ICMNS 15 INRIA

Open-source numerical simulation tool for two-dimensional neural fields involving finite axonal transmission speed

Eric Nichols¹, Kevin Green² and Axel Hutt¹

¹INRIA Grand Est - Nancy, 615 Rue du Jardin Botanique, 54600 Villers-lès-Nancy, France; CNRS et Université de Lorraine, Loria; Email: ericjnichols@gmail.com ²Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON L1H7K4, Canada

Motivation

This work aims to provide an open source and cross-platform simulation tool that integrates numerically integral-differential equations of the type

$$\left(\eta \frac{\partial^{2}}{\partial t^{2}} + \gamma \frac{\partial}{\partial t} + 1\right) V(x, t) = I(x, t) + \int_{\Omega} d^{2}y K(||x - y||) S\left[V\left(y, t - \frac{||x - y||}{c}\right)\right]$$
(1)

with mean neuron potential V in a two-dimensional quadratic spatial domain Ω with periodic boundary conditions. The term I denotes the external stimulus, K is the synaptic connectivity kernel and S is the firing rate. Finite axonal transmission speed c induces space-dependent delays.

To this end, we present the Neural Field Simulator [1].

Features

► Great usability

- Parametrization can be as simple or complex as field model
- Visualization is easily modified by a keypress

► Complete control over Eq. (1) variables

Free choice of values provided by text-based Python interface

Spatio-temporal kernel

• Integral renders into a spatial integral and an integral over delays [2]

Optimal acceleration

- 1. Fast Fourier transform in space
- 2. Self-writing code based on interface selections
- 3. Utilization of graphics processing unit for hardware acceleration
- 4. Reduced rate of GPU uploads optimised for visual perception

Output in rich detail

• 2D matrices output in 3D whereby $[x,y] \mapsto [z]$

This allows features normally hidden in neural fields to be magnified and examined

- Matrices can be moved, rotated, zoomed and colors and axis limits are easily changed
- Movies and images of simulations can be saved

Breather

A breather (Fig. 1) is simulated with a spatial grid of n=512 squared elements and parameters dt=0.001, $\gamma=1$, $\eta=0$, length l=30, V(t=0)=0, $V_{noise}(t>0)=\frac{e^{(a^2+b^2)}\sqrt{\partial t}}{320\pi}$ where a and b are a meshgrid of $[-l/2, \cdots, l/2]$, $I=\frac{20e^{-x^2/32}}{32\pi}$, $K=\frac{-e^{-x/3}}{45\pi}$, $S=\frac{1}{1+e^{-10000(V-0.005)}}$ and c=500.

Figure 1: A breather at 10 millisecond intervals with manually set minimum Z axis (=0.0048).

Turing Pattern

Turing patterns emerge from noisy field voltage (Fig. 2) with terms dt=0.01, γ =1, η =0, I=90, n=512, V(t=0)=5.4+ $\frac{e^{-x^2/0.02}}{\sqrt{0.02\pi}}$, I=0, K= K_- - $\sin(\vec{v})/200$ with K_- = $\sin(\vec{v})/150$ and \vec{v} =[-9 π , ..., 0], S= $\frac{2}{1+e^{-1.24(V-3)}}$ and c>I $\sqrt{2}\Delta t$ is infinite (=6364).

Alternating Roll

Reference [1] presents an alternating roll solution (Fig. 3) with descriptions of the following values: dt=0.02, γ =2, η =1, I=40.3805226, n=512, k_c =1.0891958379832 ω_c =3.4003003526352 V(t=0)=3+0.4 $\sin(k_c a)$, U_{excite} =0.4 ω_c $\cos(k_c b)$ I=2.5, K= $\frac{121e^{-x}-235.2e^{-1.4x}}{2\pi}$, S= $\frac{1}{1+e^{-2.856(V-3)}}$ and finite c=6.

102 ms 119 ms 133 ms Figure 3: A stable alternating roll continuously transforms between horizontal and vertical line patterns every \approx 31 milliseconds.

Acknowledgments

This work is funded by the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013), ERC grant agreement No. 257253 (MATHANA project).

References

- [1] http://nfsimulator.gforge.inria.fr
- [2] A. Hutt and N. Rougier. Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields, *Physical Review E* 82 (5):055701 (2010).
- [3] K.R. Green and A. Hutt. Dynamic square patterns in a two-dimensional neural field with finite transmission speed. Society for Industrial and Applied Mathematics (2015), Submitted for publication.

