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Abstract. In this article1, we propose a method to perform linear algebra
on a matrix with nearly sparse properties. More precisely, although we
require the main part of the matrix to be sparse, we allow some dense
columns with possibly large coe�cients. This is achieved by modifying the
Block Wiedemann algorithm. Under some precisely stated conditions on
the choices of initial vectors in the algorithm, we show that our variation not
only produces a random solution of a linear system but gives a full basis of
the set of solutions. Moreover, when the number of heavy columns is small,
the cost of dealing with them becomes negligible. In particular, this eases
the computation of discrete logarithms in medium and high characteristic
finite fields, where nearly sparse matrices naturally occur.
Keywords. Sparse Linear Algebra. Block Wiedemann. Discrete Log. Finite Fields.
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1.1 Introduction

Linear algebra is a widely used tool in both mathematics and computer
science. At the boundary of these two disciplines, cryptography is no ex-
ception to this rule. Yet, one notable di↵erence is that cryptographers
mostly consider linear algebra over finite fields, bringing both drawbacks
– the notion of convergence is no longer available – and advantages – no
stability problems can occur. As in combinatory analysis or in the course of
solving partial di↵erential equations, cryptography also presents the speci-
ficity of frequently dealing with sparse matrices. For instance, sparse linear
systems over finite fields appeared in cryptography in the late 70s when the
first sub-exponential algorithm to solve the discrete logarithm problem in
finite fields with prime order was designed [1]. Nowadays, every algorithm
belonging to the Index Calculus family deals with a sparse matrix [11, Sec-
tion 3.4]. Hence, since both Frobenius Representation Algorithms (for small
characteristic finite fields) and discrete logarithm variants of the Number
Field Sieve (for medium and high characteristics) belong to this Index Cal-
culus family, all recent discrete logarithm records on finite fields need to
find a solution of a sparse system of linear equations modulo a large integer.
Similarly, all recent record-breaking factorizations of composite numbers,
which are based on the Number Field Sieve, need to perform a sparse linear
algebra step modulo 2.

A sparse matrix is a matrix containing a relatively small number of co-
e�cients that are not equal to zero. It often takes the form of a matrix
in which each row (or column) only has a small number of non-zero en-
tries, compared to the dimension of the matrix. With sparse matrices, it is
possible to represent in computer memory much larger matrices, by giving
for each row (or column) the list of positions containing a non-zero coef-
ficient, together with its value. When dealing with a sparse linear system
of equations, using plain Gaussian Elimination is often a bad idea, since
it does not consider nor preserve the sparsity of the input matrix. Indeed,
each pivoting step during Gaussian Elimination may increase the number
of entries in the matrix and, after a relatively small number of steps, it
overflows the available memory.

Thus, in order to deal with sparse systems, a di↵erent approach is re-
quired. Three main families of algorithms have been devised: the first one
adapts the ordinary Gaussian Elimination in order to choose pivots that
minimize the loss of sparsity and is generally used to reduce the initial
problem to a smaller and slightly less sparse problem. The two other al-
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gorithm families work in a totally di↵erent way. Namely, they do not try
to modify the input matrix but directly aim at finding a solution of the
sparse linear system by computing only matrix-by-vector multiplications.
One of these families consists of Krylov Subspace methods, adapted from
numerical analysis, and constructs sequences of mutually orthogonal vec-
tors. For instance, this family contains the Lanczos and Conjugate Gradient
algorithms, adapted for the first time to finite fields in 1986 [7].

Throughout this article, we focus on the second family that contains
Wiedemann algorithm and its generalizations. Instead of computing an
orthogonal family of vectors, D. Wiedemann proposed in 1986 [20] to re-
construct the minimal polynomial of the considered matrix. This algorithm
computes a sequence of scalars of the form t

wA
i
v where v and w are two vec-

tors and A is the sparse matrix of the linear algebra problem. It then tries
to extract a linear recurrence relationship that holds for this sequence. In
1994, to achieve computations in realistic time, D. Coppersmith [6] adapted
the Wiedemann algorithm over the finite field F2 for parallel and even dis-
tributed computations. One year later E. Kaltofen [12] not only generalized
this algorithm to arbitrary finite fields but also gave a provable variant of
Coppersmith’s heuristic method. The main idea of Coppersmith’s Block
Wiedemann algorithm is to compute a sequence of matrices of the form
t
WA

i
V where V and W are not vectors as previously but blocks of vectors.

This step is parallelized by distributing the vectors of the block V to several
processors or CPUs – let us say c of them. The asymptotic complexity of
extracting the recursive relationships within the sequence of small matrices
is in Õ(cN2) where N is the largest dimension of the input matrix. An-
other algorithm was presented by B. Beckerman and G. Labahn in 1994 [5]
for performing the same task in subquadratic time and a further improve-
ment was proposed by E. Thomé [19] in 2002: he reduced the complexity of
finding the recursive relationships to Õ(c2N). The current fastest method
is an application of the algorithm proposed by P. Giorgi, C-P. Jeannerod
and G. Villard in 2003 [9] which runs in time Õ(c!�1

N), where ! is the
exponent of matrix multiplication. At the time of writing the best known2

asymptotic value of this exponent is ! ⇡ 2.37286. It comes from a slight
improvement of Coppersmith-Winograd algorithm [8] due to F. Le Gall [14]
and published in 2014.

Note that both Krylov Subspace methods and Wiedemann algorithms

2Yet, for practical purposes, asymptotically fast matrix multiplication is unusable and
working implementations of the algorithm of Giorgi, Jeannerod and Villard have com-
plexity Õ(c2N).
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Fig. 1.1 A nearly sparse matrix

cost a number of matrix-by-vector multiplications equal to a small multiple
of the matrix dimension: for a matrix containing � entries per row in av-
erage, the cost of these matrix-by-vector multiplications is O(�N2). With
Block Wiedemann, it is possible to distribute the cost of these products
up to c machines. In this case, the search for recursive relationships adds
an extra cost of the form Õ(c!�1

N). For a nearly sparse matrix, which
includes d dense columns in addition to its sparse part, the cost of matrix-
by-vector multiplications increases. As a consequence, the total complexity
becomes O((� + d)N2) with an extra cost of Õ(c!�1

N) for Block Wiede-
mann. Figure 1.1 provides a quick overview of the structure of such nearly
sparse matrices.

In this article, we aim at adapting the Coppersmith’s Block Wiedemann
algorithm to improve the cost of linear algebra on matrices that have nearly
sparse properties and reduce it to O(�N2) + Õ(max(c, d)!�1

N). In par-
ticular, when the number of dense columns is lower than the number of
processors used for the matrix-by-vector steps, we show that the presence
of these unwelcome columns does not a↵ect the complexity of solving lin-
ear systems associated to these matrices. In practice, this result precisely
applies to the discrete logarithm problem. Indeed, nearly sparse matrices
appear in both medium and high characteristic finite fields discrete loga-
rithm computations. To illustrate this claim, we recall the latest record [4]
announced in June 2014 for the computation of discrete logarithms in a
prime field Fp, where p is a 180 digit prime number. It uses a matrix con-
taining 7.28M rows and columns with an average weight of 150 non-zero
coe�cients per row and also presents 4 dense Schirokauer maps columns.
These columns precisely give to the matrix the nearly sparse structure we
study in the sequel.
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Outline. Section 1.2 makes a short recap on Coppersmith’s Block Wiede-
mann algorithm, which is the currently best known algorithm to perform al-
gebra on sparse linear systems while tolerating some amount of distributed
computation. We propose in Section 1.4 the definition of a nearly sparse
matrix and present then a rigorous algorithm to solve linear algebra prob-
lems associated to these matrices. In Section 1.4.7 we give a compari-
son of our method with preexisting linear algebra techniques and show
that it is potentially competitive even with a tremendous number of dense
columns. Section 1.5 ends by a practical application of this result: it ex-
plains how nearly sparse linear algebra eases discrete logarithm computa-
tions in medium and high characteristic finite fields.

1.2 A Reminder of Block Wiedemann Algorithm

This section first presents the classical problems of linear algebra that are
encountered when dealing with sparse matrices. We then explain how the
considered matrix is preconditioned into a square matrix. Section 1.2.2
draws the outline of the algorithm proposed by Wiedemann to solve linear
systems given by a square matrix whereas Section 1.2.3 presents the par-
allelized variant due to Coppersmith. More precisely, the goal is to solve:

Problem 1.1. Let K = Z/pZ be a prime finite field and S 2 Mn⇥N (K) be a
(non necessarily square) sparse matrix with at most � non-zero coe�cients
per row. Let ~v be a vector with n coe�cients. The problem is to find a
vector ~x with N coe�cients such that S ·~x = ~v or, alternatively, a non-zero
vector ~x such that S · ~x = 0.

In practice, this problem is often generalized to rings Z/NZ for a modu-
lus N of unknown factorization. However, for simplicity of exposition, and
due to the fact that the algorithm of [9] is only proved over fields, we prefer
to restrict ourselves to the prime field case.

1.2.1 Preconditioning: making a sparse matrix square

In order to be able to compute sequences of matrix-by-vector products
of the form (Ai

~y)i>0, both Wiedemann and Block Wiedemann algorithms
need to work with a square matrix. Indeed, powers are only defined for
square matrices. Consequently, if N 6= n, there is a necessary preliminary
step to transform the given matrix into a square one. For example, it is
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possible to pad the matrix with zeroes and then apply the analysis of [13]
for solving linear systems which do not have full rank using Wiedemann’s
method. This is done by multiplying on the left and right by random
matrices and then by truncating the matrix to a smaller invertible square
matrix with the same rank as the original one.

In practice, heuristic methods are used instead. Typically, one creates a
random sparse matrix R 2 MN⇥n(K) with at most � non-zero coe�cients
per row, and transform afterwards the two problems into finding a vector ~x
such that (RS)~x = R~v or, alternatively, such that (RS)~x = 0. Setting
A = RS and ~y = R~v, we can rewrite Problem 1.1 as finding a vector ~x such
that:

A · ~x = ~y

or such that:

A · ~x = 0

depending on the initial problem. In addition, in order to avoid the trivial
solution when solving A~x = 0, one frequently computes ~y = A~r for a ran-
dom vector ~r, solves A~x = ~y and outputs ~x� ~r as a kernel element.

We do not go further into the details of how preconditioning is usually
performed. Indeed, we propose in Section 1.4.2 a simple alternative tech-
nique, that provably works with our algorithm for nearly sparse matrices,
under some explicit technical conditions. Since sparse matrices are a special
case of nearly sparse matrices, this alternative would also work for usual
sparse matrices.

1.2.2 Wiedemann algorithm

Let us now consider a square matrix A of size N ⇥N and denote mA the
number of operations required to compute the product of a vector of KN

by A. Wiedemann algorithm works by finding a non-trivial sequence of
coe�cients (ai)0iN such that:

NX

i=0

aiA
i = 0. (1.1)

Solving A~x = ~y. If A is invertible, then we can assume a0 6= 0. Indeed,
if a0 = 0 we can rewrite 0 =

PN
i=1 aiA

i = A
�(
PN

i=1 aiA
i��) where a� is

the first non zero coe�cient. Multiplying by (A�1)� it yields the equality
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Algorithm 1.1 Wiedemann algorithm for A~x = ~y

Input: A matrix A of size N ⇥N , ~y 6= 0 a vector with N coe�cients
Output: ~x such that A · ~x = ~y.

Computing a sequence of scalars
1: ~v0  2 KN , ~w  2 KN two random vectors
2: for i = 0, · · · , 2N do

3: �i  ~w · ~vi
4: ~vi+1  A~vi

5: end for

Berlekamp-Massey algorithm
6: From �0, · · · ,�2N recover coe�cients (ai)0iN s.t.

PN
i=0 aiA

i = 0 and a0 6= 0.
Resolution

7: return �(1/a0)
PN�1

i=1 ai+1A
i
~y.

PN��
i=0 ai+�A

i = 0. So, shifting the coe�cients until we find the first non-
zero one allows to write a0 6= 0. Let us apply Equation (1.1) to the vector ~x
we are seeking. It yields �a0~x =

PN
i=1 aiA

i
~x =

PN
i=1 aiA

i�1(A~x). Finally
we recover ~x = �(1/a0)

PN
i=1 aiA

i�1
~y. This last sum can be computed

using N sequential multiplications of the initial vector ~y by the matrix A.
The total cost to compute ~x as this sum is O(N ·mA) operations.

Solving A~x = 0. Assuming that there exists a non-trivial element of
the kernel of A, we deduce that a0 = 0. Let again � be the first index
such that a� 6= 0. Thus, for any vector ~r we have 0 =

PN
i=� aiA

i
~r =

A
�(
PN

i=� aiA
i��

~r). We know that
PN

i=� aiA
i�� 6= 0. Indeed, otherwise,

a�Id +
PN

i=�+1 aiA
i�� = a�Id + A(

PN
i=�+1 aiA

i���1) = 0 would lead to

A(�(1/a�)
PN

i=�+1 aiA
i���1) = Id, yet A is assumed non invertible. Thus,

for a random vector ~r, the sum
PN

i=� aiA
i��

~r is non zero with high prob-
ability: this vector is the zero vector if and only if ~r belongs to the kernel
of the non null matrix

PN
i=� aiA

i��. Since the kernel of a non null matrix
has at most dimension N � 1, the probability for a random vector to be in
its kernel is upper bounded by |K|N�1

/|K|N = 1/|K|.
Now, computing iteratively A(

PN
i=� aiA

i��
~r), A

2(
PN

i=� aiA
i��

~r),
· · · , A�(

PN
i=� aiA

i��
~r) yields an element of the kernel of A in O(N ·

mA) operations as well. Indeed, the first index j in [[1, �]] such that
A

j(
PN

i=� aiA
i��

~r) = 0 shows that A
j�1(

PN
i=� aiA

i��
~r) 6= 0 belongs to

the kernel of A. Thus, this method finds a non trivial element of Ker(A)
with probability higher than (|K|� 1)/|K|, which quickly tends to 1 as the
cardinality of the field grows.
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How to find coe�cients ai verifying Equation (1.1). Cayley-
Hamilton theorem testifies that the polynomial defined as P = det(A�X ·
Id) annihilates the matrix A, i.e. P (A) = 0. So we know that there exists
a polynomial of degree at most N whose coe�cients satisfy Equation (1.1).
Yet, directly computing such a polynomial would be too costly. The idea
of Wiedemann algorithm is, in fact, to process by necessary conditions.

Let (ai)i2[[0,N ]] be such that
PN

i=0 aiA
i = 0. Then, for any arbitrary

vector ~v we obtain
PN

i=0 aiA
i
~v = 0. Again, for any arbitrary vector ~w

and for any integer j we can write
PN

i=0 ai
t
~wA

i+j
~v = 0. Conversely, ifPN

i=0 ai
t
~wA

i+j
~v = 0 for any random vectors ~v and ~w and for any j in

[[0, N ]] then the probability to obtain coe�cients verifying Equation (1.1)
is high, assuming the cardinality of the field is su�ciently large [12]. Thus,
Wiedemann algorithm seeks coe�cients ai that annihilate the sequence
of scalars t

~wA
i
~v. To do so, it can use the classical Berlekamp-Massey

algorithm [2, 16] that finds the minimal polynomial of a recursive linear
sequence in an arbitrary field. In a nutshell, the idea is to consider the
generating function f of the sequence t

~w~v,
t
~wA~v,

t
~wA

2
~v, · · · , t ~wA2N

~v and
to find afterwards two polynomials g and h such that f = g/h mod X

2N .
Alternatively, the Berlekamp-Massey algorithm can be replaced by a half
extended Euclidean algorithm, yielding a quasi-linear algorithm in the size
of the matrix A.

1.2.3 Coppersmith’s Block Wiedemann algorithm

The Block Wiedemann algorithm is a parallelization of the previous Wiede-
mann algorithm introduced by Don Coppersmith. It targets the context
where sequences of matrix-vector products are computed on ` processors,
instead of one. In this case, rather than solving Equation (1.1), it searches,
given ` vectors ~v1, · · · ,~v`, for coe�cients aij such that:

X̀

j=1

dN/`eX

i=0

aijA
i
~vj = 0 (1.2)

Note that the number of coe�cients remains approximately the same as in
the previous algorithm.

Solving A~x = ~0. There, we choose ` random vectors ~r1, · · · ,~r` and set
~vi = A~ri. Let � denote the first index in [[1, dN/`e]] such that there exists j
in [[1, `]] satisfying a�j 6= 0. Equation (1.2) gives

P`
j=1

PdN/`e
i=� aijA

i+1
~rj =

~0, i.e. A
�+1(

P`
j=1

PdN/`e
i=� aijA

i��
~rj) = ~0. Let ~b denote the vector
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Algorithm 1.2 Block Wiedemann algorithm for A~x = ~0
Input: A matrix A of size N ⇥N

Output: ~x such that A · ~x = ~0.
Computing a sequence of matrices

1: ~r1  2 KN
, · · · ,~r`  2 KN and ~w1  2 KN

, · · · , ~w`  2 KN

2: ~v1  A~r1, · · · ,~v`  A~r`

3: for any of the ` processors indexed by j do

4: u0  vj

5: for i = 0, · · · , 2dN/`e do
6: for k = 1, · · · , ` do

7: �i,j,k  ~wk · ~ui

8: ~ui+1  A ~ui

9: end for

10: end for

11: end for

12: for i = 0, · · · , 2dN/`e do
13: Mi  (�i,j,k) the `⇥ ` matrix containing all the products of the form t

~wA
i
~v

14: end for

Thomé or Giorgi, Jeannerod, Villard’s algorithm

15: From M0, · · · ,M2dN/`e recover coe�cients aij s.t.
P`

j=1

PdN/`e
i=0 aijA

i
~vj = ~0.

Resolution
16: �  the first index in [[1, dN/`e]] such that there exists j in [[1, `]] satisfying a�j 6= 0.

17: ~b 
P`

j=1

PdN/`e
i=� aijA

i
~rj .

18: ~k  Error: trivial kernel element
19: while ~b 6= 0 do

20: ~k  ~b

21: ~b A~k

22: end while

23: return ~k

P`
j=1

PdN/`e
i=� aijA

i
~rj . According to [12], ~b is non zero with high proba-

bility. Hence, computing iteratively A~b, A2~b, · · · , A�~b yields an element of
the kernel of A in O(N ·mA) operations again. Indeed, the first index k in
[[1, �]] such that A

k~b = 0 shows that A
k�1~b is a non trivial element of the

kernel of A.

Solving A~x = ~y. In order to solve A~x = ~y, several di↵erent approaches
are possible. For example, in [12] the size of A is increased by 1, adding ~y

as an new column and adding a new zero row. It is then explained that a
random kernel element, as produced by the above method, involves ~y and
thus produces a solution of A~x = ~y.

Another option is to set ~v1 = ~y and choose for i 2 [[2, `]] the vectors
~vi = A~ri, where each ~ri is a random vector of the right size and to assume
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that a01 6= 0. From Equation (1.2) we derive:

dN/`eX

i=0

ai1A
i
~y +

X̀

j=2

dN/`eX

i=0

aijA
i+1

~rj = 0.

Multiplying by the inverse of A, we obtain:

a01~x+

dN/`eX

i=1

ai1A
i
~y +

X̀

j=2

dN/`eX

i=0

aijA
i
~rj = 0.

Thus, we can recover ~x by computing:

(�1/a01) ·

0

@
dN/`eX

i=1

ai1A
i�1

~y +
X̀

j=2

dN/`eX

i=0

aijA
i
~rj

1

A .

This can be done with a total cost of O(N · mA) operations parallelized
over the ` processors: each one is given one starting vector ~v and computes
a sequence of matrix-by-vector products of the form A

i
~v. The cost for each

sequence is O(N ·mA/`) arithmetic operations. We do not deal here with
the case where a01 = 0 since Section 1.4 covers all cases for nearly sparse
matrices, thus for sparse matrices.

1.2.4 How to find coe�cients ai verifying Equation (1.2).

Let ~v1, · · · ,~v` be ` vectors and let consider the `(dN/`e) elements obtained
by the matrix-by-vector products of the form A

i
~vj that appear in the sum

of Equation (1.2). Since `(dN/`e) > N , all these vectors cannot be in-
dependent, so there exist coe�cients satisfying (1.2). As for Wiedemann
algorithm, we process by necessary conditions. More precisely, let ~w1, . . . ,
~w` be ` vectors. Assume that for any  in [[0, dN/`e]] and k in [[1, `]] we
have

P`
j=1

PdN/`e
i=0 aij

t
~wkA

i+
~vj = 0, then the probability that the coe�-

cients aij verify Equation (1.2) is close to 1 when K is large3 (again see [12]).
So Block Wiedemann algorithm looks for coe�cients that annihilate the se-
quence of 2dN/`e small matrices of dimension `⇥` computed as (t ~wkA

⌫
~vj).

Here, ⌫ 2 [[0, 2dN/`e]] numbers the matrices, while k and j respectively de-
note the column and row numbers within each matrix. It is possible to
compute the coe�cients aij in subquadratic time (see Section 1.3 for de-
tails). For instance, Giorgi, Jeannerod, Villard give an e�cient method
with complexity Õ(`!�1

N). This is the final component needed to write
Block Wiedemann as Algorithm 1.2.
3When K is small, it is easy to make the probability close to 1 by increasing the number

of vectors w beyond ` in the analysis as done in [6].
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Moreover, putting together the matrix-by-vector products and the
search for coe�cients, the overall complexity can be expressed as O(N ·
mA) + Õ(`!�1

N). Where the O(N ·mA) part can be distributed on up to
` processors and the Õ(`!�1

N) part is computed sequentially.

Remark 1.1. In this section, we assumed that the number of sequences `
is equal to the number of processors c. This is the most natural choice
in the classical application of Block Wiedemann, since increasing ` beyond
the number of processors can only degrades the overall performance. More
precisely, the change leaves the O(N · mA) contribution una↵ected but
increases Õ(`!�1

N). However, since values of ` larger than c are considered
in Section 1.4, it is useful to know that this can be achieved by sequentially
computing several independent sequences on each processor. In this case,
it is a good idea in practice to make the number of sequences a multiple of
the number of processors, in order to minimize the wall clock running time
of the matrix-by-vector multiplications.

1.3 Minimal basis computations

In this section, we recall an important result of Giorgi, Jeannerod and
Villard [9], used in Section 1.2 for presenting Block Wiedemann. This
result is a key ingredient for the algorithm we describe in Section 1.4. Let
K be a finite field and G a matrix of power series over K of dimension m⇥n

with n < m, i.e. an element of K[[X]]m⇥n. For an approximation order
b, we consider m-dimensional row vectors ~u(X) of polynomials that satisfy
the equation:

~u ·G ⌘ ~0 mod X
b
. (1.3)

For a vector of polynomial, we define its degree deg(~u) as the maximum of
the degree of the coordinates of ~u.

Definition 1.1. A �-basis of the set of solutions of Equation (1.3) is a
square m⇥m matrix M of polynomials of K[X] such that:

• Every row vector ~Mi of M satisfies (1.3).
• For every solution ~u of (1.3), there exists a unique family of m

polynomials c1, . . . , cm such that for each i:

deg(ci ~Mi)  deg(~u),

that, in addition, satisfies the relation:

~u =
mX

i=1

ci
~Mi.
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Giorgi, Jeannerod and Villard give an algorithm that computes a �-basis
for Equation (1.3) using Õ(m!

b) algebraic operations in K. Note that for
practical implementations, especially with small values of m, ! should be
replaced by 3, thus matching the complexity of the related algorithm given
by Thomé [19].

1.4 Nearly Sparse Linear Algebra

In this section, our aim is twofold. We first aim at adapting the Block
Wiedemann algorithm to improve the resolution of some linear algebra
problems that are not exactly sparse but close enough to be treated sim-
ilarly. We also give more precise conditions on the choices of the vectors
~vi and ~wi that are made in Block Wiedemann algorithm. Rather than in-
sisting on random choices as in [12] we give explicit conditions on these
choices. When the conditions are satisfied, we show that our algorithm not
only recovers a random solution of the linear system of equations given as
input but, in fact, gives an explicit description of the full set of solutions.

The cornerstone of our method consists in working with the sparse part
of the matrix while forcing part of the initial vectors of the sequences com-
puted by Block Wiedemann algorithm to be derived from the dense columns
of the matrix in addition to random initial vectors. In the rest of this sec-
tion, we describe this idea in details.

1.4.1 Nearly sparse matrices

In the sequel we focus on linear algebra problems of the following form:

Problem 1.2. Let M be a matrix of size N ⇥ (s+ d) with coe�cients in a
field K. We assume that there exist two smaller matrices Ms 2 MN⇥s(K)
and Md 2 MN⇥d(K) such that :

(1) M = Ms|Md, where | is the concatenation of matrices.4

(2) Md is arbitrary.
(3) Ms is sparse. Let us assume it has at most � non-zero coe�cients per

row.

If ~y is a given vector with N coe�cients, the problem is to find all vectors ~x

4Our method would also work for matrices with d dense columns located at any position.
It would su�ce to reorder the columns of the linear algebra problem. However, for
simplicity of exposition, we assume the dense columns are the d final columns of M .
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with s+ d coe�cients such that:

M · ~x = ~y

or, alternatively, such that:

M · ~x = ~0.

Such a matrix M is said to be d-nearly sparse, or as a shortcut, simply
nearly sparse when d is implied by context. Note that, in our definition,
there is no a priori restriction on the number of dense columns that appear
in the matrix.

Ms Sparse part
M

d
D
en

se
co
lu
m
n
s

s d

N

Fig. 1.2 Parameters of the nearly spare linear algebra problem

An interesting consequence of the fact that we want to construct all the
solutions of these linear algebra problems is that we only need to deal with
the second (homogeneous) sub-problem of Problem 1.2. Indeed, it is easy
to transform the resolution of M ·~x = ~y into the resolution of M 0 · ~x0 = ~0 for
a nearly sparse matrix M

0 closely related to M . It su�ces to set M 0 = M |~y
the matrix obtained by concatenating one additional dense column equal
to ~y to the right of M . Now we see that ~x is a solution of M · ~x = ~y

if and only if ~x0 = t(t~x| � 1) is a solution of M 0 · ~x0 = ~0. Keeping this
transformation in mind, in the sequel we only explain how to compute a
basis of the kernel of a nearly sparse matrix. When solving the first (a�ne)
sub-problem, we just need at the end to select in the kernel of M

0 the
vectors with a �1 in the last position.

Thus, the two variants that appear in Problem 1.2 are more directly
related in our context than their counterparts in Problem 1.1 are in the
context of the traditional (Block) Wiedemann algorithm.
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With such a nearly sparse matrix M , it would of course be possible to
directly apply the usual Block Wiedemann algorithm and find a random
element of its kernel. However, in this case, the cost of multiplying a vector
by the matrix M becomes larger, of the order of (� + d)N operations. As
a consequence, the complete cost of the usual Block Wiedemann algorithm
becomes O((�+ d) ·N2) + Õ(`!�1

N) when using ` processors.

Figure 1.3 gives a roadmap of the various steps we go through in order
to obtain an e�cient bijection between the kernel of M and a subset of the
solutions resulting from a minimal basis computation using the algorithm
of Giorgi, Jeannerod and Villard.

1.4.2 Preconditioning for a nearly sparse matrix

If N = s, the matrix is already square and nothing needs to be done. Note
the case N < s does not usually appear in applications such as discrete
logarithm computations where extra equations can easily be added. In the
rare event where this case would appear, the simplest approach to deal with
it is probably to artificially move s � N columns from the sparse part to
the dense part of the matrix. After this, the dense part becomes square
(N ⇥N) while the number of columns in Md increases to d

0 = d+ s�N .
So in the sequel we focus on the case where the sparse part of M has

more rows than columns, namely N > s. To turn the sparse part of M into
a square matrix, a simple method consists in embedding the rectangular
matrix Ms into a square one A by adding N � s zero columns5 at the right
side of Ms.

Finding an element t(xs, xd) in the kernel of M is equivalent to finding
a longer vector t(xs, xtra, xd) in the kernel of (A|Md), where xs, xtra and
xd are respectively row vectors of Ks, KN�s and Kd (xtra denotes the
extraneous coordinates).

In the sequel, we focus on the matrix A regardless of how it has been
constructed.

1.4.3 Preliminary transformations with conditions

We set B an integer to be determined later (see Section 1.4.5), let ~�1,
. . . , ~�d denote the column vectors of Md and choose ` � d random vectors

5Although this zero-padding method fits the theoretical analysis well, other randomized
preconditionning methods are also used in practice.
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~rd+1, · · · ,~r` in KN . From these vectors, we construct the family:

F :=

(
~�1, A

~�1, · · · , AB�1~�1, · · · ,~�d, A~�d, · · · , AB�1~�d,

~rd+1, A~rd+1, · · · , AB�1
~rd+1, · · · ,~r`, A~r`, · · · , AB�1

~r`

)
.

Our first condition is the assumption that F generates the full vector
space KN . We discuss the validity of this assumption in Section 1.4.4.1.

Condition on V .

To initialize the ` sequences the main idea is to force the first d ones to
start from the d dense columns of Md. In other words, by setting ~vi = ~�i

for i in [[1, d]] and ~vi = ~ri for in [[d+1, `]]. Then, we see that the assumption
on F can be rewritten as:

Vect
�
{Ai

~vj | i = 0, · · · , B � 1
j = 1, · · · , ` }

�
= KN

. (1.4)

Let t(t~x|x0
1| · · · |x0

d) be a vector in the kernel of (A|Md). If Equation (1.4)
is satisfied, there exist, in particular, coe�cients �ij 2 K such that:

~x =
X̀

j=1

B�1X

i=0

�ijA
i
~vj

Thus we obtain:

(A|Md)
t(t~x|x0

1| · · · |x0
d) ,

A

X̀

j=1

B�1X

i=0

�ijA
i
~vj +Md

t(x0
1| · · · |x0

d) = ~0 ,

dX

j=1

BX

i=1

�(i�1)jA
i~�j +

X̀

j=d+1

BX

i=1

�(i�1)jA
i
~rj +

dX

j=1

x
0
j
~�j = ~0 ,

X̀

j=1

BX

i=0

aijA
i
~vj = ~0

where the coe�cients aij are defined through:

aij =

8
<

:

�(i�1)j if i > 0.
x
0
j if i = 0 and j  d.

0 if i = 0 and j > d.

To put it in a nutshell, as soon as the condition given by Equation (1.4)
on the matrix V = (~v1| · · · |~v`) is verified, every element of the kernel of
(A|Md) gives a solution of:

X̀

j=1

BX

i=0

aijA
i
~vj = ~0, (1.5)
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where the coe�cients a0j are zeroes for j > d. Conversely (whether or
not condition (1.4) is satisfied) any solution of Equation (1.5) with zeroes
on these positions yields an element of the kernel of (A|Md). Thus, under
condition (1.4), determining the kernel of (A|Md) is equivalent to finding
a basis of the solutions of Equation (1.5) with the ` � d aforementioned
zeroes.

Condition on W .

Of course, Equation (1.5) can be seen as a system of N linear equations
over K. However, solving it directly would not be more e�cient than di-
rectly computing the kernel of M . Instead, we remark that for any matrix
W = (~w1| · · · |~w`) consisting in ` columns of vectors in KN , a solution (aij)
of Equation (1.5) leads to a solution of:

X̀

j=1

BX

i=0

aij
t
~wkA

i+
~vj = 0 (1.6)

for any k 2 [[1, `]] and any  2 N.
In the reverse direction, assume that we are given a solution (aij)

j2[[0,B]]
i2[[1,`]]

that satisfies Equation (1.6) for all k 2 [[1, `]] and for all  2 [[0, B�1]]. Now
assume that:

Vect
�
{t ~wjA

i| i = 0, · · · , B � 1
j = 1, · · · , ` }

�
= KN

. (1.7)

Under this condition, aij is also a solution of Equation (1.5). Indeed, by
assumption, the vector

P`
j=1

PB
i=0 aijA

i
~vj is orthogonal to every vector in

the basis of KN listed in condition (1.7). Thus, it must be the zero vector.

Rewriting Equation (1.6) with matrix power series.

For a fixed value of , we can paste together the ` copies of Equation (1.6)
for k 2 [[1, `]]. In order to do this, let ~ai denote the vector t(ai1, ai2, · · · , ail).
With this notation, the ` equations can be grouped as:

BX

i=0

(tWA
i+

V ) · ~ai = ~0. (1.8)

Let us now define the matrix power series S(X) and the vector polyno-
mial P (X) as follows:

S(X) =
X

i2N
(tWA

i
V )Xi and P (X) =

BX

i=0

~aiX
B�i

.
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Consider the product of S(X) by P (X). By definition of the multiplication
for power series, we see that the coe�cient corresponding to the mono-
mial XB+ in the product S(X)P (X) is

PB
i=0(

t
WA

i+
V ) · ~ai. According

to Equation (1.8), this is ~0 for all  2 N.
As a consequence, the vector power series S(X)P (X) is in fact a vector

polynomial Q(X) of degree at most B� 1. Thus, given S(X) we search for
vector polynomials P (X) and Q(X) of respective degrees at most B and at
most B � 1 such that S(X)P (X)�Q(X) = ~0. To fit into the notations of
Section 1.3, define G(X) = (S(X)|� Id(X)) to be the `⇥ 2` matrix power
series formed by concatenating the opposite of the `⇥ ` identity matrix to
S(X). Denote ~u(X) the dimension 2` row vector obtained by concatenating
t
P (X) and t

Q(X). We now have G(X)t~u = ~0, transpose and obtain:

~u(X) · tG(X) = ~0. (1.9)

Note that ~u(X) has degree at most B on its first ` coordinates and degree
at most B � 1 on the other coordinates. Furthermore, knowing that the
coe�cients a0j are zeroes for j > d leads to a zero constant coe�cient for
all polynomial coordinates from d+ 1 to `.

In order to use the algorithm of Giorgi, Jeannerod and Villard, we prefer
to work modulo a large monomial instead of dealing with power series.
Indeed, we clearly have ~u(X) · tG(X) = ~0 modulo X

b for any integer b, with
the same three constraints on ~u(X). We analyze the value of b permitting
to claim that a solution of Equation (1.9) modulo X

b, and with the same
constraints on the vector ~u, can be transformed back into a solution of
Equation (1.6) for any integer  in [[0, B � 1]].

Let us assume we have a vector ~u = t(u(1)
, · · · , u(2`)) solution of Equa-

tion (1.9) modulo X
b with:

• 8i 2 [[1, `]], deg u(i)(X)  B,

• 8i 2 [[`+ 1, 2`]], deg u(i)(X)  B � 1,
• 8i 2 [[d+ 1, `]], u(i)(0) = 0.

Since ~u consists of 2` polynomials we can cut it into two separate parts and
consider only its first ` polynomial terms, that are of degree at most B.
There exists a canonical correspondence between this vector of polynomials
and a polynomial P (X) of degree at most B where the coe�cients are
vectors in K`. Writing P (X) =

PB
i=0 ~ziX

i with ~zi 2 K` we can define for
all i in [[0, B]] and all j in [[1, `]]:

aij = the j-th coordinate of the vector ~zB�i.
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Since moduloXb the product P (X)S(X) is a vector polynomial of degree at
most B�1 we deduce that for any integer  such that 0    b�B�1 the
coe�cient in P (X)S(X) related to the monomial XB+ is the zero vector.
Combining with P (X) =

PB
i=0 ~aiX

B�i and S(X) =
P

i2N(
t
WA

i
V )Xi it

leads to
PB

i=0(
t
WA

i+
V ) · ~ai = ~0. Hence multiplying V by the vectors ~ai

we get
P`

j=1

PB
i=0

t
WA

i+(aij~vj) = ~0. Finally, if we consider each row t
~wk

with k in [[1, `]] and any  in [[0, b � B � 1]] we obtain coe�cients aij that
are solutions of Equation (1.6). Thus, to get Equation (1.6) for any  in
[[0, B � 1]] it su�ces to set b = 2B.

Summary of the transformations.

To sum it up, we have transformed the problem of finding the kernel of M
into the problem of finding all solutions of Equation (1.9) moduloX2B , with
degree at most B on the first ` coordinates, degree at most B � 1 on the
other coordinates and a zero constant coe�cient for coordinates d+1 to `.
Under the two conditions (1.4) and (1.7), the above analysis directly gives
a bijection between the set of solutions of the two problems, as illustrated
in Figure 1.3.

1.4.4 Applying Giorgi, Jeannerod and Villard algorithm.

Thanks to Giorgi, Jeannerod and Villard [9] we can compute a minimal �-
basis of the solution vectors of Equation (1.9) modulo X

2B in time Õ(`!B).
However, we need to post-process this �-basis to recover a basis of the
kernel of M . More precisely, we need to derive an explicit description of all
solution vectors of Equation (1.9) that have degree at most B on the first
` coordinates, degree at most B � 1 on the last ` coordinates and a zero
constant coe�cient for coordinates d+1 to `. We first show how to obtain
all solution vectors that have degree at most B on the 2` coordinates. A
final filtering is then used to ensure that the stronger degree bound on the
last ` coordinates holds and the `� d constant coe�cients are zeroes.

We first let ~b1, · · · , ~bt denote the t vectors6 in the �-base with degree
at most B. Let ~u denote any solution vector of Equation (1.9) with degree
at most B. From the minimality of the �-base, we know that ~u can be
written as linear combinations

Pt
i=1 ci

~bi where the ci are polynomials in
K[X] such that deg ci + deg bi  deg ~u for any i = 1, · · · , t. Thus, the set
6At most, there are 2` such vectors. Note in practice, it is convenient to run the �-basis

algorithm on power series with precision slightly higher than 2B in order to have fewer
vectors at this point (usually `).
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M · ~x = 0 (A|Md) · ~x = 0

Equation (1.5)
X̀

j=1

BX

i=0

aijA
i
~vj = ~0

with a0j=0 for j>d

Equation (1.6)
8 2 N, 8k 2 [[1, `]]

X̀

j=1

BX

i=0

aij
t
~wkA

i+
~vj = 0

with a0j=0 for j>d

Equation (1.6)
8  B � 1, 8k 2 [[1, `]]
X̀

j=1

BX

i=0

aij
t
~wkA

i+
~vj = 0

with a0j=0 for j>d

Equation (1.9)
~u(X) · tG(X) = ~0

with ~u(X)=(u(1)(X),··· ,u(2`)(X)) s.t.:

8i2[[1,`]], deg u(i)(X)B,

8i2[[`+1,2`]], deg u(i)(X)B�1,

8i2[[d+1,`]], X|u(i)(X).

Equation (1.9) mod X
2B

~u(X) · tG(X) = ~0 mod X
2B

with ~u(X)=(u(1)(X),··· ,u(2`)(X)) s.t.:

8i2[[1,`]], deg u(i)(X)B,

8i2[[`+1,2`]], deg u(i)(X)B�1,

8i2[[d+1,`]], X|u(i)(X).

Assuming
Condition (1.4) on V

Assuming
Condition (1.7) on W

Fig. 1.3 How the computation of the kernel of a nearly sparse matrix M reduces to
the computation of the kernel of a power series matrix G. Equivalences and implications
between various problems have to be read as follows: A ) B means that a solution of
Equation A can be transformed into a solution of Equation B. The unknowns are denoted
by x, aij or ~u whereas all the other variables M,d,Md, A, `, B, V = {~v1, · · · ,~v`},W =
{~w1, · · · , ~w`} and G are assumed to be known. Note that, even if it is true, we don’t prove
Equation (1.9)) Equation (1.6) here since the others implications are already su�cient
to conclude. Same remark for Equation (1.6) with all   B � 1 ) Equation (1.9)
mod X

2B .
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of all solution vectors of Equation (1.9) with degree at most B is generated
by the family:

E :=
t[

i=1

{~bi, X~bi, X
2~bi, · · · , XB�deg~bi~bi}.

Note that this family is free and thus a basis of the subspace of solutions
of Equation (1.9). Indeed, the t vectors ~bi belong to a �-basis and, thus,
are linearly independent. Moreover, multiplication by X induces a block
diagonal structure on the matrix representing E . Due to this structure, all
vectors in E are also linearly independent.

To obtain a basis of the kernel of M , we now need a filtering step to
ensure that we only keep the vectors of E with degree at most B � 1 on
the last ` coordinates and constant coe�cients that are zeroes in positions
d+1 to `. Interestingly, the first property already holds for all vectors of E
but the final multiple of each ~bi, i.e. X

B�deg~bi ~bi. Similarly, the second
property already holds for all multiples of Xj~bi with j 6= 0. Thus, for each
vector ~bi all multiples except (possibly) the first and last already satisfy all
extra condition. In addition, some linear combinations of these first and last
multiples may satisfy the extra conditions and some may not. However, it is
easy to construct the combinations that work. Indeed, the extra conditions
are linear and only involve coe�cients in 2` � d positions. Thus, to find
these combinations, it su�ces to extract the relevant coe�cients from the
polynomial multiples that do not already satisfy the condition and assemble
them in a matrix of dimension 2` � d by at most7 2t. The kernel of this
matrix describes the desired combinations and it can be computed it in
O(`!) operations asymptotically; in O(`3) operations in practice, especially
for small values of `. We let ~b0i denote the t

0 combinations which are thus
obtained.

We conclude that the basis of all solutions of Equation (1.9) that satisfy
the three conditions is given by:

U := {~b01, · · · , ~b0t0} [
t[

i=1

{X~bi, X
2~bi, · · · , XB�1�deg~bi~bi}.

Note that this can be represented in a compact form, just by giving t + t
0

vectors, with t
0  2t. This precisely gives a basis of the solutions of the

equation highlighted by a frame in Figure 1.3.

7Indeed, vectors ~bi with exact degree B appear once in the matrix while others appear
twice.
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Algorithm 1.3 Nearly sparse algorithm for (A|Md)~x = ~0

Input: A matrix A of size N ⇥N and a matrix Md = (~�1| · · · |~�d) of size N ⇥ d

Output: A basis of Ker(A|Md).
Compute a sequence of matrices

1: ~rd+1  2 KN
, · · · ,~r`  2 KN and ~w1  2 KN

, · · · , ~w`  2 KN

2: ~v1  ~�1, · · · ,~vd  ~�d

3: ~vd+1  ~rd+1, · · · ,~v`  ~r`

4: B  dN/`e
5: for any of the ` processors indexed by j do

6: u0  vj

7: for i = 0, · · · , 2B do

8: for k = 1, · · · , ` do

9: �i,j,k  ~wk · ~ui

10: ~ui+1  A~ui

11: end for

12: end for

13: end for

14: for i = 0, · · · , 2B do

15: Mi  (�i,j,k) the `⇥ ` matrix containing all the products of the form t
~wA

i
~v

16: end for

Apply Giorgi, Jeannerod, Villard’s algorithm
17: S  

P2B�1
i=0 MiX

i.
18: Recover a ��basis of the matrix t(S|� Id) modulo X

2B .
19: ~b1, · · · , ~bt  the vectors in this ��basis of degree lower than B.
20: ~b01, · · · , ~b0t0  a basis of the linear combinations of ~b1, · · · , ~bt, X

B�deg b1 ~b1, · · · ,
X

B�deg b1 ~bt s.t. the ` last coordinates have degree lower than B�1 and coordinates
between d+ 1 and ` are divisible by X.

21: U  [~b01, · · · , ~b0t0 , X ~b1, · · · , XB�1�deg b1 ~b1, · · · , X ~bt, · · · , XB�1�deg bt ~bt]
Resolution

22: Sol  [ ]
23: for ~u 2 U do

24: for i = 0, · · · , B do

25: for j = 1, · · · , ` do

26: aij  the coe�cient associated to the monomial XB�i in the polynomial
that is the j-th coe�cient of ~u.

27: end for

28: end for

29: ~x t(t(
P`

j=1

PB�1
i=0 a(i+1)jA

i
~vj)|a01| · · · |a0d)

30: Add ~x to Sol
31: end for

32: return Sol

Algorithm 1.3 sums up in pseudo-code the main steps that occur to
compute the kernel of a nearly sparse matrix M that has been precondi-
tioned into a matrix composed of a square matrix A concatenated with the
dense part Md of M .
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1.4.4.1 Checking condition (1.4).

A benefit of this process is that it also checks the validity of (1.4). Indeed,
looking back at the family F we see that is consists of `B vectors in KN .
The matrix corresponding to F has full rank if and only if the dimension
of its kernel is `B � N . Yet, an element of this kernel is exactly a family
of coe�cients (aij) such that

P`
j=1

PB�1
i=0 aijA

i
vj = 0. Note that it di↵ers

from Equation (1.5) from the fact that the sum ends at B � 1 and not B

and nothing it said about the coe�cients a0j . Following the paths given
in Figure 1.3 we can derive a bijection between the kernel of this matrix
and the set of solutions of Equation (1.9) with degree B � 1 on the first
` coordinates and B � 2 on the last ` coordinates. Since we already have
computed a larger set of solutions of Equation (1.9), we can check if the
dimension of the restricted set is `B�N . If not, the elements of the kernel
of M that are obtained are still valid, but the basis of the kernel may be
incomplete.

1.4.5 Requirements on the parameters

At this point, we need to choose the values of the parameters B and `

depending on the input parameters N , s and d. By construction, we already
know that ` � d. However, for conditions (1.4) and (1.7) to be satisfiable,
there are additional restrictions. In particular, condition (1.7) requires a
family of `B vectors to have rank N , thus we need:

B �
⇠
N

`

⇡
.

There are other hidden implied requirements. Indeed, looking again at
condition (1.7), we see that all vectors of

�
t
~wjA

i| i = 1, · · · , B � 1
j = 1, · · · , `

 
belong to

the image of A. Thus, the dimension of the vector space in condition (1.7)
is upper bounded by Rank(A)+ `. Moreover, due to the preconditioning of
Section 1.4.2, we know that the rank of A is at most s. This implies that
the algorithm requires:

` � max(N � s, d).

Note that, over a large field K, the dimension of the vector space in condi-
tion (1.7) for randomly chosen vectors ~wi is Rank(A) + ` with probability
close to one.

The requirements associated to condition (1.4) do not give stronger
arithmetic conditions on ` and B. However, the family of vectors in con-
dition (1.4) also contains fixed vectors (derived from the dense columns of
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M), thus we cannot claim that the condition hold for random choices of V .
However, since our algorithm also checks the validity of Condition (1.4),
this is a minor drawback.

1.4.6 Complexity analysis

The total cost of our method contains two parts. One part is the complexity
of the matrix-by-vector products whose sequential cost is O(�N2) including
the preparation of the sequence of `⇥`matrices and the final computation of
the kernel basis. It can easily be distributed on several processors, especially
when the number of sequences ` is equal to the number of processors c or a
multiple of it. This minimizes the wall clock time of the matrix-by-vector
phases at O(�N2

/c). Moreover, since B ⇡ N/`, the phase that recovers
the coe�cients aij has complexity Õ(`!�1

N) using Giorgi, Jeannerod and
Villard algorithm. The filtering step after this algorithm costs O(`w) and
can thus be neglected (since obviously `  N).

To minimize the cost of Giorgi, Jeannerod and Villard algorithm, we
let ` be the smallest multiple of c larger than d. In that case, the total
sequencial cost of the algorithm becomes:

O(�N2) + Õ(max(c, d)!�1
N).

This has to be compared with the previous O((� + d)N2) + Õ(c!�1
N)

obtained when combining Block Wiedemann algorithm with Giorgi, Jean-
nerod and Villard variant to solve the same problem. Note that the wall
clock time also decreases from O((�+d)N2

/c)+ Õ(c!�1
N) to O(�N2

/c)+
Õ(max(c, d)!�1

N).
If d  c then the complexity of the variant we propose is clearly in

O(�N2)+ Õ(c!�1
N), which is exactly the complexity obtained when com-

bining Block Wiedeman algorithm with Giorgi, Jeannerod and Villard vari-
ant to solve a linear algebra problem on a (truly) sparse matrix of the same
size. In a nutshell, when parallelizing on c processors, it is possible to
tackle up to c dense columns for free.

1.4.7 How dense can nearly sparse matrices be ?

We already know that our nearly sparse algorithm behaves better than
the direct adaptation of sparse methods. However, when the number d

of dense columns becomes much larger, it makes more sense to compare
to the complexity of dense methods, i.e. to compare our complexity with
O(N!). In this case, we expect the number of processors to be smaller
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that the number of dense columns and thus replace max(c, d) by d in the
complexity formulas.

Assume that d  N
1�✏ with ✏ > 0 then our complexity becomes

Õ(d!�1
N) = O(N!�✏(!�1)(logN)↵) for some ↵ > 0, which is asymptoti-

cally lower than O(N!). However, when the matrix is almost fully dense,
i.e. for d = ⌦(N), our technique becomes slower, by a logarithm factor,
than the dense linear algebra methods.

1.5 Application to Discrete Logarithm Computations

In this section, we discuss the application of our adaptation of Block Wiede-
mann to discrete logarithm computations using the Number Field Sieve
(NFS) algorithm [10, 15, 17], which applies to medium and high character-
istic finite fields Fq.

NFS contains several phases. First, a preparation phase constructs a
commutative diagram of the form:

Z[X]

Q[X]/(f(X)) Z

Fq

when using a rational side. Even if there also exists a generalization
with a number field on each side of the diagram, for the sake of simplicity,
we only sketch the description of the rational-side case.

The second phase builds multiplicative relations between the images
in Fq of products of ideals of small prime norms in the number field
Q[X]/(f(X)) and products of small primes. These relations are then trans-
formed into linear relations between virtual logarithms of ideals and log-
arithms of primes modulo the multiplicative order of F⇤

q . Writing down
these linear relations requires to get rid of a number of technical obstruc-
tions. In practice, this means that each relation is completed using a few
extra unknowns in the linear system whose coe�cients are computed from
the so-called Schirokauer’s maps [18]. Essentially, these maps represent the
contribution of units from the number field in the equations. Due to the
way they are computed, each of these maps introduces a dense column in
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the linear system of equations. The total number of such columns is upper-
bounded by the degree of f (or the sum of the degrees when there are two
number fields in the diagram).

The third phase is simply the resolution of the above linear system. In a
final phase which we do not describe, NFS computes individual logarithms
of field elements. An optimal candidate to apply our adaptation of Cop-
persmith’s Block Wiedemann algorithm precisely lies in this third sparse
linear algebra phase. Indeed, the number of dense columns is small enough
to be smaller than the number of processors that one would expect to use in
such a computation. Typically, in [4], the degree of the number field was 5,
whereas the number of maps (so the number of dense columns) was 4, and
the number of processors 12. Asymptotically, we know that in the range of
application of NFS, the degree of the polynomials defining the number fields
are at most O((log q/ log log q)2/3). This is negligible compared to the size of
the linear system, which is about Lq(1/3) = exp(O((log q)1/3(log log q)2/3)).

Thus, our new adaptation of Coppersmith’s Block Wiedemann algo-
rithm completely removes the di�culty of taking care of the dense columns
that appear in this context. It is worth noting that these dense columns
were a real practical worry and that other, less e�cient, approaches have
been tried to lighten the associated cost. For instance, in [3], the construc-
tion of the commutative diagram was replaced by a sophisticated method
based on automorphisms to reduce the number of maps required in the
computation. In this extend, this approach is no longer useful.

Moreover, since we generally have some extra processors in practice, it
is even possible to consider the columns corresponding to very small primes
or to ideals of very small norms as part of the dense part of the matrix and
further reduce the cost of the linear algebra.
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