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An Extended Theory of Primitive Objects:
First Order System

Luigi Liquori ?

Dip. Informatica, Università di Torino, C.so Svizzera 185, I-10149 Torino, Italy
e-mail: liquori@di.unito.it

Abstract. We investigate a first-order extension of the Theory of Prim-
itive Objects of [5] that supports method extension in presence of object
subsumption. Extension is the ability of modifying the behavior of an ob-
ject by adding new methods (and inheriting the existing ones). Object
subsumption allows to use objects with a bigger interface in a context
expecting another object with a smaller interface. This extended calcu-
lus has a sound type system which allows static detection of run-time
errors such as message-not-understood, “width” subtyping and a typed
equational theory on objects. Moreover, it can express classes and class-
inheritance.
Categories: Type systems, design and semantics of object-oriented lan-
guages.

1 Introduction

The Abadi and Cardelli’s Theory of Primitive Objects [3, 4, 5], supports method
override, self-types, and (self-type covariant) “width” subtyping. No object ex-
tension is provided, since the objects have fixed size. In fact, the only operations
allowed on objects are method invocation and method override. The objects are
very simple, with just four syntactic forms, and without functions. The expres-
sivity of the calculus is given via an encoding of the λ-calculus. The various
fragments of this calculus have a sound type system that catches run-time errors
such as message-not-understood, and a typed equational theory on objects.

The starting point of this paper is the first-order type system for the primi-
tive object calculus, called Obj1≺: [5]. We extend this calculus by allowing the
dynamic addition and subsumption of methods, and we provide for a sound
static type system and a typed equational theory on objects. We call this (con-
servative) extension Obj1+≺:. The Obj1+≺: calculus allows a considerable number
of programs to be typed that are not typable in Obj1≺:.

In this calculus, we distinguish between two “kinds” of objects-types, namely
the saturated object-types, and the diamond object-types: if an object can be
typed by a saturated object-type, then it can receive messages and override the
methods that it contains. If an object can be typed by a diamond object-type,
then it can receive messages, override some methods, and it can be extended
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by new methods. On both types, a “width” subtyping relation is defined. This
relation behaves differently depending on the shape of the object-type.

Summarizing, our calculus exhibits the following features:

– extendible objects with appropriate method specialization of inherited meth-
ods,

– static detection of run-time errors, such as message-not-understood,
– a “width” subtyping relation compatible with method extension,
– it can express classes and class-inheritance.

Moreover, the Obj1+≺: type system can be extended with self-types by mod-
eling the inheritance and the self-application semantics via bounded universal
polymorphism. This (conservative w.r.t. Obj1+≺:) extension can be easily ob-
tained with a very little cost with respect to the typing rules of Obj1+≺: (see
[16]).

This paper is organized as follows: in Section 2 we recall the untyped calculus
of primitive objects, and we define the new calculus with method extension, its
operational semantics and untyped equational theory. In Section 3 we present the
first-order extension Obj1+≺: with its typing and subtyping system. Section 4 is
concerned with the type soundness and the typed equational theory on objects. A
number of examples to give some intuition of the power of the extension are given
in Section 5. Section 6 considers an interesting encoding of classes as objects that
share a lot of similarities with the object-oriented language Smalltalk-80 [15]. The
last section is devoted to the comparison with the Lambda Calculus of Objects
of [12] (and related papers [14, 10, 21, 9, 18, 8, 7]), Baby-Modula-3 of [1], and
contains also open problems and the conclusions.

We assume that the reader is familiar with some object-oriented concepts
such as delegation-based object calculi, type and subtype systems, self-types.
Some knowledge of the seminal papers [12, 5] (and the above cited related papers)
would be useful but not essential.

2 The Extended Primitive Calculus of Objects

2.1 The Abadi-Cardelli’s Primitive Calculus

The untyped syntax of the Primitive Calculus of Objects is defined as follows:

o ::= s | [mi = ς(si)oi]
i∈I | o.m | o.m≺−−ς(s)o′,

where in the term [mi = ς(si)oi]
i∈I , mi (i ∈ I) are method names, oi (i ∈ I) are

the bodies of methods, si (i ∈ I) are bound parameters referring to the object
itself, and ς is a binder for the si. Hence, an object is an unordered collection
of pairs of method-names and method-bodies. If o reduces to [mi = ς(si)oi]

i∈I ,
then the expression o.mi (i ∈ I) stands for method invocation, and the expression

o.mi≺−−ς(s)o′ (i ∈ I) stands for method override. Let o
4
= [mi = ς(si)oi]

i∈I , and
let o{s←o′} denote the substitution of the object o′ for the free occurrences
of s in o, and let, for i, j ∈ I, mi and mj be distinct methods. The operational
semantics is defined as the reflexive, transitive and contextual closure of the
reduction relation defined in Figure 1.
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(Select) o.mj
ev→ oj{sj←o} (j ∈ I)

(Override) o.mj≺−−ς(sj)o′
ev→ [mi = ς(si)oi, mj = ς(sj)o

′]i∈I−{j} (j ∈ I)

Fig. 1. Operational Semantics for the Primitive Calculus

(Select) o.mj
ev→ oj{sj←o} (j ∈ I)

(Override) o≺−−mj = ς(sj)o
′ ev→ [mi = ς(si)oi, mj = ς(sj)o

′]i∈I−{j} (j ∈ I)

(Extend) o≺−−mj = ς(sj)o
′ ev→ [mi = ς(si)oi, mj = ς(sj)o

′]i∈I (j 6∈ I)

Fig. 2. Operational Semantics for the Extended Primitive Calculus

2.2 The Extended Abadi-Cardelli’s Primitive Calculus

The Extended Calculus of Primitive Objects agrees with the following untyped
syntax (which slightly differs from the one shown before):

o ::= s | [mi = ς(si)oi]
i∈I | o.m | o≺−−m = ς(s)o.

Here the ≺−− operator can be intended as an override or an extension operator
according to whether the method m belongs to the object o or not. The semantics
of the override and of the extension is functional: an override and an extension
always produce another object where the overridden method has been replaced
by the new body. Therefore, the operational semantics can be given as the reflex-
ive, transitive and contextual closure of the reduction relation defined in Figure
2.

To send the message m to the object o means to substitute the object itself
(i.e. o) in the body of m. As usual, we do not make error conditions explicit.
We can derive an untyped equational theory from the reduction rules, by simply
adding rules for symmetry, transitivity, and congruence, as shown in Figure 3.

Let →ev→ be the general many-step reduction. The connection between equality
ev
= and reduction →ev→ is given by the fact that the →ev→ reduction rule satisfies
the Church-Rosser property.

Theorem 1 (Church-Rosser).

The relation →ev→ is Church-Rosser, and if ` o
ev
= o′, then there exists o′′

such that o→ev→ o′′ and o′ →ev→ o′′.

Proof. The proof is standard, following the method of Tait and Martin-Löf [6].

2.3 Evaluation Strategy

In this section, we define an evaluation strategy which is directly derived from
that one defined in [5]. As usual the purpose of the reduction is to maps every
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` o2
ev
= o1

` o1
ev
= o2

(Eq−Symm)
` o1

ev
= o2 ` o2

ev
= o3

` o1
ev
= o3

(Eq−Trans)

` s ev
= s

(Eq−V ar)
` oi

ev
= o′i ∀ i ∈ I

` [mi = ς(si)oi]
i∈I ev

= [mi = ς(si)o
′
i]

i∈I
(Eq−Obj)

` o1
ev
= o2

` o1.m
ev
= o2.m

(Eq−Select)
` o1

ev
= o2 ` o′

ev
= o′′

` o1≺−−m = ς(s)o′
ev
= o2≺−−m = ς(s)o′′

(Eq−Ext)

(Let o
4
= [mi = ς(si)oi]

i∈I)

j ∈ I

` o.mj
ev
= oj{sj←o}

(Eq−Selectev)

j ∈ I

` o≺−−mj = ς(sj)o
′ ev= [mi = ς(si)oi, mj = ς(sj)o

′]i∈I−{j}
(Eq−Overev)

j 6∈ I

` o≺−−mj = ς(sj)o
′ ev= [mi = ς(si)oi, mj = ς(sj)o

′]i∈I
(Eq−Extev)

Fig. 3. Untyped Equational Theory for the Extended Primitive Calculus

closed expression into a normal form, i.e. an irreducible term (if we consider
constants such as natural numbers we would naturally include them among the
results). We define the set of results as follows:

v ::= [mi = ς(si)oi]
i∈I | wrong.

The result wrong denotes a run-time error which occurs when we send a message
to an object which does not have any corresponding method, and therefore
cannot respond to the message in question. The evaluation strategy Outcome
is defined via a natural proof deduction system à la Plotkin [20] style and it is

shown in Figure 4. The relation between →ev→ ,
ev
= and Outcome is:

Proposition 2 (Soundness of Outcome).

If Outcome(o) = v, and v 6≡ wrong, then o→ev→ v, and ` o
ev
= v.

Proof. By induction on the structure of the derivation of Outcome(o).

In Section 4 we will study the relations between the Outcome evaluation
strategy and the objects typing, by showing the “Type Soundness”, i.e. that
every “well typed” program will not evaluate to the wrong result.

3 Types

The type system of the original Primitive Calculus of Objects is composed by
several fragments, each necessary to give a correct type to different objects of
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Outcome([mi = ς(si)oi]
i∈I) = [mi = ς(si)oi]

i∈I
(Red−Obj)

Outcome(o) = [mi = ς(si)oi]
i∈I

Outcome(oj{sj ← [mi = ς(si)oi]
i∈I}) = v j ∈ I

Outcome(o.mj) = v
(Red−Sel)

Outcome(o) = [mi = ς(si)oi]
i∈I j 6∈ I

Outcome(o≺−−mj = ς(sj)o
′) = [mi = ς(si)oi, mj = ς(sj)o

′]i∈I
(Red−Ext)

Outcome(o) = [mi = ς(si)oi]
i∈I j ∈ I

Outcome(o≺−−mj = ς(sj)o
′) = [mi = ς(si)oi, mj = ς(sj)o

′]i∈I−{j}
(Red−Over)

Outcome(o) = [mi = ς(si)oi]
i∈I j 6∈ I

Outcome(o.mj) = wrong
(Red−Sel−Wrong)

Outcome(o′) = wrong
o ≡ o′.mj or o ≡ o′≺−−mj = ς(sj)o

′′

Outcome(o) = wrong
(Red−Prop−Wrong)

Fig. 4. Evaluation Strategy for the Extended Primitive Calculus

this calculus. For example, to give a type to those objects which contain only
methods whose results are not the object itself, a first-order fragment of the
type system would suffice. On the other hand, to give a type to objects whose
methods returns either self or an updated self (such as, for example, a point

object with a move method), recursive-types are needed. Finally, in order to
include a subsumption relation between objects, the authors extend this type
system with existential-types [2]. Starting from the first-order calculus Obj1≺:
[5], we extend its type system by allowing object-extension to be typed.

In the type system of Obj1≺:, the object-types has the following form:

[mi : σi]
i∈I ,

where we assume that the mi (i ∈ I) be distinct and that permutations do not
matter. When a method mi is invoked, it produces a result having the corre-
sponding type σi.

As clearly stated in [13, 4], subtyping is unsound when we allow objects to
be extended. As a simple example of this problem, suppose to allow extension
on objects and let

point
4
= [x = ς(s)1, y = ς(s)s.x], (1)

of type
` point : [x : nat, y : nat].
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By subsumption (we allow for “width” subtyping, i.e. an object with some meth-
ods can be used in every context expecting an object with less methods) we get

` point : [y : nat],

and by object extension we build another object

point′
4
= point≺−−x = ς(s)−1,

of type
` point′ : [x : int, y : nat],

which is obviously type-unsound, since

point′.y
ev→ [x = ς(s)−1, y = ς(s)s.x].y

ev→ [x = ς(s)−1, y = ς(s)s.x].x
ev→ −1,

with ` point′.y : nat, but 6` −1 : nat.
Therefore, we add in Obj1+≺: another kind of object-type, that we call dia-

mond-type, of the form:
[mi : σi � mj : σj ]

i∈I
j∈J .

The symbol � is used to distinguish the two parts of that object-type: the
interface-part and the subsumption-part. The interface-part of a diamond-type
describes all the methods (and their types) that may be invoked on the ob-
jects. The subsumption-part, instead, conveys information about (the types of)
methods that are (or can be) subsumed in the type-checking phase. In fact, the
subsumption-part lists (a superset of) the methods (and associated types) that
can be “hidden” in the object.

Intuitively, a diamond-type [mi : σi � mj : σj ]
i∈I
j∈J can be assigned to an object

o with mi and (some of the) mj methods, and o responds only to the methods
listed in the interface-part. Moreover, the object can be also extended with the mj
methods (of type σj) listed in the subsumption-part. At this regard, we observe
that the addition of any “fresh” (i.e. unused) method m of type σ is constrained
to the prior introduction of m : σ in the subsumption-part of the diamond-type
via an application of a subtyping rule (see Subsection 3.2).

Accordingly, the ordinary object-types [mi : σi]
i∈I can be assigned to an

object o which responds to mi methods, and can be used in any context which
does not extend the object o, but can override some methods, or send messages
to them. In this way, ordinary object-types, here also called saturated object-
types, can be assigned to objects which cannot be extended at all. Thus, we can
distinguish two kinds of objects, with related object-types:

– objects which can be extended and overridden (typed by diamond-types of
the shape [mi : σi � mj : σj ]

i∈I
j∈J);

– objects which can be only overridden (typed by saturated object-types of
the shape [mi : σi]

i∈I).
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Diamond-types allow to eliminate the unsoundness previously shown. In this
calculus, the subsumption rule can “hides” a method by moving it from the
interface-part to its subsumption-part, and a method m of type σ can be added
to an object o only if m : σ is contained in the subsumption-part of the diamond-
type assigned to o. The usual type-inclusion between (extendible) points and
colored points does not hold with diamond-types, i.e.

[x : int, col : colors �] 6<: [x : int �]

(and this is sound because it is well known that subsumption is not allowed in
presence of object-extension), but it holds instead (see the subtyping rules)

[x : int, col : colors] <: [x : int]

[x : int, col : colors �] <: [x : int � col : colors]

[x : int �] <: [x : int � col : colors]

[x : int �] <: [x : int].

The first type-inclusion gives us the desired property of using a (non extendible)
colored point in any context expecting a (non extendible) ordinary point, whereas
the second one is necessary for method hiding in presence of object-extension.
The third inclusion ensure that an object can be extended with a new (unused)
method. The last inclusion says that a diamond-type with empty subsumption-
part can be also considered as a saturated object-type (this property will be
generalized in the subsumption rules also to diamond-types with non empty
subsumption-part).

For instance, if we take the context [〈 〉≺−−col = ς(s)red], then the “hole” 〈 〉
can be filled both by a (color extensible) point object (in this case ≺−− denotes
method extension) and by a colored point object (where ≺−− denotes method
override).

As such, we can derive for the above (extendible) object point (1)

` point : [x : nat, y : nat �],

and hence, by subsumption, ` point : [y : nat � x : nat], but we cannot derive
` point≺−−x = ς(s) − 1 : [x : int, y : nat �], since the typing of the method x

does not satisfy the typing inside the subsumption-part of the diamond-type in
question.

3.1 Types, Contexts, and Judgments

The set of types in Obj1+≺: is defined by the following grammar:

σ, τ ::= ω | [mi : σi � mj : σj ]
i∈I
j∈J | [mi : σi]

i∈I .

We omit how to encode basic data-types and function-types, which can be
treated as in [5]1. The type-constant ω is the supertype of every type.

1 An arrow-types σ→τ is codified in the object-type [arg : σ, val : τ ].
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We require that, in the diamond-type [mi : σi � mj : σj ]
i∈I
j∈J , the mi with i ∈ I

(resp. mj with j ∈ J) are distinct, and the interface- and the subsumption-parts
be disjoint (I∩J = ∅), i.e. methods occurring in the former part are not occurring
in the latter and vice-versa. The judgments have the following forms:

Γ ` ok, Γ ` σ, Γ ` o : σ, Γ ` σ<:τ ,

where Γ is a context which gives types to the free variables of o, generated by
the following grammar:

Γ ::= ε | Γ, s : σ.

By deriving the first two judgments we check the well-formation of the context
Γ and of the type σ, respectively, while with the third one we assign a type σ
to the expression o. The last judgment is the usual subtyping judgment between
types. We also decorate the language with types as follows:

o ::= s | [mi = ς(si:σi)oi]
i∈I | o.m | o≺−−m = ς(s:σ)o.

3.2 Subtyping

The subtyping relation allows to use an object of type σ in any context expecting
an object of type τ , provided that σ<:τ . The subsumption rule for objects

Γ ` o : σ Γ ` σ<:τ

Γ ` o : τ
(<:)

allows an object with more methods to be used in every place where an object
with less methods is required. The most important subtyping rules are presented
in Figure 5 (see Appendix for the full set of rules).

The (Shift�) rule says that we can “hide” a method which belongs to the
interface-part simply by moving it into the subsumption-part of the diamond-
type. This rule is needed when we know that the hidden method will be added
again. This subtyping rule allows to use subsumption over extendible objects.

The (Extend�) rule says that an object with smaller subsumption-part can
be used in any context which expects an object with a bigger subsumption-part.
This rule is crucial to ensure that an object can be dynamically extended with
fresh methods.

The (Sat�) rule says that a diamond-type becomes a saturated object-type
preserving only the methods in the interface-part. When this rule is applied,
the “extendible” object to which is assigned a saturated object-type becomes a
“non-extendible” one.

The (Width) rule hides a method from the interface-part of the saturated
object-type in question. Note that, when a method is hidden by using this rule,
the hidden method cannot be recovered. We stress, again, that when a saturated
object-type is assigned to an object, that object cannot be extended, but it can be
used, subsumed and overridden. This subtyping rule correspond to the ordinary
subtyping for objects of [5].
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Γ ` [mi : σi � mj : σj ]
i∈I+K
j∈J

Γ ` [mi : σi � mj : σj ]
i∈I+K
j∈J <:[mi : σi � mj : σj ]

i∈I
j∈J+K

(Shift�)

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J+K

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J<:[mi : σi � mj : σj ]

i∈I
j∈J+K

(Extend�)

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J<:[mi : σi]

i∈I
(Sat�)

Γ ` [mi : σi]
i∈I+J

Γ ` [mi : σi]
i∈I+J<:[mi : σi]

i∈I
(Width)

Fig. 5. Main Subtyping Rules for Obj1+
≺:

Γ ` σi ∀ i ∈ I
Γ ` σj ∀j ∈ J I ∩ J = ∅

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J

(Diamond−Type)
Γ ` σi ∀ i ∈ I

Γ ` [mi : σi]
i∈I

(Sat−Type)

(Let τi
4
= [mh : σh]h∈Hi).

Γ, si : τi ` oi : σi ∀i ∈ I Hi ⊆ I

Γ ` [mi = ς(si:τi)oi]
i∈I : [mi : σi �] i∈I

(Object)
Γ ` o : [mk : σk]

Γ ` o.mk : σk

(Select)

Γ ` o : τ Γ ` τ<:[mi : σi]
i∈I Γ, sk : [mi : σi]

i∈I ` o′ : σk k ∈ I

Γ ` o≺−−mk = ς(sk:[mi : σi]
i∈I)o′ : τ

(Over)

(Let τk
4
= [mh : σh]h∈H).

Γ ` o : [mi : σi � mj : σj ]
i∈I
j∈J Γ, sk : τk ` o′ : σk H ⊆ I k ∈ J

Γ ` o≺−−mk = ς(sk:τk)o′ : [mi : σi � mj : σj ]
i∈I+{k}
j∈J−{k}

(Ext)

Fig. 6. Main Typing Rules for Obj1+
≺:

3.3 Typing

The main typing rules are shown in Figure 6 where we assume that when i, j ∈ I,
mi 6= mj (see Appendix for the full set of rules). In addition to these rules, we
have also rules for well-formation of contexts. By inspecting the typing rules,

one can see that the (Object) rule is the same as in Obj1≺: when we let Hi
set
= I,

and [mi : σi �] i∈I
4
= [mi : σi]

i∈I (in fact, in the original calculus, we can build
only “fixed-size” objects). Also the (Over) rule is the same as in Obj1≺: if
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we assume τ ≡ [mi : σi]
i∈I . As such, Obj1+≺: is a proper extension of Obj1≺:.

We only explain the (Ext) rule, the new one; firstly, one can see that we cannot
extend an object whose object-type is saturated. Secondly, this rule allows one to
extend an object with a new method if and only if that method is present in the
subsumption-part of the diamond-type assigned to the object to be extended.
But this condition can always be satisfied by a diamond-type thanks to the
subtyping rule (Extend�). Finally, observe that this rule handles also the case
where the method belongs to o but it has been already subsumed.

An important difference with [5] is that here the ς-bound variables si (re-
ferring to self ) in the same object o can have different saturated object-types.
This fits well with the semantics of the message send thanks to the presence of
the subsumption rule (<:).

3.4 Typing à la Curry

We could also omit type-decorations inside ς-binders and build a “type inference”
version of Obj1+≺:, by adopting the untyped calculus instead of the explicitly
typed one. The operational semantics, the typing and subtyping rules are the
same as in Figure 2 and 5, and 6 (taking into account the modification in the
syntax). Type inference for primitive objects has been extensively studied in [19]
(see also Subsection 7.1).

4 Soundness and Equational Theory of Obj1+
≺:

In this section, we prove that the Obj1+≺: type system is sound. Because of lack
of space, all proof are omitted (the reader is referred to [16] for detailed proofs).

The following fact is crucial for subject reduction.

Fact 3 (Sub Methods).

1. If Γ ` [mi : σi � mj : σj ]
i∈I
j∈J<:[mh : σh � mk : σk]h∈Hk∈K , then H ⊆ I, and J ⊆ K,

and I ⊆ H ∪K.
2. If Γ ` [mi = ς(si:τi)oi]

i∈I : [mh : σh � mk : σk]h∈Hk∈K , then H ⊆ I, and I −H ⊆
K.

The following two lemmas are useful for stating structural properties on
objects and to guarantee that the calculus is closed under substitution.

Lemma 4 (Generation).

1. (Bodies) If Γ ` [mi = ς(si:τi)oi]
i∈I : τ , then there exists {σi | i ∈ I}, such

that Γ, si : τi ` oi : σi, and [mi : σi �] i∈I<:τ .
2. (Object) If Γ ` [mi = ς(si:τi)oi]

i∈I : τ , then there exists {σi | i ∈ I}, such
that Γ ` [mi = ς(si:τi)oi]

i∈I : [mi : σi �] i∈I , Γ ` [mi : σi �] i∈I<:τ , and for
all j ∈ I, Γ ` [mi : σi �] i∈I<:τj.

Proof. Both parts can be proved by induction on the structure of derivations.
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Lemma 5 (Substitution).
If Γ, s : τ ` o : ρ and Γ ` o′ : σ and Γ ` σ<:τ , then Γ ` o{s←o′} : ρ.

Proof. By induction on the structure of derivations.

We can now prove the subject reduction theorem.

Theorem 6 (Subject Reduction for Obj1+≺:).
If Γ ` o : σ and o

ev→ o′, then Γ ` o′ : σ.

Proof. By cases on the definition of
ev→, using Fact 3, Lemmas 4, and 5.

We can now prove the type soundness result that certifies that every well
typed program cannot evaluate to the wrong result.

Theorem 7 (Type Soundness for Obj1+≺:).
Let o be a closed expression. If ε ` o : σ and Outcome(o) is defined, then

Outcome(o) 6= wrong.

Proof. By induction on the structure of the derivation of Outcome(o).

Moreover it holds:

Theorem 8 (Obj1+≺: has Minimum Types).
If Γ ` o : σ, then there exists σ′ such that Γ ` o : σ′, and for any σ′′, if

Γ ` o : σ′′, then Γ ` σ′<:σ′′.

Proof. The proof is standard and follows the guidelines of [5].

As in the original calculus, the lack of type-annotations inside ς-binders de-
stroy the minimum-type property for the type inference version of Obj1+≺: [5].

4.1 An Equational Type Theory for Obj1+
≺:

In this section we present the “typed” equational theory for Obj1+≺:. We refine
the untyped theory presented in Section 2 by introducing a typing judgment
to ensure that equal (provable in the theory) terms have the same type. We
introduce the judgment:

Γ ` o
ev
= o′ : τ,

to describe the property that o and o′ are provably equal in the theory with type
τ . Figure 7 presents the most important rules while the full set of rules can be
found in the Appendix.

The relation between
ev
=,

ev→, Outcome, and the equational type theory is:

Theorem 9 (Soundness of Outcome w.r.t. the Equational Theory).

Let o be a closed expression. If ε ` o : σ and Outcome(o) = v, then o→ev→ v,

and ε ` o
ev
= v : σ.

Proof. The proof follows from Proposition 2, and Theorems 6, and 7.
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(Let τi
4
= [mh : σh]h∈Hi , and τj

4
= [mk : σk]k∈Kj , and τ

4
= [mi : σi � mj : σj ]

i∈I
j∈J).

Γ, si : τi ` oi : σi ∀ i ∈ I Hi⊆ I
Γ, sj : τj ` oj : σj ∀j ∈ J Kj⊆ I+J

Γ ` [mi = ς(si:τi)oi]
i∈I ev

= [mi = ς(si:τi)oi, mj = ς(sj :τj)oj , ]
i∈I
j∈J : τ

(Eq−Obj−<:)

(In the next rules, let

o
4
= [mz = ς(sz:τz)oz]z∈Z , and τk

4
= [mh : σh]h∈H , and τ

4
= [mi : σi � mj : σj ]

i∈I+{k}
j∈J−{k}).

Γ ` o : [mk : σk]

Γ ` o.mk
ev
= ok{sk←o} : σk

(Eq−Selectev)

Γ ` o : [mi : σi � mj : σj ]
i∈I
j∈J Γ, sk : τk ` o′ : σk H ⊆ I k ∈ Z−I

Γ ` o≺−−mk = ς(sk:τk)o′
ev
= [mz = ς(sz:τz)oz, mk = ς(sk:τk)o′]z∈Z−{k} : τ

(Eq−Ext1ev)

Γ ` o : [mi : σi � mj : σj ]
i∈I
j∈J Γ, sk : τk ` o′ : σk H ⊆ I k ∈ J−Z

Γ ` o≺−−mk = ς(sk:τk)o′
ev
= [mz = ς(sz:τz)oz, mk = ς(sk:τk)o′]z∈Z : τ

(Eq−Ext2ev)

Fig. 7. Typed Equational Theory for Obj1+
≺:

As in the original calculus, we may find two objects which may give equal
result for all their methods, and still be distinguishable in the equational theory.
As a simple example of such two objects, let

o1
4
= [x = ς(s:[ ])1, y = ς(s:[ ])1],

o2
4
= [x = ς(s:[ ])1, y = ς(s:[x:int])s.x],

both of type [x : int, y : int], but 6` o1
ev
= o2 : [y : int]. More details can be found

in [4].

5 Examples

In this section, we will present a few examples that help to illustrate the features
of our first order type system.

Example 1 (Method Specialization). We show how our typing rules can capture
the desired form of method specialization by extending the object [x = ς(s:[ ])1]
with a y field which depends on the x field, so building an (extendible) diagonal
point. Consider the following object expression:

point
4
= [x = ς(s:[ ])1]≺−−y = ς(s:[x:int])s.x.

We can derive ε ` point : [x : int, y : int �], with the following derivation:
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s : [ ] ` 1 : int

ε ` [x = ς(s:[ ])1] : [x : int �]
(Object)

ε ` [x = ς(s:[ ])1] : [x : int � y : int]
(<:)

s : [x:int] ` s : [x : int]

s : [x:int] ` s.x : int
(Select)

ε ` point : [x : int, y : int �]
(Ext)

Example 2 (Object-Internal Subtyping). In this example we show that our type
system allows also subtyping inside objects. We introduce λ-binders to denote
functions (see [5]). Let the following object-types:

P�
4
= [x : int �] (extendible point)

Pcol,y
4
= [x : int � y : int, col : colors] (point extendible with y and col)

2P�
4
= [x : int, y : int �] (extendible bidimensional point)

CP
4
= [x : int, col : colors] (non-extendible colored point).

For the object foo

foo
4
= [addcol = ς(s:[ ])λp:Pcol,y.p≺−−col = ς(s′:[ ])red,

select = ς(s:[addcol:Pcol,y→CP, get p:P�, get 2p:2P�])λb:bool.

if b = true then s.addcol(s.get p) else s.addcol(s.get 2p),

get p = ς(s:[ ])[x = ς(s:[ ])1],

get 2p = ς(s:[ ])[x = ς(s:[ ])1, y = ς(s:[ ])1]

],

we can derive

` foo : [addcol : Pcol,y→CP, select : bool→CP, get p : P�, get 2p : 2P�]

and
` foo.select true : CP, ` foo.select false : CP.

This is possible since P�<:Pcol,y, and 2P�<:Pcol,y.
Note that other typing for foo are possible: among the others we mention

the following interesting one:

` foo : [addcol : Pcol,y→CPy, select : bool→CPy, get p : P�, get 2p : 2P�],

where
CPy

4
= [x : int, col : colors � y : int],

which allows one to type the interesting programs

` foo.select true≺−−y = ς(s)1 : [x : int, y : int, col : colors �],

and

` foo.select false≺−−y = ς(s)1 : [x : int, y : int, col : colors �].

Both programs produce an extendible bidimensional colored point.
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Example 3 (Object Subtyping). Let point as in the Example 1 and let c point

be obtained by extending point with a col field. By an inspection of the typing
rules we derive

` point : P�, ` c point : CP�,

where
P

4
= [x : int] CP

4
= [x : int, col : colors]

P�
4
= [x : int �] CP�

4
= [x : int, col : colors �].

Now consider the following programs and related (derivable) types:

f1
4
= λs:P.s.x : P→int

f2
4
= λs:P.s≺−−x = ς(s′:[ ])2 : P→P

f3
4
= λs:P�.s≺−−col = ς(s′:[ ])red : P�→CP�.

Again, by inspecting the typing rules, we get that the following judgments are
derivable:

` f1 point : int ` f1 c point : int
` f2 point : P ` f2 c point : P
` f3 point : CP� 6 ` f3 c point : CP�.

The last judgment is correctly false since CP� 6<:P�.

6 Classes-as-Objects

In this section, we show how the functional object calculus Obj1+≺: can easily
codify classes as objects; here we give a simple first-order encoding of classes,
metaclasses, and instances, that share a lot of similarities with the object-
oriented language Smalltalk-80 [15]. This encoding shares both the class- and
the delegation-based object-oriented styles of programming, because it allows to
build classes and instances (and assign a type in presence of a “width” subtyping
relation) and to extend and override dynamically some object methods. In the
object-oriented jargon, creating an instance of a given class can be viewed as
an activity that must be delegated to some object. Then the following question
arises: which object should have the responsibility for this activity? One solution
places a layer of management between the user, who desires the creation of a
new object, and the code that performs the allocation of the memory. It follows
that, for each class, say A, to be defined, we have a corresponding proper object,
that has the responsibility of creating instances of A. We call that object (the
metaclass) A Class; it must have all the information about the size of the class
it represents, the methods to which instances of this class will respond and a
method New, that performs the creation of the class A. As such, the class A is
an instance of the (meta)class A Class. The class A, in turn contains a method,
called new, that performs the creation of instances of the class A. Figure 8 depicts
the class and subclass hierarchy.

In the next subsections, we present the encoding of the metaclasses, classes
and instances of Figure 8. In particular, we present the encoding of the classes
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Fig. 8. The Class-Subclass Hierarchy

and metaclasses of points and colored points. Then, we present the typing of
those objects in the Obj1+≺: type system. It is worth noting that the only objects
that need to be built are the objects representing metaclasses and the top level
object Obj: objects representing classes and instances are generated via message
sending and successive reductions.

6.1 Metaclasses

Let the following types:

σ1
4
= [New : [�]] σ5

4
= [New : σ2, super : σ1, obj : [�]]

σ2
4
= [new : [�]] σ6

4
= [New : σ3, super : σ5, obj : P�]

σ3
4
= [new : P�] σ7

4
= [New : σ4, super : σ6, obj : CP�]

σ4
4
= [new : CP�].

The metaclasses Obj Class, Point Class, and C Point Class, together with
the top-level object of the hierarchy Obj, are encoded as follows:

Obj
4
= [New = ς(s:[ ])[ ]]

Obj Class
4
= [New = ς(s:[obj:[�]])[new = ς(s′:[ ])s.obj],

super = ς(s:[ ])Obj,

obj = ς(s:[super:σ1])s.super.New]
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Point Class
4
= [New = ς(s:[obj:P�])[new = ς(s′:[ ])s.obj],

super = ς(s:[ ])Obj Class,

obj = ς(s:[super:σ5])s.super.obj≺−−x = ς(s′:[ ])1]

C Point Class
4
= [New = ς(s:[obj:CP�])[new = ς(s′:[ ])s.obj],

super = ς(s:[ ])Point Class,

obj = ς(s:[super:σ6])s.super.obj≺−−col = ς(s′:[ ])red].

The meaning of the methods of the above metaclasses is as follows. When the
method New is invoked on the metaclasses2 (i.e Point Class and C Point Class),
it produces as result another object, which is the class representing all the ob-
jects instances (e.g. points and colored points, respectively). The super method
contains a pointer of the direct super(meta)class of the class to be defined. Fi-
nally, the method obj contains a copy of the object instance of the class; that
object will be cloned when an instance of the class is created (by sending the
message new to the class).

It is easy to verify that the above objects can be typed in Obj1+≺: by the
following derivable types:

ε ` Obj : σ1 ε ` Point Class : σ6
ε ` Obj Class : σ5 ε ` C Point Class : σ7.

6.2 Classes

The classes Object, Point, and C Point, are encoded in Obj1+≺: as follows:

Object
4
= [new = ς(s:[ ])[ ]]

Point
4
= [new = ς(s:[ ])[ ]≺−−x = ς(s′:[ ])1]

C Point
4
= [new = ς(s:[ ])[ ]≺−−x = ς(s′:[ ])1≺−−col = ς(s′:[ ])red]],

with the following derivable judgments in the equational theory

ε ` Object
ev
= [new = ς(s:[ ])[ ]] : σ2

ε ` Point
ev
= [new = ς(s:[ ])[x = ς(s′:[ ])1]] : σ3

ε ` C Point
ev
= [new = ς(s:[ ])[x = ς(s′:[ ])1, col = ς(s′:[ ])red]] : σ4,

and it holds

Obj Class.New →ev→ Object

Point Class.New →ev→ Point

C Point Class.New →ev→ C Point.

2 The New method should be “fired” automatically and only once on all defined
metaclasses.
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6.3 Instances

When the method new is invoked on the classes Point and C Point, it produces
as results points and colored points objects instances, respectively. This means
that

Object.new →ev→ [ ]

Point.new →ev→ [x = ς(s′:[ ])1]

C Point.new →ev→ [x = ς(s′:[ ])1, col = ς(s′:[ ])red],

and

ε ` [ ] : [�]
ε ` [x = ς(s′:[ ])1] : P�

ε ` [x = ς(s′:[ ])1, col = ς(s′:[ ])red] : CP�.

6.4 Discussion

We have presented a functional encoding of classes and metaclasses in terms
of typable objects of our Extended Calculus of Primitive Objects. The objects
of this encoding are typable in the first-order system Obj1+≺:, provided that no
method will return the object itself or an update of self. This encoding agrees
with both the class- and the delegation-based object-oriented styles of program-
ming. The soundness of the type system guarantees that every program will not
go into the message-not-understood run-time error. The class-subclass hierarchy
shares a lot of similarities with the one of Smalltalk-80. Although not treated
here, it is not difficult to complete this encoding with class and instance methods
and fields (we recall that a field is a methods that does not make use of self).

We point out that color points and points metaclasses cannot be obtained
by object override from point and object metaclasses, respectively, since we do
not have “depth” subtyping. For the same reason, color points and points classes
cannot be obtained by object override from point and object classes. Moreover,
we observe that color points and points instances can be obtained by inheri-
tance (i.e. by successive object extensions) from the point and object instances,
respectively, i.e:

[ ]≺−−x = ς(s′:[ ])1
ev→ [x = ς(s′:[ ])1]

[x = ς(s′:[ ])1]≺−−col = ς(s′:[ ])red
ev→ [x = ς(s′:[ ])1, col = ς(s′:[ ])red],

even if CP� 6<:P� 6<:[�], thanks to our subtyping rules. Finally, note that this
encoding will assign diamond-types to class-instances; as such, class instances
can be extended and overridden in pure delegation object-oriented style.

The above encoding is not the only possible one; as an example, if we want
to turn into a simple class-based style of programming, then we can drop the
possibility of dynamically extending and overriding class instances. Then, we
could design a type system for Obj1+≺:, where we can distinguish between two
kinds of objects:
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– objects (contained inside the methods of the classes and metaclasses) which
can be extended and overridden (but not subsumed);

– objects (representing class instances) which can be only used via message
sending, with saturated object-types and whose object-types agrees with a
“depth-width” subtyping relation.

The resulting type system will have, although not in details but in the spirit,
some similarities with [14] (see the related work). Our experience says that the
above presented mixed “class-delegation” style of programming is more flexible
and powerful than the “class-only” one. The following simple example show how
classes, objects, and object extensions can be easily integrated thanks to our
subtyping relation among object-types.

Example 4. Let the Point and C Point classes be defined as in Subsection 6.2,
and consider the following program (let Pcol

4
= [x : int � col : colors]):

f
4
= λs:Pcol.(s≺−−col:ς(s:[ ])red).x : Pcol→int.

This function will accept as input both an instance of the Point and C Point

classes, and as a consequence the following judgments are derivable: f Point.new :
int, and f C Point.new : int.

7 Related Work

Among the many object-based languages we find in the literature, we recall the
following ones.

M.Abadi, in [1], presents a small functional language which include the main
features of Modula-3. This language allows object override, a small form of ob-
ject extension and “width” subtyping. The soundness of the typing system is
guaranteed by a denotational semantics.

The Lambda Calculus of Objects of [12] is an untyped λ-calculus enriched
with object primitives. Objects are built up from an empty object by adding
new methods or overriding existing ones. A primitive call to the methods of the
objects is provided. The calculus supports a simple inheritance mechanism, a
straightforward mytype method specialization, and dynamic lookup of methods.
Its operational semantics deals with the special symbol self of object-oriented
languages directly by lambda abstraction. This calculus, however: (i) lacks of
a subtyping relation on objects; (ii) consider the objects as ordered sequences
of methods instead of sets of methods (apart from making difficult to write
mutually recursive methods, this constraint leads to a somewhat complicated
formulation of the operational semantics which makes use of a bookeeping reduc-
tion to extract the appropriate method upon the evaluation of a message); (iii)
does not have an equational theory on objects.

[14] extends [12] with a the new pro-type, denoted by pro t.〈〈mi : σi〉〉 i∈I , in
order to add subtyping. If we can assign a pro-type to an object, then we can
add new methods or override existing ones. At this level, only trivial subtyping is
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possible. Then we can “change” the object into a different kind of object where
methods cannot be altered (i.e. the only operation on objects is message sending),
by “sealing” a pro-type into a real object-type denoted by obj t.〈〈mi : σi〉〉 i∈I .
Even if from the outside of the object the only operation is message sending, the
internal methods can override other methods of their host object. Preventing
from the outside extension and override gives (self-covariant) “width-depth”
subtyping.

The [14] calculus and the Obj1+≺: calculus are closely related. In fact, both
calculi have two kinds of object-types. The pro-types can be compared with
our diamond-types: the former does not allows subtyping, whereas the latter it
does. Objects assigned to both types can be extended and overridden. Moreover
the obj-types of [14] can be like our saturated object-types; the former agrees
with a “width-depth” subtyping relation, whereas the latter allows only “width”
subtyping. Objects assigned to obj-types cannot be extended nor overridden,
whereas objects assigned to saturated types can be overridden. The next table
compares the two calculi.

pro-types obj-types diamond-types saturated-types
Self-types

√ √

Method extension
√ √

Method override
√ √ √

Width-<:
√ √ √

Depth-<:
√

In [10], an orthogonal solution was taken in order to add subtyping to the
Lambda Calculus of Objects: a subtyping relation “compatible” with method
extension was introduced. Subtyping is subject to the restriction that a method
can be forgotten only if the remaining methods in the object do not refer to it.
This is obtained by labeling the type of a method m by the names of the methods
of the object that m uses. For example, we can derive for the (diagonal) point

of Section 3 the type ` point : [x : nat, y : intx], but we cannot derive for
point the type ` point : [y : intx], since the method y uses x. As pointed out
in [8, 17], there are programs which can be typed in [10] and cannot be typed in
[14] and vice-versa.

[18] presents an “explicitly typed” version of the Lambda Calculus of Objects,
by making use of dynamic typing . This calculus has a sound and decidable type
system, “width” subtyping on labeled object-types, and it allows for first-class
method bodies that can be passed as function arguments. This increase the
expressiveness of the language, since it allows to write “portable methods”.

In [9], a more flexible typing system for the Lambda Calculus of Objects is
given, by allowing objects to be typed independently from the order of their
method additions. This extension also gives provision for method invocation
when the receiver of the message is an incomplete object, i.e. an object whose
implementation is only partially specified. A permutation rewriting rule between
methods is sound but no subtyping is provided for this calculus.
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[8] contains a very clear and simple encoding of object-types, by combining
bounded quantification with labeled-types; in fact, labels record not only the
useful methods which are sent to or overridden in self, but also the transitive
closure of (the dependencies of) the method used by self in the method body.
This calculus features “width” subtyping on labeled object-types.

[7] shows that the matching relation [11] can be fruitfully be employed in
the Lambda Calculus of Objects, by making a substantially simplification of the
typing rules of [12].

Another related paper is [21], which combines row-variables and refined sub-
typing in presence of extensible objects. There are similarities with our proposal,
in particular diamond-types behave like Pre- and Maybe-types of [21]. But the
subtyping of [21] is weaker than ours, since, for example, one cannot derive that
the type of “colored point” is less than the type of “point”, i.e. using our nota-
tion, that [x:int, col:colors]<:[x:int]. The reason of this weackness is due to the
fact that, in [21] the only subtyping rules are (Shift�) (that convert a Pre-type
into a Maybe-type), and (Extend�) (that introduces a Maybe-type). Other differ-
ences are that we do not require object types to be total functions from names
to types, and that we avoid row-variables by taking advantage of subtyping.

7.1 Conclusions

We presented an extension of the Calculus of Primitive Objects of [5], called
Obj1+≺:, which allows one to dynamically add methods, and we introduced a
static type system for this calculus that makes provision both for objects ex-
tension and for a “width” subtyping relation between object-types. The new
features are obtained by extending the object-types of [5] with subsumption-
parts, which convey information about methods that are subsumed. The Obj1+≺:
calculus allows a considerable number of programs to be typed, whereas they
are not typable in Obj1≺:, i.e. the original first-order system. The type systems
allow for static detection of run-time errors such as message-not-understood.

A final remark concerns method encapsulation via variance annotations, a
feature that is not accounted in our system and it is instead provided in [3].
However, the solution proposed in [3] could be accomplished as well as in the
Obj1+≺: calculus.

Moreover, the Obj1+≺: type system can be easily extended with self-types
by modeling the self-application semantics via bounded universal polymorphism.
This conservative (w.r.t. Obj1+≺:) extension can be easily obtained with a very
little cost with respect to the rules of Obj1+≺:, and it is presented in [16].

We conclude this paper with some open problems which will be subjects of
future work:

1. Recently, M.Abadi has studied the possibility of extending the Obj1≺: cal-
culus in an orthogonal way with respect to our Obj1+≺: one. In this work-
in-progress, a more flexible typing rule for method addition is given, by al-
lowing incomplete objects to be typed independently from the order of their
method additions. We believe this idea can be adopted and adapted with
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labeled-types of [10]. This flexibility appears to be highly desirable for pro-
totyping languages, such as delegation-based languages, where prototypes
may reasonably be defined, and operated with as well, while part of their
implementation (i.e. their methods) are yet to be defined. We also conjecture
that our extension and Abadi’s extension can be easily integrated, in order
to build a calculus which allows for both features.

2. J. Palsberg [19] has described a (P-complete) type inference algorithm for
an untyped version of the Obj1≺: calculus. Does this result holds also for
the type inference version of Obj1+≺:?.

3. The type inference version of the Extended Primitive Calculus of Objects
and the Lambda Calculus of Objects [12] share a lot of similarities. It seems
reasonable to find a suitable encoding of one calculus into the other and a
sound type system which fits both calculi.

Acknowledgments We wish to thank Martin Abadi and Luca Cardelli for
their precious @-discussions, and the anonymous referees for their comments and
suggestions.

References

1. M. Abadi. Baby Modula–3 and a Theory of Objects. Journal of Functional Pro-
gramming, 4(2):249–283, 1994.

2. M. Abadi and L. Cardelli. A Theory of Primitive Objects: Second-Order Systems.
Science of Computer Programming, 25(2-3):81–116, 1995.

3. M. Abadi and L. Cardelli. An Imperative Object Calculus. Theory and Practice
of Objects Systems, 1(3):151–166, 1996.

4. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
5. M. Abadi and L. Cardelli. A Theory of Primitive Objects: Untyped and First

Order System. Information and Computation, 125(2):78–102, 1996.
6. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
revised edition, 1984.

7. V. Bono and M. Bugliesi. Matching Constraint for the Lambda Calculus of Ob-
jects. In Proc. of TLCA-97, LNCS. Springer-Verlag, 1997. To appear.

8. V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping Con-
straint for Incomplete Objects. In Proc. of CAAP-97, LNCS. Springer-Verlag,
1997. To appear.

9. V. Bono, M. Bugliesi, and L. Liquori. A Lambda Calculus of Incomplete Objects.
In Proc. of MFCS-96, volume 1113 of LNCS, pages 218–229. Springer-Verlag, 1996.

10. V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell Lambda
Calculus of Objects. In Proc. of CSL-94, volume 933 of LNCS, pages 16–30.
Springer-Verlag, 1995.

11. K.B. Bruce, A. Shuett, and R. van Gent. Polytoil: a Type-safe Polymorphic
Object-Oriented Language. In Proc. of ECOOP-95, volume 952 of LNCS, pages
16–30, 1995.

12. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994.

13. K. Fisher and J. C. Michell. The Development of Type Systems for Object Ori-
ented Languages. Theory and Practice of Objects Systems, 1(3):189–220, 1995.

21



14. K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping.
In Proc. of FCT-95, volume 965 of LNCS, pages 42–61. Springer-Verlag, 1995.

15. A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

16. L. Liquori. An Extended Theory of Primitive Objects. Technical Report CS-23-96,
Computer Science Department, University of Turin, Italy, 1996.

17. L. Liquori. Type Assigment Systems for Lambda Calculi and for the Lambda Cal-
culus of Objects. PhD thesis, University of Turin, February 1996.

18. L. Liquori and G. Castagna. A Typed Lambda Calculus of Objects. In Proc. of
Asian-96, volume 1212 of LNCS, pages 129–141. Springer-Verlag, 1996.

19. J. Palsberg. Efficient Inference of Object Types. Information and Computation,
123:198–209, 1995.

20. G. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Aarhus University, Denmark, 1981.

21. D. Remy. Refined Subtyping and Row Variables for Record Types. Draft, 1995.

A The Typing Rules of Obj1+
≺:

Type Rules

ε ` ok
(Empty)

Γ ` σ s 6∈ dom(Γ )

Γ, s : σ ` ok
(Weak)

Γ ` ok

Γ ` ω
(Type−Ω)

Γ ` σi ∀ i ∈ I
Γ ` σj ∀j ∈ J I ∩ J = ∅

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J

(Diamond−Type)
Γ ` σi ∀ i ∈ I

Γ ` [mi : σi]
i∈I

(Sat−Type)

Γ, s : σ, Γ ′ ` ok

Γ, s : σ, Γ ′ ` s : σ
(Proj)

Γ ` o : σ Γ ` σ<:τ

Γ ` o : τ
(<:)

(Let τi
4
= [mh : σh]h∈Hi).

Γ, si : τi ` oi : σi ∀i ∈ I Hi ⊆ I

Γ ` [mi = ς(si:τi)oi]
i∈I : [mi : σi �] i∈I

(Object)
Γ ` o : [mk : σk]

Γ ` o.mk : σk

(Select)

Γ ` o : τ Γ ` τ<:[mi : σi]
i∈I Γ, sk : [mi : σi]

i∈I ` o′ : σk k ∈ I

Γ ` o≺−−mk = ς(sk:[mi : σi]
i∈I)o′ : τ

(Over)

(Let τk
4
= [mh : σh]h∈H).

Γ ` o : [mi : σi � mj : σj ]
i∈I
j∈J Γ, sk : τk ` o′ : σk H ⊆ I k ∈ J

Γ ` o≺−−mk = ς(sk:τk)o′ : [mi : σi � mj : σj ]
i∈I+{k}
j∈J−{k}

(Ext)
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Subtype Rules

Γ ` σ

Γ ` σ<:σ
(Refl)

Γ ` σ<:τ Γ ` τ<:ρ

Γ ` σ<:ρ
(Trans)

Γ ` σ

Γ ` σ<:ω
(Ω)

Γ ` [mi : σi � mj : σj ]
i∈I+K
j∈J

Γ ` [mi : σi � mj : σj ]
i∈I+K
j∈J <:[mi : σi � mj : σj ]

i∈I
j∈J+K

(Shift�)

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J+K

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J<:[mi : σi � mj : σj ]

i∈I
j∈J+K

(Extend�)

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J

Γ ` [mi : σi � mj : σj ]
i∈I
j∈J<:[mi : σi]

i∈I
(Sat�)

Γ ` [mi : σi]
i∈I+J

Γ ` [mi : σi]
i∈I+J<:[mi : σi]

i∈I
(Width)

Typed Equational Theory

Γ ` o2
ev
= o1 : τ

Γ ` o1
ev
= o2 : τ

(Eq−Symm)
Γ ` o1

ev
= o2 : τ Γ ` o2

ev
= o3 : τ

Γ ` o1
ev
= o3 : τ

(Eq−Trans)

Γ ` o1
ev
= o2 : σ Γ ` σ<:τ

Γ ` o1
ev
= o2 : τ

(Eq−<:)
Γ ` o1 : σ Γ ` o2 : τ

Γ ` o1
ev
= o2 : ω

(Eq−Ω)

Γ, s : τ, Γ ′ ` ok

Γ, s : τ, Γ ′ ` s ev
= s : τ

(Eq−V ar)
Γ ` o1

ev
= o2 : [mk : σk]

o1.mk
ev
= o2.mk : σk

(Eq−Select)

Γ ` o1
ev
= o2 : τ Γ ` τ<:[mi : σi]

i∈I

Γ, sk : [mi : σi]
i∈I ` o′

ev
= o′′ : σk k ∈ I

Γ ` o1≺−−mk = ς(sk:[mi : σi]
i∈I)o′

ev
= o2≺−−mk = ς(sk:[mi : σi]

i∈I)o′′ : τ

(Eq−Over)

(Let τk
4
= [mh : σh]h∈H , and τ

4
= [mi : σi � mj : σj ]

i∈I+{k}
j∈J−{k}).

Γ ` o1
ev
= o2 : [mi : σi � mj : σj ]

i∈I
j∈J H ⊆ I

Γ, sk : τk ` o′
ev
= o′′ : σk k ∈ J

Γ ` o1≺−−mk = ς(sk:τk)o′
ev
= o2≺−−mk = ς(sk:τk)o′′ : τ

(Eq−Ext)
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Typed Equational Theory (continue)

(Let τi
4
= [mh : σh]h∈Hi , and τj

4
= [mk : σk]k∈Kj , and τ

4
= [mi : σi � mj : σj ]

i∈I
j∈J).

Γ, si : τi ` oi : σi ∀ i ∈ I Hi⊆ I
Γ, sj : τj ` oj : σj ∀j ∈ J Kj⊆ I+J

Γ ` [mi = ς(si:τi)oi]
i∈I ev

= [mi = ς(si:τi)oi, mj = ς(sj :τj)oj , ]
i∈I
j∈J : τ

(Eq−Obj−<:)

(In the next rules, let o
4
= [mz = ς(sz:τz)oz]z∈Z).

Γ ` o : [mk : σk]

Γ ` o.mk
ev
= ok{sk←o} : σk

(Eq−Selectev)

(Let ρ
4
= [mi : σi]

i∈I).

Γ ` o : τ Γ ` τ<:ρ Γ, sk : ρ ` o′ : σk k ∈ I

Γ ` o≺−−mk = ς(sk:ρ)o′
ev
= [mz = ς(sz:τz)oz, mk = ς(sk:ρ)o′]z∈Z−{k} : τ

(Eq−Overev)

(In the next rules, let τk
4
= [mh : σh]h∈H , and τ

4
= [mi : σi � mj : σj ]

i∈I+{k}
j∈J−{k}).

Γ ` o : [mi : σi � mj : σj ]
i∈I
j∈J Γ, sk : τk ` o′ : σk H ⊆ I k ∈ Z−I

Γ ` o≺−−mk = ς(sk:τk)o′
ev
= [mz = ς(sz:τz)oz, mk = ς(sk:τk)o′]z∈Z−{k} : τ

(Eq−Ext1ev)

Γ ` o : [mi : σi � mj : σj ]
i∈I
j∈J Γ, sk : τk ` o′ : σk H ⊆ I k ∈ J−Z

Γ ` o≺−−mk = ς(sk:τk)o′
ev
= [mz = ς(sz:τz)oz, mk = ς(sk:τk)o′]z∈Z : τ

(Eq−Ext2ev)

This article was processed using the LATEX macro package with LLNCS style
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