message to (i.e., in-
voke a method on) an object. In [16] a type system for this calculus is defined, that
provides for static detection of errors, such as message-not-understood, while at the same
time allowing the types of methods to be specialized to the types of the inheriting objects.
This mechanism, that is commonly referred to as MyType specialization, is rendered in the
type system in terms of a form of higher-order polymorphism which, in turn, uses implicit
quantification over row-schemes to capture the underlining notion of protocol extension.

In [7], an extension of the system of [16] is presented that gives provision for width
subtyping. The subtype relation arises from using labeled types to allow methods to be
“hidden” from the type of an object, provided that “hidden” methods are not referenced

Bono et al. / Subtyping for Extensible Objects 3

to by other methods in the type.
In [6], an orthogonal extension of [16] is proposed that allows objects to be typed

independently of the order of their method additions (in [16], the addition of a method
m to an object can be typed only if all the methods that are referenced to – via message
sends or method overrides – in the body of m are already available from that object).
That flexibility arises in [6] from introducing the notion of completion, a complement to
interface, to convey information on (the types of) the methods that are not available from
the object, and yet are referenced to by the methods of the interface. Besides allowing a
more flexible typing of methods (in particular, of mutually recursive method definitions),
this extension also allows methods to be invoked on incomplete objects, i.e. objects whose
implementation (the set of their methods) is only partially specified.

The approach we take in this paper combines the notion of subtyping proposed in [7]
with the support for incomplete objects distinctive of [6]. The combination of these two
features yields a relation of subtyping in width that (i) supports a safe notion of object
subsumption in the presence of primitives that extend the structure of an object, and (ii)
allows methods to be hidden from an object without requiring the covariance constraint
on the occurrences of the bound variable distinctive of the standard subtype rules for
recursive record-types.

The features that are accounted for by the type systems can thus be summarized as
follows:

· appropriate method specialization of inherited methods;
· static detection of errors, such as message-not-understood;
· width subtyping compatible with method extension;
· sound typing for partially specified objects.

The main technical novelties over previous work are a uniform treatment for the above
features, that were accounted via different systems in [16, 7, 6], and a new and more
direct rendering of MyType polymorphism for method bodies. In these proposals, MyType
specialization is captured in terms of the notions of higher-order row-variables and row-
application which, in turn, require a rule of β−reduction in the calculus of rows and
types. Here, instead, method specialization is rendered directly in terms of subtyping
and (implicit) bounded quantification. Technically, the new solution is based on allowing,
within our contexts, occurrences of type variables that are subtypes of suitable class-
types (i.e. types of objects). These type variables are used to characterize methods
as polymorphic functions, while relying on the subtyping constraints to ensure correct
instantiations of the method types as these methods get inherited. Although the original
approach of [16] appears superior to the present one in terms of a possible encoding in
LF [19], the new system does have the advantage of reducing the technical overhead of
the calculus of rows and types in [16] and subsequent extensions, and hence to allow a
simpler and more direct proof of Subject Reduction.

A few additional remarks are in order on the practical relevance of the type system.
The combination of subtyping with object extension, as well as the support for sound
typing of incomplete objects, are both important in modeling real languages. In particular,
the ability to type partially specified objects has two interesting applications: firstly, it

4 Bono et al. / Subtyping for Extensible Objects

is clearly central for rapid prototyping, in that it allows prototypes to be defined, and
operated with as well, while part of their implementation (i.e., part of their methods) is yet
to be defined: secondly, as we show with an example (Example 4.2), it may be exploited
in modeling language constructs such as virtual methods in class-based languages.

The rest of the paper is organized as follows. In Section 2, we briefly overview the
untyped calculus of [16], and define an operational semantics. In Section 3, we present
the new typing rules for objects. Some motivating examples are presented in Section 4,
while, in Section 5, we give a proof of type soundness. In Section 6 we discuss the role of
labeled types in our system and outline an algorithm for inferring labels for types from
label-free derivations. We conclude in Section 7 with some additional remarks, and a
discussion on related papers. Two separate appendices collect the set of typing rules, and
the definitions needed for label inference.

A preliminary version of this paper appeared in [5].

2. The Untyped Calculus

An expression of the untyped calculus can be any of the following:

e ::= x | λx.e | e1 e2 | 〈〉 | e⇐ m | 〈e1←◦m=e2〉 | e←↩ m,

where x is a variable and m is a method name. As usual, expressions that differ only in
the names of bound variables are identified. The reading of the object-related forms is as
follows:

- 〈〉 is the empty object;
- e⇐ m sends message m to object e;
- 〈e1←◦m=e2〉 extends e1 with a new method m (or redefines the existing body of m

in e1) with body e2;
- e ←↩ m searches the body of the method m within object e; this form should be

viewed as a subsidiary expression that does not pertain to the syntax of the calculus,
but rather is functional to the definition of the operational semantics.

Unlike [16], our calculus relies on a single operator, ←◦ , for modifying the structure of
an object. The expression 〈e1←◦m=e2〉 can be typed independently of whether e1 has
a type whose interface contains the method m or not; if it does contain the method m,
←◦ is operationally an override, otherwise it is an extension. As we shall see (cf. Section
3.2), the rules for subtyping allow a uniform treatment of the operations of addition and
override, that were instead distinguished in [16, 7, 17, 6]. Finally, owing to subtyping,
methods may be added to the same object more than once, provided that they are hidden
from the interface of the object type prior to a new addition.

The other main operation on objects is method invocation, whose semantics is defined
by self-application: the result of sending a message m to an object e containing a method
m is the result of applying the body of m to the object e itself. To account for this
behavior, a mechanism is needed for extracting the appropriate method out of an object.
As suggested in [16], a natural way to approach this is to use a permutation rule like the
following:

Bono et al. / Subtyping for Extensible Objects 5

Table 1. Top-level Reduction Rules

(β) (λx.e1) e2 −→ [e2/x] e1

(⇐) e⇐ m −→ (e←↩ m) e

(←↩ succ) 〈e1←◦m=e2〉 ←↩ m −→ e2

(←↩ next) 〈e1←◦ n=e2〉 ←↩ m −→ e1 ←↩ m

〈〈e←◦m=e1〉←◦ n=e2〉 = 〈〈e←◦ n=e2〉←◦m=e1〉 (m 6= n),

and define the semantics of method invocation as a reduction from the message send
〈e1←◦m=e2〉 ⇐ m to the application e2 〈e1←◦m=e2〉. In [6], it was shown that this
form of method permutation can soundly be accounted for in a system without subtyping.
Unfortunately, in the presence of subtyping, permuting the order of two method additions
within an object may change the type of the object, thus making the above equation
unsound (see Example 4.4).

Therefore, in the definition of the operational semantics, we adopt a different solution
that uses the search operator ‘←↩’ to inspect the structure of objects and to perform
method extraction. The core of the operational semantics is given in Table 1.
Rule (β) is standard, while the remaining rules formalize the semantics of method invo-
cation: evaluating e ⇐ m leads to evaluating the application (e ←↩ m) e, where e ←↩ m
returns the body of the method m that is then applied to e itself. Method search is per-
formed by a recursive traversal of the “sub-objects” of e that succeeds upon reaching the
rightmost addition of the method in question. The use of search expressions in our calcu-
lus is inspired by [7], and it provides a more direct technical device than the bookkeeping
relation originally introduced in [16].

The evaluation relation can be defined as follows. First define a context C[−] to be
an expression with a single hole, and let C[e] be the result of filling the hole with the

expression e. Then define the relation of one-step evaluation
eval−→ as follows:

e1
eval−→ e2 iff e1 ≡ C[e′1], e2 ≡ C[e′2], and e′1 −→ e′2.

Finally, define the evaluation relation
eval−→−→ as the reflexive and transitive closure of

eval−→.

2.1. Operational Semantics

To formalize a notion of operational semantics, we introduce an evaluation strategy.
Following the standard practice, this strategy is lazy in that it does not work under
λ-abstractions; similarly, it defers reducing under primitives of object formation until
reduction is required to evaluate a message send.

As usual, the goal of evaluation is to reduce a closed expression to a value. For the
purpose of the present calculus, we define a value to be either a closed λ-abstraction, or
a constant (the empty object 〈〉), or a closed object expression of the form 〈e1←◦m=e2〉.

6 Bono et al. / Subtyping for Extensible Objects

Table 2. Operational Semantics

Evaluation

(eval val)
val ⇓ val

(eval app)
e1 ⇓ λx.e′1 [e2/x]e′1 ⇓ val

e1e2 ⇓ val

(eval send)
e ⇓ obj obj ←↩ m ↓ e′ e′ obj ⇓ val

e⇐ m ⇓ val

Search

(search succ)
〈e1←◦m=e2〉 ←↩ m ↓ e2

(search next)
e1 ⇓ obj obj ←↩ m ↓ e

〈e1←◦ n=e2〉 ←↩ m ↓ e

The evaluation strategy is defined in terms of two mutually recursive relations: ⇓ and
↓. The actual evaluation relation is ⇓, that reduces expressions to values; ↓ is an auxiliary
relation that reduces expressions to expressions (not necessarily values) and models the
search of methods within objects required to evaluate message sends: mutual recursion
is needed to handle this search correctly. The two relations are axiomatized by the rules
in Table 2 (val denotes an arbitrary value, and obj an object expression of the form
〈e1←◦m=e2〉).

Observe that the operational semantics is deterministic: if e ⇓ val1 and e ⇓ val2,
then val1 ≡ val2. Moreover, this semantics is interesting since it immediately suggest an
algorithm for reduction (i.e., an interpreter for our calculus). Furthermore, both ⇓ and ↓
are contained in

eval−→−→ . More formally:

Proposition 2.1. If e ⇓ val, then e
eval−→−→ val. Similarly, if e ↓ e′, then e

eval−→−→ e′. ut

This proposition will be useful in the proof of type soundness for the operational semantics

(cf. Section 5). Given that both ⇓ and ↓ are contained in
eval−→−→ , we can (i) prove a single

subject reduction theorem, for
eval−→−→ , and then (ii) use the immediate consequence that

both ⇓ and ↓ preserve types to prove the absence of stuck states.

Bono et al. / Subtyping for Extensible Objects 7

3. The Type System

The definition of the type system is centered around the notion of incomplete objects
[6]. Incomplete objects behave operationally as “standard” objects whose methods may
be invoked via corresponding messages. Their typing, instead, is different, in that an
incomplete object may be typed even though it contains references (via message sends or
overrides) to methods that are yet to be added to the object. The type of an incomplete
object is defined by a type expression of the form:

class t.〈〈m1:α1, . . . ,mk:αk〉〉◦〈〈p1:γ1, . . . , pl:γl〉〉,

where the mi’s and pi’s are method names, whereas the αi’s and the γi’s are labeled
types (whose role is discussed below). Given the above class-type, we refer to the two
rows 〈〈m1:α1, . . . ,mk:αk〉〉 and 〈〈p1:γ1, . . . , pl:γl〉〉 as, respectively, the interface and the
completion of the type. The binder class scopes over the two rows, and the bound
variable t may occur free within the scope of the binder, with every free occurrence
referring to the class-type itself.

The interface of a class-type describes all the methods (and their types) that have
been added to the objects of that type. The completion, instead, conveys information
on (the types of) the methods that have not been added to an object, and yet are (may
be) referenced by the methods already available from that object. Thus, intuitively, the
completion of a class-type lists all of the methods that are needed to “complete” objects
with that type.

The typing of incomplete objects relies in an essential way on the information encoded
in the labels associated to the types of methods. Labeled types bear the same meaning
as in [7]: if α ≡ τ∆ is the labeled type of a method m within an object, then ∆ lists the
names of other methods of that object upon which the body of m may depend. Unlike
[7], however, in our system labels contain also indirect dependencies: the label ∆ above
contains the names of the methods referenced by m in a send or an override for self 1,
together with the methods referenced by these methods, and so on. This encoding still
allows new types to be derived, by subtyping, from a given class-type. Subtyping is based
on the standard idea of hiding methods from the type of an object (width subtyping). The
difference, here, is that hiding is constrained by labels: a method may be hidden from the
interface or the completion of a type only if it does not occur in the labeled type of any
of the remaining methods of the interface of the type.

3.1. Types and Rows

Types include type variables, function types and class-types. Throughout the paper we
use the following conventions: types are denoted by Greek letters such as τ , σ, ς, µ, . . .,
whereas labeled types are denoted by α, γ, η, Type variables are denoted by t as well
as by the letters u and v: typically t will be the variable associated with the binder class,
while u and v are used to indicate subtype-bound type variables declared in a context

1Following the terminology of [10], invoking or overriding a method on the self-parameter are self-inflicted
operations.

8 Bono et al. / Subtyping for Extensible Objects

Table 3. Syntax of Types and Rows

Labels ∆ ::= {m1, . . . ,mk} k ≥ 0

Rows R ::= 〈〈〉〉 | 〈〈R | m:τ∆〉〉 with m 6∈ M(R),m 6∈ ∆

Types τ ::= t | τ→τ | class t.R1 ◦R2 with M(R1) ∩M(R2) = {}
and M(R1) ∪M(R2) ⊇ L(R1) ∪ L(R2)

(see below). All symbols may appear indexed by integers, and the vector notation “ ”
has the usual meaning.

Labels, rows, and types are defined inductively in Table 3. M(R) denotes the set of
method names of a row R, i.e.:

M(〈〈〉〉)={}, and M(〈〈R | m:τ∆〉〉)=M(R) ∪ {m}.

L(R) denotes the set of method names occurring in the labels of types in R, i.e:

L(〈〈〉〉)={}, and L(〈〈R | m:τ∆〉〉)=L(R) ∪∆.

The conditions on class t.R1 ◦ R2 guarantee (i) that the same method name does not
occur twice either in the interface or in the completion of an object type, and (ii) that all
the method names occurring in the labels occur in the rows as well.

Row expressions that differ only for the order of m:α pairs, or for the name of the type
variable bound by class are considered identical. Although the interface and completion
of a class-type are structurally equivalent, we will often find it convenient to distinguish
their role by choosing different symbols, namely, R and C stand for arbitrary interfaces
and completions, respectively.

Note that, unlike previous proposals, [16, 7, 6], the structure of our types is given
independently of notions such as row variables, higher-order rows, applications of rows
to types, and kinds. This allows a simplification over these proposals as, having no β-
reduction for types, our type derivations are in normal form by construction.

The contexts of the type system list types for term variables and subtype bounds for
type variables:

Γ ::= ε | Γ, x : τ | Γ, u � class t.R ◦ C.

The bounds for type variables declared in a context must be class-types: this choice is
motivated by the structure of the typing rules, where the subtype bounds are functional
only to the polymorphic typing of method bodies (see the typing rules in Section 3.3
below).

The judgments of the type system are the following:

Γ ` ∗ Γ ` e : τ Γ ` τ1 � τ2,

where Γ ` ∗ can be read as “Γ is a well-formed context” and the meanings of the other
judgments are the usual ones. Table A.1 shows the formation rules for contexts. We

Bono et al. / Subtyping for Extensible Objects 9

denote with V ar(τ), for any type τ , the set of type variables occurring in τ , and with
Dom(Γ) the domain of the context Γ (which includes term variables and type variables);
the notation 6∈ stands for “does not occur in”, and the notation ≡ (respectively 6≡) denotes
syntactic equality (resp. inequality) modulo renaming of bound variables between terms,
types, labels, labeled types, or contexts.

Remark 3.1. In writing the typing rules for contexts and the rules for subtyping, we
assume that all the types occurring in the judgments of the rules conform with the syntax
of types. In contrast, in writing the typing rules for terms, only the types in the assump-
tions are assumed to be well-formed, while the correctness of the type in the conclusion
follows from this assumption and, when needed, from the side-conditions for the rules.

3.2. Subtyping Rules

The subtype relation, defined in Table A.2, combines the standard rules for reflexivity,
transitivity and for the arrow-type constructor (that is contravariant in its domain), with
two additional rules that define subtyping over class-types.

The first rule, (� shift), states that moving a method from the interface to the
completion of a given class-type generates a supertype of the given type.

The (� hide) rule, in turn, states that a given class-type can be generalized to any
other type that results from hiding methods from the completion. From the formation
rules for types, it follows that the methods that are “hidden” are not referenced by the
remaining methods of the interface and the completion. In fact, by definition, we have
that M(R) ∪M(C) ⊇ L(R) ∪ L(C), and this, in turn, implies that p 6∈ L(R) ∪ L(C).

Width subtyping over class-types may be accounted for by the combination of (� shift)
and (� hide): methods of the interface of a class-type may be hidden by first moving them
to the completion. The resulting subtype relation is the same as in [7]: a set of methods
may be hidden from the interface of a class-types only if no method in the set occurs
in the dependency set of the remaining methods. Since labels are enforced to provide
a sound representation of the dependencies of a method (see the (ext), (comp), (over)
rules in the next subsection), hiding of methods may safely be accomplished by looking
at the method labels without imposing the covariance constraints on the occurrences of
the bound variable distinctive to the standard subtype rules for recursive record types.

3.3. Typing Rules

The typing rules of the system, presented in Table A.3, include the standard rules for
the untyped lambda calculus, as well as a subsumption rule (�) used in conjunction with
the subtype relation to account for type promotion. The rules for object expressions are
described next.

The first rule, (empty), should be self-explanatory: since the empty object contains no
method, it needs no further method to be completed.

The (send) rule types a method invocation. A call to a method n on an object e
requires that the interface of e contain the method n, to be called, as well as all of the
{m} methods upon which n may depend: from the definition of the subtype relation, it

10 Bono et al. / Subtyping for Extensible Objects

follows that every type σ � class t.〈〈m:α, n:τ{m}〉〉◦〈〈〉〉 satisfies both these constraints.
The result of the invocation has the type [σ/t]τ that results from substituting σ, the type
of e, for t in τ . As in [16], this substitution reflects the recursive nature of class-types.

The (search) rule, for typing a search expression, is similar to the previous, but slightly
more general, because the search of a method encompasses a recursive inspection of the
recipient object (i.e. of self). Given that e ←↩ n arises as a result of reducing a message
send, the type σ that is substituted for t in the conclusion is the type of the recipient of
the message: as such, this type is subject to the same constraint imposed in the (send)
rule over the type of the recipient. On the other hand, the object e is the sub-object of
the recipient where the body of method n is eventually found: for this sub-object, we
require that it contain n in its interface, as well as the dependencies m:α of n, either in
the interface or in the completion.

A further interesting aspect of both the (send) and (search) rules is that the type
σ may either be a class-type or else an unknown type (i.e., a type variable) occurring
(bounded) in the context Γ. This generality is required in the polymorphic typing of
method bodies where the recipient of a message may be the self object, whose type is a
bound type variable occurring in the context Γ (see the rules (ext), (comp), and (over)).

To explain the typing rule for method addition, we distinguish the case when the
method n, to be added, does not occur in the type of the object that gets extended, from
the case when it does.

In the first case, we need to determine the labeled type of n, and possibly to extend
the completion of the resulting class-type with new methods referenced by this method.
This is accomplished by the rule (ext). Here, m:α ∈ R◦C indicates that the m:α methods
are contained in R ◦C, whereas the condition n, p 6∈ M(R)∪M(C) is required to ensure
that the type in the conclusion contains no duplicate occurrences of the methods n and
p. The fact that this type is well-formed follows then from the assumption that the type
class t.〈〈m:α, p:γ, n:τ{m,p}〉〉◦〈〈〉〉 is well-formed: in fact, one has {m, p, n} ⊇ L(〈〈p:γ〉〉) and
this implies that M(R) ∪ {n} ∪M(C) ∪ {p} ⊇ L(〈〈p:γ〉〉).

The intuitive reading of the (ext) rule is as follows. First we note that n may depend
on methods that are already contained in the object as well as on methods that are yet to
be added. This explains why the label associated to the type of n includes the methods
m that are already present in the type of e1, and the p that are, instead, yet to be added
(and hence, included in the completion with their labeled types γ). Note, further, that all
of these methods (i.e. the methods m and p) are assumed to occur in the interface of the
type used as a bound for u in the typing of e2: this guarantees that the choice of {m, p} as
the label of n is a sound representation of the (direct and indirect) dependencies of n. To
see this, consider the case when e2 is the expression λself .(self⇐p), for a given method
p. An inspection of the (send) rule shows that, in order for the invocation self⇐p to be
typeable, the interface of the type of self must include not only p, but also all of the, say,
q methods in the label of the type of p. But then, the label of n must include p, a direct
reference, as well as the methods q that n references indirectly via p.

As a final and important remark, we note that, as in [16], the type of n has the
form t → τ (with a class-type substituted for t) to conform with the self-application
semantics of method invocation. The difference from [16] is in the way polymorphic types

Bono et al. / Subtyping for Extensible Objects 11

of method bodies are instantiated to allow applications to extended objects. Instead
of introducing row variables, we allow applications of e2 to any object of type ρ with
ρ � class t.〈〈m:α, p:γ, n:τ{m,p}〉〉◦〈〈〉〉.

The other case of method addition arises when the method n occurs in the type of the
object e1 that is being extended. There are two possible situations that may lead to this
case: either n has not been added to e1, but it is referenced by other methods of that
object, or else n has been added to e1. In the first case, n occurs in the completion of
the type of e1, and the addition is typed with the (comp) rule; in the second, n is in the
interface, and the addition is, operationally, an override typed with the (over) rule.

The (comp) rule is similar to (ext), with two differences: firstly, instead of adding
the method n to the interface, (comp) moves n (and its type) from the completion to
the interface; secondly, it does not need to add new methods to the completion, since
the dependencies of n are a subset of the dependencies of the method that, when added,
caused n to be included into the completion.

In the (over) rule, the bound class t.〈〈n:τ{m}〉〉◦〈〈m:α〉〉 for the type σ of e1 guarantees
(i) that e does contain the method n in its interface, and (ii) the n and the methods m do
not depend on other methods of R ◦C (this is ensured by the choice of m as the label of
n, made when typing e1). As for (send), σ can be a type variable, thus allowing method
overrides on the self object.

4. Examples

In this section we put forward a few examples that help illustrate the distinguishing fea-
tures of our type system, and compare it with previous proposals. To ease the presenta-
tion, we use an extended syntax with (term and type) constants and predefined functions,
and use the following shorthand: 〈x = e〉 for 〈〈〉←◦ x = e〉, and τ for τ∆ whenever ∆ is
empty.

4.1. MyType Method Specialization

The first example is borrowed from [16], and shows that the typing rules capture the
desired form of method specialization. Consider the following object expression:

p
4
= 〈〈x = λself.3〉←◦ mv = λself.λdx.〈self←◦ x = λs.(self⇐ x) + dx〉〉.

In Table 4 below, we give a derivation of the judgment:

ε ` p : class t.〈〈x:int, mv:(int→t){x}〉〉◦〈〈〉〉,

assuming that ε ` 〈x = λself.3〉 : class t.〈〈x:int〉〉◦〈〈〉〉 is derivable in our system.
With a similar proof, we may also derive the judgment:

ε ` 〈p←◦ c = λself.blue〉 : class t.〈〈x:int, mv:(int→t){x}, c:col〉〉◦〈〈〉〉,

that illustrates how the type of mv gets specialized as the method is inherited from a point
to a colored point.

12 Bono et al. / Subtyping for Extensible Objects

Table 4. Proof of ε ` p : class t.〈〈x:int, mv:(int→t){x}〉〉◦〈〈〉〉 in our system

Contexts

Γ0 ≡ u � class t.〈〈x:int, mv:(int→t){x}〉〉◦〈〈〉〉 Γ1 ≡ Γ0, self : u, dx : int
Γ2 ≡ Γ1, v � class t.〈〈x:int〉〉◦〈〈〉〉 Γ3 ≡ Γ2, s : v

Derivation

1. Γ3 ` (self⇐ x) + dx : int
by (send) from Γ3 ` self : u, and Γ3 ` u � class t.〈〈x:int〉〉◦〈〈〉〉.

2. Γ2 ` λs.(self⇐ x) + dx : v→int
3. Γ1 ` 〈self←◦ x = λs.(self⇐ x) + dx〉 : u

by (over) from Γ1 ` self : u, Γ1 ` u � class t.〈〈x:int〉〉◦〈〈〉〉, and 2.
4. Γ0 ` λself.λdx.〈self←◦ x = λs.(self⇐ x) + dx〉 : u→int→u
5. ε ` p : class t.〈〈x:int, mv:(int→t){x}〉〉◦〈〈〉〉

by (ext) from ε ` 〈x = λself.3〉 : class t.〈〈x:int〉〉◦〈〈〉〉 and 4.

To see the difference between our system and the system of [16], Table 4 should be
contrasted with Table 5, where we report the original proof of the corresponding judgment
in [16]2.

As it can be seen, the two derivations have essentially the same structure, but there is
a key difference in the way the polymorphic type for mv is captured in the two systems.
In our system, that type is polymorphic in the type variable

u � class t.〈〈x:int, mv:(int→t){x}〉〉◦〈〈〉〉,

while in [16] the polymorphic type derives from the use of the extensible row inside the
class-type class t.〈〈rt | x:int, mv:(int→t)〉〉.

4.2. Incomplete Objects

The next two examples show that the type system allows the typing of partially specified
objects, thus also allowing complete freedom in the order of method additions.

Consider first reversing the order of the method additions in the p object of Example
4.1, and let

rp
4
= 〈〈mv = λself.λdx.〈self←◦ x = λs.(self⇐ x) + dx〉〉←◦ x = λs.3〉.

This object cannot be typed in the system of [16], because the sub-object

ip
4
= 〈mv = λself.λdx.〈self←◦ x = λs.(self⇐ x) + dx〉〉

2In Table 5, r:T → [x, mv] indicates that r is a higher-order row variable which, when applied to a type, returns
a row not containing the methods x, mv. So r can be applied to the type variable t.

Bono et al. / Subtyping for Extensible Objects 13

Table 5. Proof of ε ` p : class t.〈〈x:int, mv:(int→t){x}〉〉◦〈〈〉〉 in [14]

Contexts

Γ0 ≡ r:T → [x, mv] Γ1 ≡ Γ0, self:class t.〈〈rt | x:int, mv:(int→t)〉〉, dx : int
Γ2 ≡ Γ1, r

′:T → [x, mv] Γ3 ≡ Γ2, s:class t.〈〈r′t | x:int, mv:(int→t)〉〉
Derivation

1. Γ3 ` (self⇐ x) + dx : int
2. Γ2 ` λs.(self⇐ x) + dx : class t.〈〈r′t | x:int, mv:(int→t)〉〉→int
3. Γ1 ` 〈self←◦ x = λs.(self⇐ x) + dx〉〉 : class t.〈〈rt | x:int, mv:(int→t)〉〉
4. Γ0 ` λself.λdx.〈self←◦ x = λs.(self⇐ x) + dx〉

:[class t.〈〈rt | x:int, mv:(int→t)〉〉/t](t→int→t)
5. ε ` p : class t.〈〈x:int, mv:(int→t)〉〉

is not well typed in that system. In contrast, rp is typeable in our system, as the judgment

ε ` ip : classt.〈〈mv:(int→t){x}〉〉◦〈〈x:int〉〉

is derivable. To see this, apply steps 1–4 of Table 4, and conclude from ε ` 〈〉 : class t.〈〈〉〉◦
〈〈〉〉 by (ext) and 4. Then the judgment ε ` rp : classt.〈〈mv:(int→t){x}, x:int〉〉◦〈〈〉〉 is
derivable using the (comp) rule.

As a further example, consider the following expression, defining an object with an
x field and a method that returns the logarithm of this field, whenever it contains a
non-negative integer:

abs
4
= 〈〈 x = λself. 0〉←◦ safe log = λself. if (self⇐ x) ≥ 0

then log (self⇐ x)
else self⇐ handle ex 〉.

Given this definition, the following typing is derivable in our system:

ε ` abs : class t.〈〈x : int, safe log : real{handle ex}〉〉◦〈〈handle ex : real〉〉.

Note that abs does not specify how exceptions should be handled, assuming that this
method will be defined in objects derived from abs. Objects like abs are reminiscent
of the notion of abstract classes in class-based languages like C++, with methods like
handle ex playing the role of what’s referred to as pure virtual functions in the C++
jargon. Given the above typing, the call abs ⇐ safe log does not type check, for the
method safe log depends on the method handle ex, yet to be added. However, new
objects can be derived from abs, as for instance,

ε ` handler 4= 〈abs←◦ handle ex = ...〉

14 Bono et al. / Subtyping for Extensible Objects

providing a definition of the handle ex method such that the judgment

ε ` handler : class t.〈〈x : int, safe log : real{handle ex}, handle ex : real〉〉◦〈〈〉〉,

is derivable. Given this typing, the call handler ⇐ safe log does type check, for the
judgment ε ` handler⇐ safe log : real is derivable.

4.3. Transitivity of Labels

The next example motivates the requirement that the labels of method types contain
both direct and indirect dependencies. Consider extending the ip object of Example 4.2
as shown below:

newip
4
= 〈ip←◦ foo = λs.λdx.(s⇐ move) dx〉.

The following judgment may be derived:

ε ` newip : class t.〈〈move:(int→t){x}, foo:(int→t){move,x}〉〉◦〈〈x:int〉〉.
Note that the typing rules force the label of foo to include the method x, although foo
depends on x indirectly via move. The reason why indirect references in the labels are
needed should now be clear: if we only had move in the label of foo, we would be able
to type the invocation (newip ⇐ foo)3 which, instead, causes a message-not-understood
error because newip does not contain x.

4.4. Permutation of Methods

The next example shows that the permutation rule of [6] for method additions does
not preserve types in presence of width subtyping. As a counterexample, consider the
expression

e
4
= 〈x = λs.3〉.

Then, ε ` e : class t.〈〈x:int〉〉◦〈〈〉〉 is derivable, and hence, by (� hide), ε ` e : class t.〈〈〉〉◦
〈〈〉〉 is also derivable. Now, we can extend e with a method y of type bool{x} that requires
x to have the type bool. For instance, the following judgment is derivable:

ε ` 〈e←◦ y = λs.not(s⇐ x)〉 : class t.〈〈y:bool{x}〉〉◦〈〈x:bool〉〉,

where not is the logical negation. Clearly, it is impossible to permute the two method
additions (of x and y) preserving the final type.

4.5. Comparison with the System of Fisher & Mitchell

A final example illustrates one interesting difference between our system and a related
extension of the system of [16] presented in [17]. In [17], the subtype relation arises from
introducing two distinguished sorts of object types: pro-types, and obj-types. Objects
having pro-types may be freely operated with (they may be sent messages, or extended
with new methods, or modified by overriding existing methods), but only trivial subtyping

Bono et al. / Subtyping for Extensible Objects 15

is allowed over pro-types. On the other hand, objects having obj-types may only respond
to messages, or modify their own structure from the “inside” (i.e. via overrides on self
within their own methods), whereas they may not be modified or extended from the
outside.

pro-type and obj-types are ordered by the subtype relation, so as to allow pro-typed
objects to be “sealed” by promoting their types to corresponding obj-types by subsump-
tion. Type promotion from pro-types to obj-types is allowed provided that the type
variable bound by the obj-type does not occur in contravariant position.

This distinction between pro- and obj-types has several interesting consequences: first
it gives insights into the different nature of the inheritance and client interfaces of objects
and classes in object-oriented languages; secondly, as shown in [17], it allows a quite
natural modeling of method encapsulation. However, the resulting type discipline does
not allow the typing of some expressions that, instead, we can deal with. To illustrate
the problem, consider the following function:

plot
4
= λp.〈p←◦ c=λs.white〉,

mapping one-dimensional points to colored points. The following judgment is easily de-
rived in our type system:

ε ` plot : class t.〈〈x:int〉〉◦〈〈〉〉→class t.〈〈x:int, c:col〉〉◦〈〈〉〉.

Then, given a colored point cp of type, say, class t.〈〈x:int, c:col〉〉◦〈〈〉〉, we may safely apply
plot to cp because, by subtyping, we have ε ` cp : class t.〈〈x:int〉〉◦〈〈〉〉.

This simple property is lost in the system of [17]. In fact, having distinguished obj-
and pro-types, one may prove that:

ε ` plot : pro t.〈〈x:int〉〉→probj t.〈〈x : int, c:col〉〉,

where probj is either pro or obj. On the other hand, one cannot prove that:

ε ` plot : obj t.〈〈x:int〉〉→probj t.〈〈x : int, c:col〉〉.

This is because plot modifies its input argument with a method addition, an operation
that is only allowed on pro-types. But, then, there is no way to type an application of
plot to the colored point cp. In fact, one may either take cp to have type obj t.〈〈x:int〉〉
or type pro t.〈〈x:int, c:col〉〉, but, according to the subtype relation of [17], neither of these
types is a subtype of pro t.〈〈x:int〉〉 (since pro-types are subtypes of obj-types, but not
vice versa, and width subtyping is not allowed over pro-types).

5. Soundness of the Type System

The proof of soundness for the type system follows the standard pattern: we first show
that types are preserved by the reduction process, i.e., that if e1 has type τ , and e1 reduces
to e2, then also e2 has type τ ; then we use this result to prove absence of stuck states in
the evaluation of well-typed expressions.

16 Bono et al. / Subtyping for Extensible Objects

5.1. Preliminary Lemmas

Let A denote any right-hand side of a judgment in the type system, (i.e. A is one of ∗,
or σ � τ , or e : τ), and let a denote any declaration that may can occur in a context (i.e.
a is either u � τ , or x : τ). Throughout this section we use the following easily verified
facts:

· if Γ ` A is derivable, then so is Γ ` ∗;
· if Γ,Γ′ ` ∗ is derivable, then so is Γ ` ∗;
· if Γ, u � σ ` ∗ is derivable, then u 6∈ Γ and u 6∈ σ.

We first show that the following two rules are admissible:

Γ1 ` A Γ1,Γ2 ` ∗

Γ1,Γ2 ` A
(weakening)

Γ1, x : σ,Γ2 ` A Γ1 ` τ � σ

Γ1, x : τ,Γ2 ` A
(� strengthening).

Lemma 5.1.

1. If Γ1 ` A, and Γ1,Γ2 ` ∗ are both derivable, then so is Γ1,Γ2 ` A.
2. If Γ1, x : σ,Γ2 ` A, and Γ1 ` τ � σ are both derivable, then so is Γ1, x : τ,Γ2 ` A.

Proof:

(1) We prove the following, more general statement:

(?) if Γ1,Γ2 ` A, and Γ1, a,Γ2 ` ∗ are both derivable, then so is Γ1, a,Γ2 ` A.

As a consequence, we have that Γ1, a ` A is derivable whenever so are Γ1 ` A, and
Γ1, a ` ∗. That (weakening) is admissible follows then by induction on the length of Γ2.

The proof of (?) is by induction on the derivation of Γ1,Γ2 ` A. The only interesting
cases are (i) when a is u � τ and Γ1,Γ2 ` A is the conclusion of either one of (ext),
(comp), or (over), and (ii) when a is x : σ and Γ1,Γ2 ` A is the conclusion of (exp abs),
with A of the form λx.e : τ1→τ2.

In the case of (i), the proof follows directly from the induction hypothesis, noting that
the typeability of the method body in the premises of (ext), (comp), and (over) does not
depend on the name of the type variable that is discharged by the rule.

In the case of (ii), the judgment in question must be derived from a judgment of the
form Γ1,Γ2, x : τ1 ` e : τ2. Since this judgment is itself derivable, we can adapt the proof
of the renaming result in [23] (developed for Pure Type Systems) to the present calculus.
From this, we have that Γ1,Γ2, y : τ1 ` [y/x]e : τ2 is derivable for any y 6≡ x that is not
contained in Γ1,Γ2.

Then, also Γ1, x : σ,Γ2, y : τ1 ` ∗ is derivable from Γ1, x : σ,Γ2 ` ∗ using (exp var).
By the induction hypothesis, Γ1, x : σ,Γ2, y : τ1 ` [y/x]e : τ2 is derivable; by a further
application of (exp abs), we then obtain a derivation of Γ1, x : σ,Γ2 ` λy.[y/x]e : τ1→τ2,
which is the judgment we wished to derive, as λy.[y/x]e ≡ λx.e.

(2) By induction on the derivation of Γ1, x : σ,Γ2 ` A. The only interesting case is when
A is x : σ and Γ1, x : σ,Γ2 ` x : σ is the conclusion of (proj). Then, Γ1, x : τ,Γ2 ` x : τ is
derivable by (proj) and Γ1, x : τ,Γ2 ` τ � σ is derivable from Γ1 ` τ � σ by (weakening),
which is admissible by Lemma 5.1(1). Hence, Γ1, x : τ,Γ2 ` x : σ is derivable by (�). ut

Bono et al. / Subtyping for Extensible Objects 17

5.2. Substitution and Generation Lemmas

To prove the subject reduction theorem, we need the following substitution property for
typing derivations and a generation lemma (Lemma 5.4).

Lemma 5.2. (Substitution) If the judgments Γ1, u � σ,Γ2 ` A and Γ1 ` τ � σ are
both derivable, and the type τ is such that V ar(τ)∩Dom(Γ2) = ∅, then also the judgment
Γ1, [τ/u]Γ2 ` [τ/u]A is derivable.

Proof:

By induction on the derivation of Γ1, u � σ,Γ2 ` A, and by a cases analysis on the
last rule of the derivation. Most of the cases follow easily by induction: below, we give
the more interesting ones.

· (type var) If u is not the introduced variable, the rule is as follows:

Γ1, u � σ,Γ2 ` ∗ v 6∈ (Γ1, u � σ,Γ2) v 6∈ ρ

Γ1, u � σ,Γ2, v � ρ ` ∗
(type var).

Let τ be any type such that V ar(τ) ∩ Dom(Γ2, v � ρ) = ∅. Then V ar(τ) ∩
Dom(Γ2) = ∅, and v 6∈ τ . Now, by the induction hypothesis Γ1, [τ/u]Γ2 ` ∗ is
derivable, and from v 6∈ τ together with v 6∈ (Γ1, u � σ,Γ2), it also follows that
v 6∈ (Γ1, [τ/u]Γ2). Then, the desired judgment may be derived by (type var).

If u is the introduced variable, the rule is as follows:

Γ1 ` ∗ u 6∈ Γ1 u 6∈ σ

Γ1, u � σ ` ∗
(type var),

and the desired judgment is simply the premise Γ1 ` ∗.
· (� proj). We distinguish three possible subcases. If the projected subtype bound

belongs to Γ1, the rule is as follows:

Γ1, u � σ,Γ2 ` ∗ v � ρ ∈ Γ1, u � σ,Γ2

Γ1, u � σ,Γ2 ` v � ρ
(� proj).

By the induction hypothesis, we have that Γ1, [τ/u]Γ2 ` ∗ is derivable. Then,
v � ρ ∈ Γ1 implies v � ρ ∈ Γ1, [τ/u]Γ2 and by (� proj) Γ1, [τ/u]Γ2 ` v � ρ.

If the projected subtype bound belongs to Γ2, the rule is as follows:

Γ1, u � σ,Γ2 ` ∗ v � ρ ∈ Γ1, u � σ,Γ2

Γ1, u � σ,Γ2 ` v � ρ
(� proj),

and Γ1, [τ/u]Γ2 ` ∗ is derivable by the induction hypothesis. Furthermore, since
Γ1, u � σ,Γ2 is a well-formed context, it follows that u 6≡ v, and hence v � [τ/u]ρ ∈
[τ/u]Γ2. Then, the desired judgment may be derived by (� proj).

18 Bono et al. / Subtyping for Extensible Objects

If the projected bound is u � σ, the rule is as follows:

Γ1, u � σ,Γ2 ` ∗

Γ1, u � σ,Γ2 ` u � σ
(� proj).

Γ1, [τ/u]Γ2 ` ∗ is derivable by the induction hypothesis, and u 6∈ σ, as Γ1, u � σ is
a well-formed context. Then Γ1, [τ/u]Γ2 ` τ � σ is derivable from Γ1 ` τ � σ using
(weakening), which is admissible (by Lemma 5.1(1)).
· (proj). Again, we need a case analysis, depending on whether the projected decla-

ration belongs to Γ1 or to Γ2. The proofs of these cases are similar to those of the
corresponding cases when the last applied rule is (� proj).
· (send). In this case, the rule is as follows:

Γ1, u � σ,Γ2 ` e : ρ Γ1, u � σ,Γ2 ` ρ � class t.〈〈m:α, n:µ{m}〉〉◦〈〈〉〉

Γ1, u � σ,Γ2 ` e⇐ n : [ρ/t]µ
(send).

We may assume t 6∈ τ , for otherwise we may rename t (t being bound), so that
this condition be satisfied. Then, by the induction hypothesis, we have that both
Γ1, [τ/u]Γ2 ` e : [τ/u]ρ and

Γ1, [τ/u]Γ2 ` [τ/u]ρ � class t.〈〈m:[τ/u]α, n:[τ/u]µ{m}〉〉◦〈〈〉〉

are derivable. Then by (send), we have a derivation of

Γ1, [τ/u]Γ2 ` e⇐ n : [[τ/u]ρ/t]([τ/u]µ),

which is the judgment we wished to derive, being [[τ/u]ρ/t]([τ/u]µ) ≡ [τ/u]([ρ/t]µ).
The case of (search) is similar to the one just proved.
· (ext). We prove this case as representative of the similar cases of (comp) and (over).

The rule is of the following form:

Γ1, u � σ,Γ2 ` e1 : class t.R◦C m:α ∈ R ◦ C n, p 6∈ M(R) ∪M(C)
Γ1, u � σ,Γ2, v � class t.〈〈m:α, p:γ, n:ρ{m,p}〉〉◦〈〈〉〉 ` e2 : [v/t](t→ρ)

Γ1, u � σ,Γ2 ` 〈e1←◦ n=e2〉 : class t.〈〈R | n:ρ{m,p}〉〉◦〈〈C | p:γ〉〉
(ext).

Again, we may safely assume that t 6∈ τ . By the induction hypothesis, we have that
Γ1, [τ/u]Γ2 ` e1 : class t.[τ/u]R◦[τ/u]C, and

Γ1, [τ/u]Γ2, v�class t.〈〈m:[τ/u]α, p:[τ/u]γ, n:[τ/u]ρ{m,p}〉〉◦〈〈〉〉`e2 : [τ/u]([v/t](t→ρ))

are derivable. The induction on the second premise works for we can always choose
v such that v 6∈ τ , and use the renaming result of [23], since the typing of e2

does not depend on the variable’s name. Since u 6≡ v, being Γ1, u � σ,Γ2, v �
class t.〈〈m:α, p:γ, n:ρ{m,p}〉〉◦〈〈〉〉 ` ∗, we get [τ/u]([v/t](t→ρ)) ≡ [v/t]([τ/u](t→ρ)),

Bono et al. / Subtyping for Extensible Objects 19

for t 6∈ τ 3. From m:α ∈ R ◦C we then have m:[τ/u]α ∈ [τ/u]R ◦ [τ/u]C, while from
n, p 6∈ M(R) ∪M(C) we have that n, p 6∈ M([τ/u]R) ∪M([τ/u]C). Then, by an
application of (ext) we have a derivation of

Γ1, [τ/u]Γ2 ` 〈e1←◦ n=e2〉 : class t.〈〈[τ/u]R | n:[τ/u]ρ{m,p}〉〉◦〈〈[τ/u]C | p:[τ/u]γ〉〉,

which is the judgment we wished to derive, being

class t.〈〈[τ/u]R | n:[τ/u]ρ{m,p}〉〉◦〈〈[τ/u]C | p:[τ/u]γ〉〉
≡

[τ/u](class t.〈〈R | n:ρ{m,p}〉〉◦〈〈C | p:γ〉〉).

ut

Remark 5.1. The condition V ar(τ) ∩Dom(Γ2) = ∅ is needed in the lemma, as it does
not follow from the remaining hypotheses. Specifically, it is not a consequence of the fact
that the judgment Γ1 ` τ � σ is derivable: to see this, observe that choosing Γ1 ≡ ∅,
τ ≡ class t.〈〈n:int〉〉◦〈〈m:v〉〉 and σ ≡ class t.〈〈n:int〉〉◦〈〈〉〉, the judgment Γ1 ` τ � σ is
derived by (� hide). But we can have Γ2 ≡ v � ρ and then V ar(τ) ∩Dom(Γ2) = {v}.

The typing rules could be modified so as to ensure that V ar(τ) ∈ Dom(Γ) whenever
Γ ` τ � σ is derivable. However, this would require either introducing kinding judgments
to establish well-formedness for types, or cluttering the typing rules with side conditions.
Neither option seems worthwhile, given that the substitution lemma is only used in the
proof of subject reduction, in cases when the additional condition is trivially satisfied.
(cf. Theorem 5.1, case (search succ)).

The proof of the Generation Lemma requires the following properties of subtyping (sub-
typing rules are in Table A.2).

Lemma 5.3. (Properties of �)
1. If Γ ` σ→τ � ρ is derivable, then ρ ≡ σ′→τ ′ for some σ′, τ ′ such that Γ ` σ′ � σ

and Γ ` τ � τ ′ also are derivable.
2. If Γ ` class t.R ◦ C � ρ is derivable, then ρ ≡ class t.R′ ◦ C ′ for some R′, C ′ such

that

· m : α ∈ R whenever m : α ∈ R′ and

· m : α ∈ R ◦ C whenever m : α ∈ C ′.
3. If Γ ` σ � class t.R1 ◦C1 and Γ ` σ � class t.R2 ◦C2 are both derivable, then for

every m such that m:α1 ∈ R1 ◦C1, and m:α2 ∈ R2 ◦C2, it is the case that α1 ≡ α2.

Proof:
Points (1) and (2) are proved by straightforward induction on the derivation of the judg-
ments in the hypotheses.

3The condition v 6∈ τ is not necessary to verify the equivalence, even though we need it here to have well-formed
substitutions.

20 Bono et al. / Subtyping for Extensible Objects

For point (3), we distinguish two cases, depending on whether σ is a class-type, or a
type variable.

If σ is a class-type, say class t.R◦C, the claim follows from point (2), form:α1 ∈ R1◦C1

implies that m:α1 ∈ R ◦C, and m:α2 ∈ R2 ◦C2 implies that m:α2 ∈ R ◦C. Then α1 ≡ α2

follows from the formation rules of class-types (that require every method to occur at
most once in the component rows).

If σ is a type variable, the proof follows as in the previous case, using the following
property: if Γ ` u � class t.R ◦ C is derivable, then there exists u � class t.R′ ◦ C ′ ∈ Γ
such that also the judgment Γ ` class t.R′ ◦ C ′ � class t.R ◦ C is derivable. The proof
of this property is by induction on the derivation of the judgment Γ ` u � class t.R ◦C,
using the easily verified fact that if Γ ` u � τ , then either τ ≡ u or τ ≡ class t.R ◦C for
some R and C. ut

Lemma 5.4. (Generation Lemma)

1. If Γ ` x : τ is derivable, then x : σ ∈ Γ, and Γ ` σ � τ is derivable for some σ.
2. If Γ ` λx.e : τ is derivable, then Γ, x : σ1 ` e : σ2 and Γ ` σ1 → σ2 � τ are both

derivable for some σ1, σ2.
3. If Γ ` e1e2 : τ is derivable, then Γ ` e1 : τ1→τ2, Γ ` e2 : τ1, and Γ ` τ2 � τ are all

derivable for some τ1, τ2.
4. If Γ ` 〈〉 : τ is derivable, then τ is class t.〈〈〉〉 ◦ 〈〈〉〉.
5. If Γ ` e⇐ n : τ is derivable, then

· Γ ` e : σ, and

· Γ ` σ � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉, and

· Γ ` [σ/t]ρ � τ

are all derivable for some σ, ρ,m, α.
6. If Γ ` 〈e1←◦ n=e2〉 : τ is derivable, then Γ, u � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 ` e2 :

[u/t](t→ρ) is derivable for some u, ρ,m, α, and one of the following is true:

(a) · Γ ` e1 : class t.R ◦ C is derivable, and

· m:α ≡ q:η, p:γ, and

· q:η ∈ R ◦ C, and

· Γ ` class t.〈〈R | n:ρ{q,p}〉〉◦〈〈C | p:γ〉〉 � τ is derivable

for some R,C, q, p, η, γ;

(b) · Γ ` e1 : class t.R ◦ 〈〈C | n:ρ{m}〉〉 is derivable, and

· m:α ∈ R ◦ C, and

· Γ ` class t.〈〈R | n:ρ{m}〉〉 ◦ C � τ is derivable

for some R,C;

(c) · Γ ` e1 : τ , and

· Γ ` σ � class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉, and

· Γ ` σ � τ

are all derivable for some σ.

Bono et al. / Subtyping for Extensible Objects 21

7. If Γ ` e←↩ n : τ is derivable, then

· Γ ` e : class t.〈〈n : ρ{m}〉〉◦〈〈m:α〉〉, and

· Γ ` σ � class t.〈〈m:α, n : ρ{m}〉〉◦〈〈〉〉, and

· Γ ` [σ/t](t→ρ) � τ

are all derivable for some σ, ρ,m, α.

Proof:
All cases are proved by induction on the derivation of the judgment in the hypothesis:
if the last rule in this derivation is not (�), the proof follows directly by the induction
hypothesis and an inspection of the typing rules. We give the proof when the last rule
is (�), and it immediately follows an application of a rule other than (�) itself. The
cases when the proof is concluded by consecutive uses of (�) follows similarly, noting that
consecutive uses of (�) can be coalesced, using (� trans).

Cases (1) and (3) are immediate, while case (4) requires Lemma 5.3(2) to show that
ρ ≡ class t.〈〈〉〉◦〈〈〉〉 whenever Γ ` class t.〈〈〉〉◦〈〈〉〉 � ρ is derivable. The remaining cases
are worked out below.

(2). In this case, the derivation has the following shape:

Γ, x:σ1 ` e : σ2

Γ ` λx.e : σ1→σ2

(exp abs)
Γ ` σ1→σ2 � τ

Γ ` λx.e : τ
(�).

(5). It suffices to observe that a derivation for e⇐ n ending up with (�) has the following
shape:

Γ ` e : σ Γ ` σ � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉

Γ ` e⇐ n : [σ/t]ρ

Γ ` [σ/t]ρ � τ

(send)

Γ ` e⇐ n : τ
(�).

(6). We distinguish three cases depending on whether 〈e1←◦ n=e2〉 is typed using (ext),
(comp), or (over). The derivations have respectively the following shapes:

· Case (ext):

Γ ` e1 : class t.R◦C q:η ∈ R ◦ C n, p 6∈ M(R) ∪M(C)
Γ, u � class t.〈〈q:η, p:γ, n:ρ{q,p}〉〉◦〈〈〉〉 ` e2 : [u/t](t→ρ)

Γ ` 〈e1←◦ n=e2〉 : class t.〈〈R | n:ρ{q,p}〉〉◦〈〈C | p:γ〉〉
Γ ` class t.〈〈R | n:ρ{q,p}〉〉◦〈〈C | p:γ〉〉 � τ

(ext)

Γ ` 〈e1←◦ n=e2〉 : τ
(�);

22 Bono et al. / Subtyping for Extensible Objects

· Case (comp):

Γ ` e1 : class t.R◦〈〈C | n:ρ{m}〉〉 m:α ∈ R ◦ C
Γ, u � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 ` e2 : [u/t](t→ρ)

Γ ` 〈e1←◦ n=e2〉 : class t.〈〈R | n:ρ{m}〉〉◦C
Γ ` class t.〈〈R | n:ρ{m}〉〉◦C � τ

(comp)

Γ ` 〈e1←◦ n=e2〉 : τ
(�);

· Case (over):

Γ ` e1 : σ Γ ` σ � class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉
Γ, u � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 ` e2 : [u/t](t→ρ)

Γ ` 〈e1←◦ n=e2〉 : σ

Γ ` σ � τ

(over)

Γ ` 〈e1←◦ n=e2〉 : τ
(�).

First observe that in all these derivations Γ, u � class t.〈〈m:α, n : ρ{m}〉〉 ◦ 〈〈〉〉 ` e2 :
[u/t](t→ρ) occurs as a premise (in the first derivation, choose m:α ≡ q:η, p:γ). Then note
that all the statements of clause (a) occur as judgments and side-conditions in the first
derivation, and all the statements of clause (b) occur as judgments and side-conditions in
the second derivation. For the third derivation, Γ ` e1 : τ is derivable from Γ ` e1 : σ
and Γ ` σ � τ . All the remaining conditions in clause (c) occur as judgments in this
derivation.

(7). It suffices to observe that a derivation for e ←↩ n ending with rule (�) has the
following shape:

Γ ` e : class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉 Γ ` σ � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉

Γ ` e←↩ n : [σ/t](t→ρ)

Γ ` [σ/t](t→ρ) � τ

(search)

Γ ` e←↩ n : τ
(�).

ut

5.3. Subject Reduction

A final lemma is needed in the proof of Subject Reduction, to show that the typing of an
object determines the typings of its method bodies.

Lemma 5.5. If Γ ` 〈e1←◦ n=e2〉 : class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉 is derivable, then so is the
judgment Γ, u � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 ` e2 : [u/t](t→ρ).

Bono et al. / Subtyping for Extensible Objects 23

Proof:
If Γ ` 〈e1←◦ n=e2〉 : class t.〈〈n:ρ{m}〉〉 ◦ 〈〈m:α〉〉 is derivable, then, by Lemma 5.4(6),
Γ, u � class t.〈〈m′:α′, n:ρ′{m′}〉〉◦〈〈〉〉 ` e2 : [u/t](t→ρ′) also is derivable for some u, ρ′,m′, α′,

and the conditions in clauses (a), (b) or (c) are satisfied. We next consider these three
cases.

In case (a), we get m′:α′ ≡ q:η, p:γ, and q:η ∈ R ◦ C, and

Γ ` class t.〈〈R | n:ρ′{q,p}〉〉◦〈〈C | p:γ〉〉 � class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉

is derivable for some R,C, q, p, η, γ. Now we have ρ ≡ ρ′,m ≡ m′, α ≡ α′ by Lemma 5.3(2).

In case (b), we have m′:α′ ∈ R ◦ C, and

Γ ` class t.〈〈R | n:ρ′{m′}〉〉◦〈〈C〉〉 � class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉

for some R,C. Then we have ρ ≡ ρ′,m ≡ m′, α ≡ α′ by Lemma 5.3(2).

In case (c) we have that Γ ` σ � class t.〈〈n:ρ′{m′}〉〉◦ 〈〈m
′:α′〉〉 and Γ ` σ � τ are

derivable for τ ≡ class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉. Then we get ρ{m} ≡ ρ′{m′} by Lemma 5.3(3),

which implies ρ ≡ ρ′ and m ≡ m′. So Lemma 5.3(3) applies again to conclude α ≡ α′. ut

Theorem 5.1. (Subject Reduction) If Γ ` e1 : τ is derivable and e1
eval−→−→ e2, then

Γ ` e2 : τ is also derivable.

Proof:

We prove the result by cases on the top-level reduction −→. Then, the result follows

for
eval−→. In fact, by induction on the size of the contraction context C[], we can easily

check that if Γ ` C[e] : τ is derived from Γ′ ` e : σ, then Γ ` C[e′] : τ is derivable for any
e′ such that Γ′ ` e′ : σ is derivable. Finally, the theorem follows by transitivity.

(β). In this case the redex is of the form (λx.e1)e2 and its typing judgment is Γ `
(λx.e1)e2 : τ . Since this judgment is derivable, by Lemma 5.4(3), we know that Γ `
λx.e1 : τ1 → τ2, Γ ` e2 : τ1 and Γ ` τ2 � τ are all derivable for some τ1, τ2. Now, the
proof that Γ ` [e2/x]e1 : τ is derivable requires the following substitution property on
term-variables

if Γ1, x : σ,Γ2 ` e1 : τ and Γ1 ` e2 : σ then Γ1,Γ2 ` [e2/x]e1 : τ,

that can easily be proved by induction on derivations. To be able to apply this substitution
property, we next show that also Γ, x : τ1 ` e1 : τ is derivable. By Lemma 5.4(2), if
Γ ` λx.e1 : τ1 → τ2 is derivable, then Γ, x : σ1 ` e1 : σ2 and Γ ` σ1 → σ2 � τ1 → τ2

are both derivable for some σ1, σ2. By Lemma 5.3(1) Γ ` σ1→σ2 � τ1 → τ2 implies
Γ ` τ1 � σ1 and Γ ` σ2 � τ2. From Γ, x : σ1 ` e1 : σ2 and Γ ` τ1 � σ1, by Lemma 5.1(2),
it follows that Γ, x : τ1 ` e1 : σ2 is derivable. From this judgment and from Γ ` σ2 � τ ,
the desired judgment is derived again by (�).

(⇐). If the redex is of the form e ⇐ n, then its typing judgment is Γ ` e ⇐ n : τ and,
by Lemma 5.4(5), it follows that all of the following judgments are derivable for some
σ, ρ,m, α:

24 Bono et al. / Subtyping for Extensible Objects

1. Γ ` e : σ,
2. Γ ` σ � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉,
3. Γ ` [σ/t]ρ � τ .

It is also easy to verify that

4. Γ ` class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 � class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉
is derivable by repeated applications of (� shift). Then, the typing for the reduct may be
derived as follows. First construct the following derivation:

1

2 4

Γ ` σ � class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉
(� trans)

Γ ` e : class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉
(�)

2

Γ ` e←↩ n : [σ/t](t→ρ)
(search)

1

Γ ` (e←↩ n)e : [σ/t]ρ
(exp appl).

Now apply (�) to the root of this derivation and to 3.

(←↩ succ). In this case the typing of the redex is Γ ` 〈e1←◦ n=e2〉 ←↩ n : τ and, by
Lemma 5.4(7), all of the following judgments are derivable for some σ, ρ,m, α:

1. Γ ` 〈e1←◦ n=e2〉 : class t.〈〈n:ρ{m}〉〉◦〈〈m:α〉〉,
2. Γ ` σ � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉,
3. Γ ` [σ/t](t→ρ) � τ .

From 1, by Lemma 5.5, it follows that

4. Γ, u � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 ` e2 : [u/t](t→ρ)

also is derivable. From 2 and 4, by Lemma 5.2 (choosing Γ1 ≡ Γ and Γ2 ≡ ε, the
hypothesis V ar(σ)∩Dom(Γ2) is trivially satisfied), it then follows that Γ ` e2 : [σ/t](t→ρ)
is derivable. A further application of (�) to this last judgment and to 3 yields the expected
judgment Γ ` e2 : τ .

(←↩ next). In this case the typing of the redex is Γ ` 〈e1←◦m=e2〉 ←↩ n : τ , and by
Lemma 5.4(7) all of the following judgments are derivable for some σ, ρ, p, α:

1. Γ ` 〈e1←◦m=e2〉 : class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉,
2. Γ ` σ � class t.〈〈p:α, n:ρ{p}〉〉◦〈〈〉〉,
3. Γ ` [σ/t](t→ρ) � τ .

From 1, by Lemma 5.4(6), the conditions in clause (a), (b) or (c) are satisfied. We next
consider these three cases, showing that Γ ` e1 : class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉 is derivable in
all the cases: case (c) is immediate, while the remaining cases are given below.

Case (a). Both Γ ` e1 : class t.R ◦ C, and Γ ` class t.〈〈R | m:µ{q,r}〉〉◦〈〈C | r:γ〉〉 �
class t.〈〈n : ρ{p}〉〉◦〈〈p:α〉〉 are derivable for some R,C, q, r, µ, γ. Since n 6≡ m, we have
n:ρ{p} ∈ R by Lemma 5.3(2). This implies p:α ∈ R ◦ C, since p ∈ L(R) and by definition
of well-formed types L(R) ⊆ M(R) ∪M(C). Thus we have that Γ ` class t.R ◦ C �

Bono et al. / Subtyping for Extensible Objects 25

class t.〈〈n:ρ{p}〉〉 ◦ 〈〈p:α〉〉 is derivable, and from this judgment we may derive Γ ` e1 :
class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉 by (�).

Case (b). Both Γ ` e1 : class t.R ◦ 〈〈C | m:µ{q}〉〉, and Γ ` class t.〈〈R | m:µ{q}〉〉 ◦C �
class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉 are derivable for some R,C, q, µ. Since n 6≡ m, Γ ` class t.R ◦
〈〈C | m:µ{q}〉〉 � class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉 is derivable, and from this judgment Γ ` e1 :
class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉 is derivable by (�).

The typing for the reduct may then be derived from Γ ` e1 : class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉
as follows:

Γ ` e1 : class t.〈〈n:ρ{p}〉〉◦〈〈p:α〉〉 2

Γ ` e1 ←↩ n : [σ/t](t→ρ)
(search)

3

Γ ` e1 ←↩ n : τ
(�).

ut

5.4. Absence of Stuck States

The reduction rules for the operational semantics given in Table 2 (Section 2) readily
suggest how an interpreter for the untyped calculus can be defined. Run-time errors for
this interpreter correspond to pattern-matching failures (i.e., stuck states) when using the
rules to evaluate a closed expression.

An inspection of the rules shows that there are only three ways in which evaluation
may get stuck: (i) when evaluating a send expression e ⇐ m, and evaluating e does
not yield an obj expression of the form 〈e1←◦ n=e2〉; (ii) when evaluating an application
e1 e2, and the evaluation of e1 does not return a λ-abstraction; (iii) when searching an
m (m 6≡ n) method within an object 〈e1←◦ n=e2〉, and evaluating e1 does not yield an
object in the same form. Stuck states like (ii) correspond to the standard run-time errors
of an interpreter of the λ-calculus. Instead, stuck states like (i) and (iii) correspond to
run-time errors of the sort message-not-understood arising in object-oriented languages as
a consequence of sending a message to an object that does not have the corresponding
method.

The following theorem proves the absence of such errors in the evaluation of a well-
typed closed expression: type soundness follows from this result.

Theorem 5.2. (Absence of stuck states) Let e be a closed expression such that ε `
e : τ is derivable for some type τ . Then:

1. if e ≡ e1 e2 and e1 ⇓ val, then val ≡ λx.e′ for some x and e′;

2. if e ≡ e1 ⇐ n and e1 ⇓ val, then val ≡ obj for some object expression obj;

3. if e ≡ 〈e1←◦m=e2〉 ←↩ n ↓ e3 and e1 ⇓ val, then val ≡ obj for some object
expression obj.

Proof:
The proof uses the subject reduction property for ⇓ and ↓. For ⇓, the property states
that if ε ` e : τ is derivable, and e ⇓ val, then ε ` val : τ is derivable. This follows

26 Bono et al. / Subtyping for Extensible Objects

by Theorem 5.1, since e
eval−→−→ val when e ⇓ val (see Proposition 2.1). A corresponding

property holds for ↓. We next give a proof of the three cases.

1. If ε ` e1 e2 : τ , then by Lemma 5.4(3), it follows that ε ` e1 : τ1→τ2 is derivable for
some τ1 and τ2 (τ2 � τ). Then also ε ` val : τ1→τ2 is derivable. That val is of the
form λx.e follows from observing that all the other possibilities can be rejected: the
obj forms can be rejected by Lemmas 5.4(6) and 5.3(2); the 〈〉 form can be rejected
by Lemma 5.4(4).

2. If ε ` e1 ⇐ n : τ , is derivable, then by Lemma 5.4(5), it follows that both ε ` e1 : σ
and ε ` σ � class t.〈〈m:α, n:ρ{m}〉〉◦〈〈〉〉 are derivable for some σ, m, α and ρ. We
get, by Lemma 5.3(3), σ ≡ class t.〈〈R | m:α, n:ρ{m}〉〉◦C for some R and C. Then
ε ` val : class t.〈〈R | m:α, n:ρ{m}〉〉◦C is derivable, and that val ≡ obj follows since
by the Generation Lemma no other values (i.e. the empty object and λ-abstractions)
have this type for any R and C.

3. If ε ` 〈e1←◦m=e2〉 ←↩ n : τ , is derivable, then by Lemma 5.4(7), it follows that
ε ` 〈e1←◦m=e2〉 : class t.〈〈n:ρ{p}〉〉◦〈〈p:γ〉〉 is derivable for some ρ, p, γ. By Lemma
5.4(6), it follows that ε ` e1 : class t.R◦C is derivable for some R ◦ C 6≡ 〈〈〉〉 ◦ 〈〈〉〉,
from which the claim follows as in the previous case. To see that R ◦ C 6≡ 〈〈〉〉 ◦ 〈〈〉〉,
consider the three clauses of Lemma 5.4(6). Clause (a) implies that ε ` class t.〈〈R |
m:α〉〉◦〈〈C | q:η〉〉 � class t.〈〈n:ρ{p}〉〉◦〈〈p:γ〉〉, which, by Lemma 5.3(2), implies that
n:ρ{p} ∈ R, being m 6≡ n. Clause (b) implies that n:ρ{p} ∈ C. Finally, clause (c)
implies that R ◦ C ≡ 〈〈n:ρ{p}〉〉 ◦ 〈〈p:γ〉〉 ut

6. Label Inference

We conclude the description of the type system with a discussion on labels and labeled
types.

Labeled-types are clearly central to the soundness of the type system. In particular,
the proof of subject reduction shows where labels are needed for constructing typing
derivations: looking at the (search) case, one sees that the label associated to the type of
the method being searched, in the search redex, provides precisely the information that
is needed to single out the dependencies of this method, so that the same typing may be
derived for the reduct.

One objection against using such types could be that they are somehow ad hoc, and
hence difficult to explain and characterize semantically. In this section we offer a counter-
argument, and show that labels can indeed be seen simply as “internal” devices needed
to ensure type soundness (in fact, subject reduction) while they are not relevant to the
semantics of types. We do this by outlining an algorithm for inferring labels from a
“label-free” derivation.

The inference of labels is described as a constructive process that transforms any given
“label-free” derivation Ξ into a labeled derivation, whenever this is possible by only adding
labels. Say that a type τ is a label-free type if τ conforms with the syntax of types defined
in Section 3, and every labeled type occurring in τ is labeled with the distinguished symbol

Bono et al. / Subtyping for Extensible Objects 27

• (the marker • is useful to distinguish labeled types with empty labels from “label-free”
types). A label-free derivation is a derivation that is carried out in the system described
in Section 3 using only label-free types, i.e. completely disregarding labels.

6.1. Inference as Rewriting

Assume that we are given a label-free derivation Ξ: the inference process is accomplished
by an iterative rewriting of Ξ that computes and propagates labels at the types occurring
at each of the proof rules of Ξ. Labels are computed at the (send), (search), (ext),
(comp) and (over) nodes of Ξ, and they are propagated to all nodes. Label computation
and propagation are both described by means of a term rewriting system for the typing
or subtyping proof rules of the type system.

Besides computing labels, the rewriting rules also verify that labels are propagated
consistently. The consistency checks are needed because different occurrences of the same
type in a rule may have different labels at intermediate steps of the rewriting. There are, in
fact, few cases to consider: let ∆1 and ∆2 (∆1 6≡ ∆2) be two labels for two occurrences of
the same type τ in a given rule. If neither of the ∆i’s is •, then the labeling is inconsistent
and both the occurrences of τ are replaced by ⊥ to signal a failure; if instead ∆1 6≡ •
(respectively, ∆2 6≡ •), then both occurrences of τ are labeled with ∆1 (resp. ∆2).

Given that labels are computed once at each type (in the way we just described), it is
easy, (although time-consuming) to verify that the order of application of the rewriting
does not affect the outcome. Also, the rewriting process is clearly terminating, since each
label-free derivation has a finite number of types to be labeled.

In particular, the rewriting of a label-free derivation Ξ terminates either because some
of the types is rewritten to ⊥, or because none of the types in the derivation is affected by
further rewriting. In the first case, Ξ is not sound because it fails to satisfy the invariance
constraint of labels that is instead enforced in the type system of Section 3 to ensure type
soundness.

In the second case, the resulting derivation may be turned into a labeled derivation
by replacing all the residual occurrences of the marker • by by the empty label. It then
remains to check whether all labeled types are well-formed according to their definition
(Table 3), in particular whether for every occurrence of the (� hide) rule the labeled types
computed by the inference process satisfy the well-formedness conditions on class types
(cf. Table 3). If so, the labeled derivation is sound, otherwise it is not, and no (sound)
labeled derivation may be inferred from Ξ simply by adding labels.

6.2. Rewriting Rules

The definition of rewriting is based on operators that propagate labels on types, contexts
and judgments. There are three such operators: � propagates labels between types with
identical structure (i.e. types that are equal up to labels); / and . propagate labels
between different types. These operators are all defined in terms of the operator t, given
in Table B.1, that “unifies” two labels according to the idea we described earlier in this
section. As we anticipated, the application of t to two different labels is undefined.

28 Bono et al. / Subtyping for Extensible Objects

Label propagation between two equal types, τ ′ and τ ′′, is defined as expected, by
induction on the (identical) structure of the two types; τ ′ � τ ′′ returns the labeled type
that results from the application of t to the labels occurring at corresponding positions
in τ ′ and τ ′′.
Moreover, we need to propagate labels on the types occurring in the contexts and right-
hand sides of the judgments. Since this propagation is performed under the hypothesis
that these types differ only for their labels (because we start from a derivation, even
though label-free), we use the operator � on types and we extend it to contexts and
right-hand sides of judgments (Table B.2 gives all the definitions concerning �).

The need for the two operators / and . arises in the rewriting of the typing rules that
involve subtyping judgments. Consider, for instance, the case of a subtyping judgment of
the form:

Γ ` class t.R1◦C1 � class t.R2◦C2.

For this judgment to be labeled consistently, it must be guaranteed that for every pair
m:α occurring in both R1 ◦C1 and R2 ◦C2, both the occurrences of α be given the same
labeling. Given that R1◦C1 and R2◦C2 may have different structure, this is accomplished
in two steps, forming the judgment:

Γ ` class t.(R1 ◦ C1 / R2 ◦ C2) � class t.(R1 ◦ C1 . R2 ◦ C2).

Intuitively, R1 ◦C1 /R2 ◦C2 computes the correct labeling for every type in R1 ◦C1, while
R1 ◦ C1 . R2 ◦ C2 returns the desired labeling for R2 ◦ C2. As an example, we have:

〈〈m:int{m,n}, n:bool•〉〉 ◦ 〈〈〉〉 / 〈〈m:int•〉〉 ◦ 〈〈n:bool{m,n}〉〉 = 〈〈m:int{m,n}, n:bool{m,n}〉〉 ◦ 〈〈〉〉

and

〈〈m:int{m,n}, n:bool•〉〉 ◦ 〈〈〉〉 . 〈〈m:int•〉〉 ◦ 〈〈n:bool{m,n}〉〉 = 〈〈m:int{m,n}〉〉 ◦ 〈〈n:bool{m,n}〉〉.

The definition of / and . is extended to types, labeled types and rows in Table B.3 following
this idea: note, in particular, that the application of these operators over function-types
is so defined as to comply with the contravariant rule of the arrow-type constructor.

It is worth noting that the fact that σ / τ and σ . τ are both defined does not imply
that σ / τ � σ . τ is satisfied, since the operators / and . provide for label propaga-
tion over subtyping judgments without, however, checking the associated well-formedness
conditions on class types. It is also easy to verify that if σ and τ differ only for their
labels, then σ / τ ≡ σ . τ . As such, the definition of the � operator may, in fact, be given
indirectly in terms of / (equivalently .): simply define τ ′ � τ ′′ as τ ′ / τ ′′, proviso that τ ′

and τ ′′ have the same structure.
The rewriting of the typing rules (system R) is given in Appendix B. If some of the

partial operators which occur in the right-hand side of a rule are undefined, we get a
failure. In this case it does not really matter how we rewrite the typing rule, proviso that
at least one ⊥ occurs in the resulting derivation.

We use the notational convention that types, contexts,. . . etc. which differ only for
their labels are denoted by the same letter with different superscripts.

Bono et al. / Subtyping for Extensible Objects 29

For example, in the rewriting rule for (ext) (Table B.7), we need to unify ∆ and ∆′ with
{m, p}, and we need to unify the labels which occur in τ , τ ′ and τ ′′. This is accomplished
in the definition of τ ′′′∆′′ . Notice that this implies either ∆′′ ≡ {m, p} or failure (in this
case τ ′′′∆′′ ≡ ⊥). Moreover, we need to propagate labels between R ◦C and R′ ◦C ′, and at
the same time between the types of the m methods of R′ ◦ C ′ and α, α′. The definition
of R′′ ◦ C ′′ accounts for both these aspects, and α′′ denotes the resulting types of the

m methods. As an example, let e
4
= λself.λdx.〈self←◦ x = λs.(self⇐ x) + dx〉. By

applying this rule we have that

ε ` 〈〉 : class t.〈〈〉〉◦〈〈〉〉
u � class t.〈〈mv:(int→t)•, x:int•〉〉◦〈〈〉〉 ` e : u→ int→ u

ε ` 〈mv = e〉 : class t.〈〈mv:(int→t)•〉〉◦〈〈x:int•〉〉
(ext)

rewrites to

ε ` 〈〉 : class t.〈〈〉〉◦〈〈〉〉
u � class t.〈〈mv:(int→t){x}, x:int•〉〉◦〈〈〉〉 ` e : u→ int→ u

ε ` 〈mv = e〉 : class t.〈〈mv:(int→t){x}〉〉◦〈〈x:int•〉〉
(ext)

Let u be a type variable, x a (term) variable, τ and τ ′ types, and Γ a context: with
[u � τ � τ ′/u � τ]Γ and [x : τ � τ ′/x : τ]Γ we denote the substitution in Γ of, respectively,
the subtyping declaration u � τ by u � τ � τ ′ and the substitution of the variable decla-
ration x : τ by x : τ � τ ′.

We conclude this discussion by formally stating our results and sketching their proofs.

Proposition 6.1. The rewriting system R is Church-Rosser and terminating.

The Church-Rosser property can be proved as usual by showing the “diamond prop-
erty” for critical pairs [22]. Critical pairs arise here since a typing judgment can occur
both as conclusion of one rule and as premise of another rule. Termination is obvious
since only a finite number of labels can be generated.

We say that the application of the rewriting R to a label free derivation is successful
if and only if after replacing the residual occurrences of the marker • by the empty label
we get a derivation that:

(a) contains only well-formed labeled types, and
(b) does not contain any occurrence of ⊥.

Proposition 6.2. (Soundness) If Ξ is the output of a successful application of R to a
label-free derivation, then Ξ is a well-formed derivation.

Soundness easily follows from the fact that the result of each application of a rewrite rule
in R is a well-formed rule, whenever it satisfies conditions (a) and (b) above.

30 Bono et al. / Subtyping for Extensible Objects

Proposition 6.3. (Completeness) If Ξ is a label-free derivation obtained from a well-
formed derivation Ξ′ by replacing every label by the marker •, then Ξ′ will be the output
of the application of R to Ξ.

This follows from the fact that the rewriting of rules (send), (search), (ext), (comp)
and (over) determine in a unique way some labels and all other rewriting rules simply
propagate them.

The notion of completeness we just stated is limited, since we can build two different
label-free derivations with the same conclusion, such that the rewriting of the first is
successful while the rewriting of the second is unsuccessful. This means that a “no”
answer does not prove that a correct derivation does not exist, it only proves that a
particular derivation is not correct w.r.t. the labeling. So, one could design a more
refined rewriting, which also modifies the underlining label-free derivation, correcting it.
Clearly, however, this would substantially increase the overall cost of the rewriting.

7. Conclusion

We have presented an extension of the Lambda Calculus of Objects [16] with a new type
system that gives provision both for rapid prototyping, by allowing the typing of partially
specified objects in the style of [6], and for a relation of width subtyping, in the style of
[7].

The main technical tool of the system is represented by labeled types, that are central
both to the rendering of method polymorphism based on (implicit) bounded quantifica-
tion, and to the soundness of the type system. On the other side, as shown in Section
6, types and type derivations in the system may be understood independently of labels,
as labels may be inferred automatically from label-free types and derivations, and then
checked for soundness. Thus, in principle, labels can be made transparent from “outside”
class-types (hence, to the user of the system) and only seen as “internal” devices needed
to ensure type soundness.

A system that exhibits features comparable to ours is Baby Modula–3 [1] which, how-
ever, we generalize in two respects:

(i) we allow object extensions and subsumptions in any order, while in [1] all the ex-
tensions must be done before any subsumption;

(ii) our completions may be extended as a result of a method addition, while in [1]
completions are fixed ahead of time, prior to any addition.

A feature of [1] that, instead, we do not provide (even though we could) is the distinction
between fields and methods, that allows one to isolate the state of an object from the
operations on the state.

A few additional remarks are in order on the relationships with the system of [17]. As
we noted, the two systems are incomparable: on one side, we allow extensions, overrides
and subtypings on the same object in any order, while [17] forbids extending or overriding
objects for which one already used subtyping. On the other, method encapsulation is not
accounted for in our system and it is instead provided in [17]. To this regard, we note

Bono et al. / Subtyping for Extensible Objects 31

that the solution proposed in [17] could be accommodated just as well in our system. As
in [17], we would need to distinguish the types of prototypes from the types of objects, so
as to allow altering the structure of the former with method additions and overrides while
instead preventing such operations to be applied to the latter. Methods of a complete
prototype (i.e. a prototype whose completion is empty) could then be “sealed” (hence
encapsulated) within the object corresponding to the prototype exactly as in the system
of [17].

A few other studies on object-based languages have recently been proposed as elabo-
rations of the Lambda Calculus of Objects and related calculi:

· [4] presents a type system for the Lambda Calculus of Objects based on matching;
· [24] describes a refined subtyping for extensible and incomplete objects;
· [15] gives provision for prototyping in a statically typed, imperative, class-based

language;
· [20] adds object extension and width subtyping to the system of [3];
· [21] presents a (decidable) “fully” typed version of the calculus of [16].

The system of [4] and the one of this paper share the same idea of using bounded type
variables to capture polymorphic method-types. The key difference is that [4] uses a
simplified notion of matching [8, 2] (without subsumption) and match-bound variables,
whereas here we use subtyping and subtype-bound variables. In [4], it is shown that match-
bounded type variables and row-variables have the same expressive power, more precisely
that the systems of [4] and [16] derive the same judgments from the empty basis. This
result, instead, does not hold for our system, as there is a fundamental trade-off between
our use of subtyping that allows the derivation of judgments that are not derivable in
[16], and the reliance of subtyping, on labeled types, that prevents us from deriving some
judgments which are instead valid in [16].

The calculus considered in [24] is an extension of the Abadi and Cardelli calculus of [3].
While there are similarities with our proposal – notably, the use of subtyping for dealing
with object extension – the two type systems have some fundamental differences.

On one side, the system of [24] gives provision for subtyping in depth for extensible
objects, thus improving on the solution of [17] based on the distinction between pro- and
obj- types. This flexibility would not be possible in our system. On the other hand,
our system appears superior in the treatment of binary methods, that are left for future
investigation in [24], and are instead dealt with for free by our subtyping rules. Also, our
system allows methods to be invoked on incomplete objects, while this is forbidden in [24].
Finally, while in [24] object types are interpreted as total functions from method labels
to types, in our system we rely on the more conventional (and seemingly more flexible)
interpretation of object types as partial functions.

The approach to prototyping developed in [15] is largely based on the ideas of [5] that
we have illustrated here in further detail. Besides the different settings – imperative
versus functional, class-based versus object-based – the system of [15] and ours have
other fundamental differences. First, the system of [15] does not allow subtyping and,
as such, it is more liberal than ours in dealing with incompleteness (incompleteness is

32 Bono et al. / Subtyping for Extensible Objects

allowed at a global level in [15], as the body of a method may contain references to non-
implemented methods in other classes). Secondly, and more importantly, the system of
[15] relies on a notion of “weak” soundness whereby a program is accepted as type correct
even though it may cause message-not-understood errors, due to incompleteness.

Acknowledgments. Suggestions by Adriana Compagnoni and Sophia Drossopoulou are
gratefully acknowledged: they were very helpful in improving the technical presentation
of the paper.

The present version of this paper has been deeply influenced by comments and remarks
of two anonymous referees. In particular, Section 5 and 6 were almost completely rewritten
following their advices. Therefore the authors feel strongly indebted to the referees.

The final version of this paper was written while three of the authors were on leave
from their departments.

Viviana Bono was visiting the Computer Science Department at Stanford. She would
like to thank her host John C. Mitchell and her Ph.D. colleagues for the ideal environment
they provided.

Mariangiola Dezani-Ciancaglini was visiting the Tokyo Institute of Technology. She
would like to thank her host Masako Takahashi-Horai and the whole Department of Math-
ematical and Computing Sciences for the ideal working conditions they provided.

Luigi Liquori held a temporary position at CSELT, Centro Studi e Laboratori Teleco-
municazioni, Torino. He would like to thank the members of his group for their helpful
discussions.

References

[1] M. Abadi. Baby Modula–3 and a Theory of Objects. Journal of Functional Program-
ming, 4(2):249–283, 1994.

[2] M. Abadi and L. Cardelli. On Subtyping and Matching. In ECOOP’95, LNCS 952,
145–167, Springer–Verlag, 1995.

[3] M. Abadi and L. Cardelli. A Theory of Objects. Springer–Verlag, 1996.
[4] V. Bono and M. Bugliesi. Matching Constraints for the Lambda Calculus of Objects.

In TLCA’97, LNCS 1210, 46-62, Springer-Verlag, 1997.
[5] V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping Constraints

for Incomplete Objects. In CAAP’97, LNCS 1214, 465-477, Springer-Verlag, 1997.
[6] V. Bono, M. Bugliesi, and L. Liquori. A Lambda Calculus of Incomplete Objects. In

MFCS’96, LNCS 1113, 218–229, Springer-Verlag, 1996.
[7] V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell Lambda Cal-

culus of Objects. In CSL’94, LNCS 933, 16–30, Springer-Verlag, 1995.
[8] K.B. Bruce. A Paradigmatic Object–Oriented Programming Language: Design,

Static Typing and Semantics. Journal of Functional Programming, 4(2):127–206,
1994.

[9] L. Cardelli. A Semantics of Multiple Inheritance. Information and Computation,
76:138–164, 1988.

Bono et al. / Subtyping for Extensible Objects 33

[10] L. Cardelli. A Language with Distributed Scope. Computing Survey, 8(1):27–59,
1995.

[11] L. Cardelli and J.C. Mitchell. Operations on Records. Mathematical Structures in
Computer Sciences, 1(1):3–48, 1991.

[12] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Poly-
morphism. Computing Surveys, 17(4):471–522, 1985.

[13] W. Cook, W. Hill, and P. Canning. Inheritance is not Subtyping. In POPL’90,
125–135, ACM Press, 1990.

[14] W.R. Cook. A Denotational Semantics of Inheritance. Ph.D. Thesis, Brown Univer-
sity, 1989.

[15] M.J. Dickinson. Typed Object-Oriented Prototyping. M.SC. Thesis, Imperial College,
1997.

[16] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and Method
Specialization. Nordic Journal of Computing, 1(1):3–37, 1994.

[17] K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping.
In FCT’95, LNCS 965, 42–61, Springer-Verlag, 1995.

[18] A. Goldberg and D. Robson. Smalltalk-80, The Language and its Implementation.
Addison Wesley, 1983.

[19] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. J.ACM,
40(1):143–184, 1993.

[20] L. Liquori. An Extended Theory of Primitive Objects: First Order System. In
ECOOP’97, LNCS 1241, 146–169, Springer-Verlag, 1997.

[21] L. Liquori and B. Castagna. A Typed Lambda Calculus of Objects. In Asian’96,
LNCS 1179, 129–141, Springer-Verlag, 1996.

[22] D. Knuth and P. Bendix, Simple Word Problems in Universal Algebras. In Compu-
tational Problems in Universal Algebras, 263–297, Pergamon Press, 1970.

[23] J. McKinna and R. Pollack. Pure Type Systems Formalized. In TLCA’93, LNCS
664, 289–305, Springer-Verlag, 1993.

[24] D. Rémy. From Classes to Objects via Subtyping. In ESOP’98, LNCS 1381, 200–220,
Springer-Verlag, 1998.

[25] D. Ungar and R. B. Smith. Self: the Power of Simplicity. In OOPSLA’87, 227–241,
ACM Press, 1987.

[26] M. Wand. Complete Type Inference for Simple Objects. In LICS’87, 37–44, IEEE
Press, 1987.

A. The Type System

A.1. Typing Rules for Contexts

ε ` ∗
(start)

Γ ` ∗ x 6∈ Γ

Γ, x:τ ` ∗
(exp var)

Γ ` ∗ u 6∈ Γ u 6∈ R ◦ C

Γ, u � class t.R ◦ C ` ∗
(type var)

34 Bono et al. / Subtyping for Extensible Objects

A.2. Subtyping Rules

Γ ` ∗
Γ ` τ � τ

(� refl)
Γ ` ∗ u � τ ∈ Γ

Γ ` u � τ
(� proj)

Γ ` σ � τ Γ ` τ � ρ

Γ ` σ � ρ
(� trans)

Γ ` σ′ � σ Γ ` τ � τ ′

Γ ` σ→τ � σ′→τ ′
(� arrow)

Γ ` ∗
Γ ` class t.〈〈R | m:α〉〉 ◦ C � class t.R ◦ 〈〈C | m:α〉〉

(� shift)

Γ ` ∗
Γ ` class t.R ◦ 〈〈C | p:γ〉〉 � class t.R ◦ C

(� hide)

Bono et al. / Subtyping for Extensible Objects 35

A.3. Typing Rules for Terms

Γ ` ∗ x : τ ∈ Γ

Γ ` x : τ
(proj)

Γ, x:τ1 ` e : τ2

Γ ` λx.e : τ1→τ2

(exp abs)

Γ ` e1 : τ1→τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

(exp appl)
Γ ` e : σ Γ ` σ � τ

Γ ` e : τ
(�)

Γ ` ∗
Γ ` 〈〉 : class t.〈〈〉〉◦〈〈〉〉

(empty)

Γ ` e : σ Γ ` σ � class t.〈〈m:α, n:τ{m}〉〉◦〈〈〉〉

Γ ` e⇐ n : [σ/t]τ
(send)

Γ ` e : class t.〈〈n:τ{m}〉〉◦〈〈m:α〉〉 Γ ` σ � class t.〈〈m:α, n:τ{m}〉〉◦〈〈〉〉

Γ ` e←↩ n : [σ/t](t→τ)
(search)

Γ ` e1 : class t.R◦C m:α ∈ R ◦ C n, p 6∈ M(R) ∪M(C)
Γ, u � class t.〈〈m:α, p:γ, n:τ{m,p}〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ)

Γ ` 〈e1←◦ n=e2〉 : class t.〈〈R | n:τ{m,p}〉〉◦〈〈C | p:γ〉〉
(ext)

Γ ` e1 : class t.R◦〈〈C | n:τ{m}〉〉 m:α ∈ R ◦ C
Γ, u � class t.〈〈m:α, n:τ{m}〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ)

Γ ` 〈e1←◦ n=e2〉 : class t.〈〈R | n:τ{m}〉〉◦C
(comp)

Γ ` e1 : σ Γ ` σ � class t.〈〈n:τ{m}〉〉◦〈〈m:α〉〉
Γ, u � class t.〈〈m:α, n:τ{m}〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ)

Γ ` 〈e1←◦ n=e2〉 : σ
(over)

36 Bono et al. / Subtyping for Extensible Objects

B. Rewriting Rules for Label Inference

B.1. The Operator t on Extended Labels

· ∆ t • = • t∆ = ∆ t∆ = ∆ for every ∆, including •;
· ∆1 t∆2 = ⊥ otherwise.

B.2. The Operator �

The operator � on types, labeled types, rows, contexts and right-hand sides of judgments
is inductively defined as follows:

· τ1 � τ2 = τ if τ1 = τ2 = τ are the same type variable;

· (σ1→τ1) � (σ2→τ2) = (σ1 � σ2)→(τ1 � τ2) if σ1 � σ2 6= ⊥ and τ1 � τ2 6= ⊥;

· class t.R1◦C1 � class t.R2◦C2 = class t.(R1 ◦ C1 �R2 ◦ C2)
if R1 ◦ C1 �R2 ◦ C2 6= ⊥;

· τ1 � τ2 = ⊥ otherwise;

· σ∆1 � τ∆2 = (σ � τ)∆1t∆2 if σ � τ 6= ⊥ and ∆1 t∆2 6= ⊥;

· σ∆1 � τ∆2 = ⊥ otherwise;

· 〈〈R1 | m:α1〉〉 � 〈〈R2 | m:α2〉〉=〈〈R1 �R2 | m:α1 � α2〉〉 if R1 �R2 6=⊥ and α1 � α2 6=⊥;

· 〈〈R1 | m:α1〉〉 � 〈〈R2 | m:α2〉〉 = ⊥ otherwise;

· Γ � Γ′ = {x : τ � τ ′ | x : τ ∈ Γ, x : τ ′ ∈ Γ′} ∪ {u � τ � τ ′ | u � τ ∈ Γ, u � τ ′ ∈ Γ′};

· (e : σ) � (e : τ) = e : σ � τ ;

· (σ � τ) � (σ′ � τ ′) = (σ � σ′) � (τ � τ ′).

Bono et al. / Subtyping for Extensible Objects 37

B.3. The Operators / and ..

The operators / and . on types, labeled types, and pairs of rows are inductively defined
as follows:

· τ1 ./ τ2 = τ if τ1 = τ2 = τ are the same type variable;

· (σ1→τ1) ./ (σ2→τ2) = (σ1 /. σ2)→(τ1 ./ τ2) if σ1 /. σ2 6= ⊥ and τ1 ./ τ2 6= ⊥;

· class t.R1◦C1 ./ class t.R2◦C2 = class t.(R1 ◦ C1 ./R2 ◦ C2)
if R1 ◦ C1 ./R2 ◦ C2 6= ⊥;

· τ1 ./ τ2 = ⊥ otherwise;

· σ∆1 ./ τ∆2 = (σ ./ τ)∆1t∆2 if σ ./ τ 6= ⊥ and ∆1 t∆2 6= ⊥;

· σ∆1 ./ τ∆2 = ⊥ otherwise;

· R1 ◦ C1 . R2 ◦ C2 = R ◦ C where

· m : α ∈ R iff α = β . γ 6= ⊥, and m : β ∈ R1, m : γ ∈ R2;

· m : α ∈ C iff α = β . γ 6= ⊥, and m : β ∈ R1 ◦ C1, m : γ ∈ C2;

· R1 ◦ C1 / R2 ◦ C2 = R ◦ C where

· m : α ∈ R iff either α = β / γ 6= ⊥, and m : β ∈ R1, m : γ ∈ R2 ◦ C2,
or m : α ∈ R1 and m 6∈ R2 ◦ C2;

· m : α ∈ C iff either α = β / γ 6= ⊥, and m : β ∈ C1, m : γ ∈ C2,
or m : α ∈ C1 and m 6∈ R2 ◦ C2;

· R1 ◦ C1 ./R2 ◦ C2 = ⊥ otherwise.

Here ./ stands for . or /, while /. = / if ./ = ., and /. = . if ./ = /.

B.4. Rewrite Rules for Contexts

Γ ` ∗ x 6∈ Γ

Γ′, x:τ ` ∗
(exp var)

;

Γ � Γ′ ` ∗ x 6∈ Γ � Γ′

Γ � Γ′, x:τ ` ∗
(exp var)

Γ ` ∗ u 6∈ Γ u 6∈ τ

Γ′, u � τ ′ ` ∗
(type var)

;

Γ � Γ′ ` ∗
u 6∈ Γ � Γ′ u 6∈ τ � τ ′

Γ � Γ′, u � τ � τ ′ ` ∗
(type var)

38 Bono et al. / Subtyping for Extensible Objects

B.5. Rewrite Rules for Subtyping

Γ ` ∗
Γ′ ` τ � τ

(� refl)
;

Γ � Γ′ ` ∗
Γ � Γ′ ` τ � τ

(� refl)

Γ ` ∗ u � τ ∈ Γ

Γ′ ` u � τ ′
(� proj)

;

Γ′′ ` ∗ u � τ ′′ ∈ Γ′′

Γ′′ ` u � τ ′′
(� proj)

where Γ′′ = ([u � τ � τ ′/u � τ]Γ) � Γ′ and u � τ ′′ ∈ Γ′′.

Γ ` σ � τ Γ′ ` τ ′ � ρ

Γ′′ ` σ′ � ρ′
(� trans)

;

Γ′′′ ` σ′′ � τ ′′ Γ′′′ ` τ ′′ � ρ′′

Γ′′′ ` σ′′ � ρ′′
(� trans)

where Γ′′′ = Γ � Γ′ � Γ′′, σ′′ = (σ / (τ � τ ′)) � (σ′ / (ρ � ρ′)),
τ ′′ = ((σ � σ′) . τ) � (τ ′ / (ρ � ρ′)), ρ′′ = ((σ � σ′) . ρ) � ((τ � τ ′) . ρ′).

Γ ` σ1 � σ2 Γ′ ` τ1 � τ2

Γ′′ ` σ′2→τ ′1 � σ′1→τ ′2
(� arrow)

;

Γ′′′ ` σ′′1 � σ′′2 Γ′′′ ` τ ′′1 � τ ′′2

Γ′′′ ` σ′′2→τ ′′1 � σ′′1→τ ′′2
(� arrow)

where Γ′′′ = Γ � Γ′ � Γ′′, σ′′1 = (σ1 / (σ2 � σ′2)) � σ′1,
σ′′2 = ((σ1 � σ′1) . σ2) � σ′2, τ ′′1 = (τ1 / (τ2 � τ ′2)) � τ ′1, τ ′′2 = ((τ1 � τ ′1) . τ2) � τ ′2.

Γ ` ∗
Γ′ ` class t.〈〈R | m:α〉〉 ◦ C � class t.R ◦ 〈〈C | m:α〉〉

(� shift)

;

Γ � Γ′ ` ∗
Γ � Γ′ ` class t.〈〈R | m:α〉〉 ◦ C � class t.R ◦ 〈〈C | m:α〉〉

(� shift)

Γ ` ∗
Γ′ ` class t.R ◦ 〈〈C | p:γ〉〉 � class t.R ◦ C

(� hide)

;

Γ � Γ′ ` ∗
Γ � Γ′ ` class t.R ◦ 〈〈C | p:γ〉〉 � class t.R ◦ C

(� hide)

Bono et al. / Subtyping for Extensible Objects 39

B.6. Rewrite Rules for Typing Terms: Part I

Γ ` ∗ x : τ ∈ Γ

Γ′ ` x : τ ′
(proj)

;

Γ′′ ` ∗ x : τ ′′ ∈ Γ′′

Γ′′ ` x : τ ′′
(proj)

where Γ′′ = ([x : τ � τ ′/x : τ]Γ) � Γ′ and x : τ ′′ ∈ Γ′′.

Γ, x:τ1 ` e : τ2

Γ′ ` λx.e : τ ′1→τ ′2
(exp abs)

;

Γ � Γ′, x:τ1 � τ ′1 ` e : τ2 � τ ′2
Γ � Γ′ ` λx.e : τ1 � τ ′1→τ2 � τ ′2

(exp abs)

Γ ` e1 : τ1→τ2

Γ′ ` e2 : τ ′1

Γ′′ ` e1e2 : τ ′2
(exp appl)

;

Γ′′′ ` e1 : τ1 � τ ′1→τ2 � τ ′2
Γ′′′ ` e2 : τ1 � τ ′1

Γ′′′ ` e1e2 : τ2 � τ ′2
(exp appl)

where Γ′′′ = Γ � Γ′ � Γ′′.

Γ ` e : σ Γ′ ` σ′ � τ

Γ′′ ` e : τ ′
(�)

;

Γ′′′ ` e : (σ � σ′) / (τ � τ ′)
Γ′′′ ` (σ � σ′) / (τ � τ ′) � (σ � σ′) . (τ � τ ′)

Γ′′′ ` e : (σ � σ′) . (τ � τ ′)
(�)

where Γ′′′ = Γ � Γ′ � Γ′′.

Γ ` ∗
Γ′ ` 〈〉 : class t.〈〈〉〉◦〈〈〉〉

(empty)
;

Γ � Γ′ ` ∗
Γ � Γ′ ` 〈〉 : class t.〈〈〉〉◦〈〈〉〉

(empty)

Γ ` e : σ
Γ′ ` σ′ � class t.〈〈m:α, n:τ∆〉〉◦〈〈〉〉

Γ′′ ` e⇐ n : [σ′′/t]τ ′
(send)

;

Γ′′′ ` e : ρ1 Γ′′′ ` ρ1 � ρ2

Γ′′′ ` e⇐ n : [ρ1/t]ρ
(send)

where Γ′′′ = Γ � Γ′ � Γ′′, τ ′′∆′ = τ∆ � τ ′{m},
ρ1 = (σ � σ′ � σ′′) / class t.〈〈m:α, n:τ ′′∆′〉〉◦〈〈〉〉,
ρ2 = (σ � σ′ � σ′′) . class t.〈〈m:α, n:τ ′′∆′〉〉◦〈〈〉〉 = class t.〈〈R | n:ρ∆′′〉〉◦〈〈〉〉.

Γ ` e : class t.〈〈n:τ∆〉〉◦〈〈m:α〉〉
Γ′ ` σ � class t.〈〈m:α′, n:τ ′∆′〉〉◦〈〈〉〉

Γ′′ ` e←↩ n : [σ′/t](t→τ ′′)
(search)

;

Γ′′′ ` e : class t.〈〈n:τ ′′′∆′′〉〉◦〈〈m:β〉〉
Γ′′′ ` ρ � class t.〈〈m:β, n:τ iv∆′′′〉〉◦〈〈〉〉

Γ′′′ ` e←↩ n : [ρ/t](t→τ iv)
(search)

where Γ′′′ = Γ � Γ′ � Γ′′, τ ′′′∆′′ = τ∆ � τ ′∆′ � τ ′′{m},
ρ = (σ � σ′) / class t.〈〈m:α � α′, n:τ iv∆′′′〉〉◦〈〈〉〉,
class t.〈〈m:β, n:τ ′v∆′′′〉〉◦〈〈〉〉 = (σ � σ′) . class t.〈〈m:α � α′, n:τ ′′′∆′′〉〉◦〈〈〉〉.

40 Bono et al. / Subtyping for Extensible Objects

B.7. Rewrite Rules for Typing Terms: Part II

Γ ` e1 : class t.R◦〈〈C | n:τ∆〉〉 m:α ∈ R ◦ C
Γ′, u � class t.〈〈m:α′, n:τ ′∆′〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ ′′)

Γ′′ ` 〈e1←◦ n=e2〉 : class t.〈〈R′ | n:τ ′′′∆′′〉〉◦C ′
(comp)

;

Γ′′′ ` e1 : class t.R′′◦〈〈C ′′ | n:τ ιv∆′′′〉〉 m:α′′ ∈ R′′ ◦ C ′′
Γ′′′, u � class t.〈〈m:α′′, n:τ ιv∆′′′〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ ιv)

Γ′′′ ` 〈e1←◦ n=e2〉 : class t.〈〈R′′ | n:τ ιv∆′′′〉〉◦C ′′
(comp)

where Γ′′′ = Γ � Γ′ � Γ′′, τ ιv∆′′′ = τ∆ � τ ′∆′ � τ ′′′∆′′ � τ ′′{m},
R′′ ◦ C ′′ = ([m:α � α′/m:α]R ◦ C) �R′ ◦ C ′ and m:α′′ ∈ R′′ ◦ C ′′.

Γ ` e1 : σ Γ′ ` σ′ � class t.〈〈n:τ∆〉〉◦〈〈m:α〉〉
Γ′′, u � class t.〈〈m:α′, n:τ ′∆′〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ ′′)

Γ′′′ ` 〈e1←◦ n=e2〉 : σ′′
(over)

;

Γιv ` e1 : ρ Γιv ` ρ � class t.〈〈n:τ iv∆′′′〉〉◦〈〈m:β〉〉
Γιv, u � class t.〈〈m:β, n:τ iv∆′′′〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ ′v)

Γιv ` 〈e1←◦ n=e2〉 : ρ
(over)

where Γιv = Γ � Γ′ � Γ′′ � Γ′′′, τ ′′′∆′′ = τ∆ � τ ′∆′ � τ ′′{m},
ρ = (σ � σ′) / class t.〈〈n:τ ′′′∆′′〉〉◦〈〈m:α � α′〉〉,
class t.〈〈n:τ ′v∆′′′〉〉◦〈〈m:β〉〉 = (σ � σ′) . class t.〈〈n:τ ′′′∆′′〉〉◦〈〈m:α � α′〉〉.

Γ ` e1 : class t.R◦C m:α ∈ R ◦ C n, p 6∈ M(R) ∪M(C)
Γ′, u � class t.〈〈m:α′, p:γ, n:τ∆〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ ′)

Γ′′ ` 〈e1←◦ n=e2〉 : class t.〈〈R′ | n:τ ′′∆′〉〉◦〈〈C ′ | p:γ′〉〉
(ext)

;

Γ′′′ ` e1 : class t.R′′ ◦ C ′′ m:α′′ ∈ R′′ ◦ C ′′ n, p 6∈ M(R′′) ∪M(C ′′)
Γ′′′, u � class t.〈〈m:α′′, p:γ � γ′, n:τ ′′′∆′′〉〉◦〈〈〉〉 ` e2 : [u/t](t→τ ′′′)

Γ′′′ ` 〈e1←◦ n=e2〉 : class t.〈〈R′′ | n:τ ′′′∆′′〉〉◦〈〈C ′′ | p:γ � γ′〉〉
(ext)

where Γ′′′ = Γ � Γ′ � Γ′′, τ ′′′∆′′ = τ∆ � τ ′{m,p} � τ ′′∆′ ,

R′′ ◦ C ′′ = ([m:α � α′/m:α]R ◦ C) �R′ ◦ C ′ and m:α′′ ∈ R′′ ◦ C ′′.

