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Simplification of Meshes with Digitized Radiance

Kenneth Vanhoey · Basile Sauvage · Pierre Kraemer · Frédéric Larue ·

Jean-Michel Dischler

Abstract View-dependent surface color of virtual ob-

jects can be represented by outgoing radiance of the

surface. In this paper we tackle the processing of out-
going radiance stored as a vertex attribute of trian-

gle meshes. Data resulting from an acquisition process

can be very large and computationally intensive to ren-

der. We show that when reducing the global memory
footprint of such acquired objects, smartly reducing the

spatial resolution is an effective strategy for overall ap-

pearance preservation. Whereas state-of-the-art simpli-

fication processes only consider scalar or vectorial at-

tributes, we conversely consider radiance functions de-
fined on the surface for which we derive a metric. For

this purpose, several tools are introduced like coher-

ent radiance function interpolation, gradient computa-

tion, and distance measurements. Both synthetic and
acquired examples illustrate the benefit and the rele-

vance of this radiance-aware simplification process.

Keywords Digitized artifacts · Surface light field ·

Radiance · Mesh simplification · Rendering

1 Introduction

In the scope of digitization of cultural heritage, the de-

mand for high-fidelity visualization is increasing. Com-

pared to usual colored surfaces (using, e.g., textures,

vertex colors), surface light fields (SLF) improve ap-

pearance modeling: the color depends not only on the
position on the surface (spatial dimension) but also on
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the viewing direction. This allows capture of, e.g., spec-

ular highlights induced by glossy objects. Applications

include virtual museums, archiving, and off-site study.

Acquiring SLF is regularly made easier and more re-

liable by the development of acquisition devices, treat-

ments, and reconstruction algorithms [14,24]. The mem-

ory load however still grows in proportion to the spa-
tial resolution multiplied by the directional one. Mem-

ory limits for storage, transmission and rendering may

be pushed in various ways, using data compression,

streaming, data reduction, and level-of-detail approaches.

In this project, our acquisition process [24] gener-
ates dense surface meshes typically composed of hun-

dreds of thousands to millions of vertices per object

(spatial dimension). Compact representations of hemi-

spherical radiance functions (RF) stored on these ver-
tices still require dozens of coefficients per vertex (di-

rectional dimension). Our main contribution is a new

method for the reduction of this dense data that ex-

ploits a radiance-aware metric for geometric mesh sim-

plification, as illustrated in Fig. 1. To our knowledge,
no other metric exists for such functional data, thus we

compare our results to state-of-the-art color-aware sim-

plification. We show that reducing the spatial resolution

(our strategy) may better preserve the visual quality
compared to reducing the directional resolution.

Alternatively, one can store radiance in texture maps

instead of on vertices [2,25]. However texture mapping,

filtering, and mip-mapping raise several issues. First, a

parameterization has to be defined, which, for complex
objects, implies to cut the texture into pieces (charts).

To avoid visible seams at chart boundaries and per-

mit mip-mapping, texel redundancy and complex data

structures are often used [21]. Second, it is difficult to
adapt the resolution of the texture according to spa-

tial variations unless they have been taken into account

when building the parameterization. Conversely, mesh
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Full resolution (921k vertices) 6.2% (58k) 3.1% (29k) 1.6% (14k) + wireframe

Fig. 1 Double dragon model with per-vertex radiance attribute. Mesh simplification adapts to geometric, color, and specular
features. RF are encoded with polynomials of bi-degree 4 and respectively weigh 401MB, 13MB, 6MB and 3MB.

simplification is designed to adapt the spatial resolu-
tion, assuming that radiance is stored on each vertex.

Some previous techniques [2,25] address the prob-
lem of compressing directional information independent-

ly of spatial information. Our approach is complemen-

tary since it addresses spatial simplification of the data:

further directional compression remains compatible.

The key concept of our approach is to combine a

well-known mesh-driven simplification algorithm (i.e.,
iterative edge-collapse [11]) with a new metric defined

on radiance, that measures what will be actually ren-

dered. Therefore, RF are attached to the vertices of

an over-dense surface mesh after acquisition and pre-

processing. Our contributions start by first determin-
ing a set of tools to do calculations with RF on the

surface, including specular highlight-aware interpola-

tion, gradient computation and distance measurement

(section 3). Second, we propose a method that simpli-
fies dense data while ensuring visual similarity w.r.t.

to the original. Therefore we define a new metric on

RF that allows to evaluate the cost of an edge col-

lapse operation (section 4). Level-of-detail rendering is

then made possible by the use of progressive meshes:
the data is represented at multiple scales such that it

can be adapted at runtime to the actual rendering con-

straints. Third, because simplified meshes can exhibit

large triangles that may cover many pixels in screen-
space, we propose an improved rendering method in

order to preserve the light field highlights even in those

cases (section 5). Compared to directional reduction,

the results show that radiance-aware spatial simplifica-

tion well preserves acquired objects appearance. Com-
pared to color-based metric, our method is also more

accurate in the preservation of the directional features

of the objects (section 6).

2 Related work

This work is related with two areas: i) view-dependent

colors, namely light fields, and ii) mesh-driven level-of-

detail methods, in particular mesh simplification.

2.1 Surface light fields

Light fields [10,17] define the color of a scene as a func-
tion of a 4D space covering position and the viewing

direction. Surface light fields map these data on the

surface as a way to discard background data and avoid

projection and parallax errors, thus being more precise.
It can be expressed by i) a combination of eigen-vectors

by using factorization methods [5,20], or ii) indepen-

dent localized 2D hemispherical RF [2,25]. For keeping

local control in our algorithm, we use the latter.

Numerous function bases can be used to represent
2D RF in a data-driven acquisition context. Non-linear

ones (e.g., [16]) are precise but may be difficult to ob-

tain or process [26]. They are rather used for represent-

ing BRDF, i.e., 4D hemispherical functions. For 2D,
linear combinations of basis functions are widely-used

for their simplicity and flexibility. Commonplace are

spherical harmonics or wavelets [18,23], polynomials

[19], or lumispheres [25]. Choosing the appropriate one

is left to the user: our algorithms are independent of
it. This choice however influences both implementation

complexity and computation time.

2.2 Mesh simplification

Surface mesh simplification has been given a lot of at-

tention. We are interested in methods considering ge-
ometry and aspect-describing attributes (e.g., color, tex-

ture) [3,4,7–9,11,12]. Methods exploiting the unitary

edge collapse operation (Fig. 3 and Fig. 5), as opposed

to vertex removal or triangle collapse, are standard both

for ease of implementation and wide range of applica-
tions. Edges are iteratively collapsed in increasing order

of damage they cause. Hereby, we define a new measure

of this damage. Some metrics allow to define an optimal

embedding (i.e., that minimizes the metric) for the ver-
tex resulting from a collapse. Half-edge collapse instead

defines the resulting vertex as one of its two predeces-

sors. Our new metric can be used with both variants.
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Metric on geometry. The quadric error metric (QEM)

is the most widely-used geometric error metric [7]. It

efficiently estimates the sum of squared distances w.r.t.

the planes defined by the triangles of the initial (dense)

mesh surrounding the vertices preceding the collapse.
A “memoryless” variant [12] computes the QEM w.r.t.

the mesh immediately preceding the current collapse

instead of the initial mesh. Our new metric is defined

as a combination of a memoryless QEM with a (also
memoryless) radiance measure.

Metric on scalar or vectorial attributes. Classical at-

tributes (e.g., normals, colors) are real-valued vectors

of some dimension m. A first strategy directly extends
the QEM to R

3+m by mixing up geometry and other

attributes [8]. As considering such a mix is quite ar-

bitrary, the more recent alternatives use the QEM as

a geometry metric and add their specific error to it.
In [12], a separate QEM is computed in attribute space

R
m, and in [15], a metric is specifically designed for

vertex colors. Both combine this with the QEM for ge-

ometry. None of these techniques is directly extensible

to functional attributes.

Metric on radiance attributes. To our knowledge, func-

tional attributes have not been considered before. The

RF we are dealing with encode a color depending on the
viewing direction. A constant RF (diffuse color) is thus

equivalent to color attributes. We compare our radiance

metric on such data in Fig. 9.

Progressive meshes [11] reverse edge collapses by ver-
tex splits. They represent triangle meshes at different

resolutions. In the present paper we show progressive

meshes with radiance attribute.

3 Calculations on radiance functions

Surface light fields L(p, ω) define for every point p on

the surface the outgoing radiance. This is a function

that associates a color to any viewing direction ω. It
represents the light emitted from p into direction ω.

The domain for ω is the hemisphere of visible directions,

i.e., centered on n, the normal to the surface at p.

In our setting, the surface is a triangle mesh defined

by its connectivity and its positions pi and normals ni

at vertices vi. The embedding is linear: a point with

barycentric coordinates (α1, α2, α3) in a triangle t =

(v1, v2, v3) is embedded at p = α1p1+α2p2+α3p3. The

normal is also assumed to be linearly interpolated (up
to normalization), which is a common approximation

for rendering. A radiance function L(pi, ω) is defined

at each vertex.

In this section, we define tools to calculate on radi-

ance functions over the surface. They will be used to

design a new metric for simplification (section 4) and

to define improved rendering formulas (section 5). First,

we define formulas for RF reflected around the local sur-
face normal (section 3.1), as they exhibit higher spatial

coherence [25]. Second, we derive triangle interpolation

(section 3.2), which defines L at any p on the surface

(spatial continuity). Third, we derive triangle extrap-
olation (section 3.4), which defines RF off the initial

surface, which is useful since edge collapses change the

geometry. The latter exploits a gradient of the RF on

the surface (spatial derivative) which we first present in

section 3.3. Finally we propose distance measurements
between two RF (section 3.5) so as to serve our metric.

3.1 Reflected representation

Let L(p, ω) be a RF defined on the hemisphere oriented

with normal n. We apply the reflection Rn with respect

to n in order to get L̃(p, ω) = L(p, Rnω) which we call
reflected radiance function (r-RF). This idea improves

the spatial coherence for a large class of common ma-

terials. It has indeed been used efficiently for compact

BRDF representation [22], image-based rendering by
pre-filtered environment mapping [1], and compression

of SLF [25]. We apply it for coherent interpolation and

improved rendering quality.

The motivation is that the reflected L̃ tend to change

less than L when p varies, i.e., over the surface. Fig. 2

illustrates this on a simple example: suppose two func-

tions L(p1, ·) and L(p2, ·) (middle) were reconstructed

from a similar material (say, a Phong-like reflectance
model) and a point light source. They then exhibit spec-

ular peaks around the ideal reflection direction. Since

the surface normals n1 and n2 diverge, L(p1, ·) and

L(p2, ·) differ a lot. In contrast, L̃(p1, ·) and L̃(p2, ·)
(bottom) are similar because the peaks are aligned with

the lighting direction.

This holds for complex lighting environments (e.g.,
many lights) resulting in complex outgoing radiance

functions, provided that the common lighting environ-

ment is at infinite distance. Inter-reflections and auto-

occlusions violate this condition in general, but it is

respected locally when comparing nearby points on the
surface: reflection locally increases the coherence. This

is very important in our context because edge collapse

(section 4) is a local process for simplifying preferably

homogeneous regions, and rendering (section 5) locally
interpolates RF in triangles. As a result, a region with

homogeneous material and similar local environment

results in homogeneous r-RF over the region.
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Fig. 2 Interpolation at point p of two radiance functions
L(p1, ·) and L(p2, ·). Functions at vertices p1 and p2 are
derived from a point light source at infinite distance and a
Phong-like reflectance model. i) Each function is reflected
w.r.t. its own normal. ii) Linear interpolation is performed
(bottom). iii) The result is reflected w.r.t. the interpolated
normal n. Naive interpolation on non-reflected functions
(dashed line) would be much less coherent.

3.2 Interpolation

Interpolation consists in deriving a RF at any position

p in a triangle t from known RF at vertices p1, p2

and p3. As presented in Fig. 2, we define the r-RF at

p = α1p1 + α2p2 + α3p3 through linear interpolation:

L̃t(p, ω) = α1L̃(p1, ω) + α2L̃(p2, ω) + α3L̃(p3, ω) (1)

which formally defines a RF interpolation by

Lt(p, ω) = α1L(p1, Rn1
Rnω)

+ α2L(p2, Rn2
Rnω) + α3L(p3, Rn3

Rnω) (2)

This procedure tends to preserve specular peaks be-
cause it essentially interpolates functions of ω while

naive interpolation (Fig. 2, middle, dashed line) would

interpolate colors at fixed ω.

3.3 Gradient

If one fixes the viewing direction ω then equation (1)

amounts to simple linear interpolation of colors over

the triangle t. Thus for fixed ω, the gradient w.r.t. p of

L̃t is constant over t. Differentiation on the surface [6]

leads to

∇pL̃t(ω) = J(JTJ)−1

[
L̃(p2, ω)− L̃(p1, ω)

L̃(p3, ω)− L̃(p1, ω)

]
(3)

where J =

[
p2 − p1,p3 − p1

]
. Note that ∇pL̃t is a

function defined over the hemisphere. It should be a

Jacobian matrix but we consider the color channels sep-

arately (see section 7), so we compute one vector per
channel.

3.4 Extrapolation

By using the gradient, equation (1) can be rewritten as

L̃t(p, ω) = L̃(p1, ω) +∇pL̃t(ω) · (p− p1) (4)

Although the gradient lies in the triangle’s plane and

was designed to compute interpolation, this formula ac-
tually defines its extension to compute it for p that

does not lie in the triangle, not even in the plane. Con-

versely to the straightforward equation (1), formula-

tion (4) provides extrapolation by extending L̃t to 3D
with constant gradient on the whole plane and a (spa-

tially) constant (directional) color in the normal direc-

tion. We exploit this in section 4.

3.5 Distance measurements

We define the distance between radiance functions by

d (L(p1, ·), L(p2, ·)) =
∥∥∥L̃(p1, ·)− L̃(p2, ·)

∥∥∥
L2(Ω)

(5)

where

‖L(p, ·)‖L2(Ω) =

(
1

2π

∫

ω∈Ω

L(p, ω)2dω

)1/2

(6)

is the L2-norm for square integrable functions on the
hemisphere Ω. The choice of Ω will be discussed in

section 4.1.

This measure, which integrates r-RF rather than

RF, has several advantages:

– It is consistent with the above interpolation proce-

dure: the average of L(p1, ·) and L(p2, ·) minimizes

the sum of squared distances to L(p1, ·) and L(p2, ·).
– Distance between diffuse RF (i.e., constant func-

tions) reduces to distance between simple colors.

– ‖L(p, ·)‖L2(Ω) = ‖L̃(p, ·)‖L2(Ω) since they are de-

fined on the same hemisphere.
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4 Mesh simplification

Amesh is defined by its connectivity and its embedding,
which is generally a set of attributes attached to the

vertices. Mesh simplification based on edge collapse [11]

essentially consists in two stages:

1. build a priority queue of all collapsible edges;

2. until the mesh is simplified enough, collapse the first
edge and update the queue.

This algorithm is grounded on a priority criterion (for

the edges) and an embedding strategy (for the vertex

resulting from a collapse), which must both take into

account all the attributes. We first present our radiance

error metric in the context of half-edge collapse and
then extend it to general edge collapse.

4.1 Radiance error metric for half-edge collapse

Half-edge collapse is represented in Fig. 3: the edge v0v1
is collapsed onto v1. We define the radiance error caused

by the collapse as a perceived difference power of light
emitted by the surface. Indeed, since L is a luminous

flux (lumen) per unit solid angle and per unit surface

area, the error E defined as follows has squared lumen

for theoretic dimension.

E =
∑

t

Area(t) d2
(
L(p0, ω), Lt(p0, ω)

)
(7)

where the distance is defined by equation (5), extrapo-

lation is defined by equation (4), and the sum runs over

the post-collapse modified triangles (Fig. 3 right).

This equation can be understood as follows. Each
final triangle t = (v1, v2, v3) contributes to the error in

proportion to its area multiplied by the change of RF

caused by the collapse. The change of RF is measured

by the squared distance between the RF at position p0

before and after collapse. The RF at p0 is L before

collapse and is extrapolated from the triangle t by Lt

after collapse. Since the distance is measured at point

p0, the hemisphere for integration is chosen to be Ω0.

Fig. 3 Half-edge collapse of v0v1 onto v1. The point p0 (po-
sition of the vertex v0 before collapse) is generally off the
surface after collapse.

4.2 Coherence with diffuse color

To understand the relevance of E in terms of color, con-

sider purely diffuse materials: equation (5) still applies

and the distance reduces to an error between colors. As

a consequence, E is the squared color error times the
impacted area. Fig. 4 illustrates typical situations: the

triangle t in red contributes to the error if its extrap-

olated color Lt (background) differs from the original

color, i.e., before the collapse. This is the case of p′′

0,

as opposed to p0 and p′

0 which perfectly match Lt. E
is a good measure of visible color changes because the

gradient links color and geometry: the contribution at

p′′

0 is positive although its original color is the same

as p1, while the contribution at p′

0 vanishes although
its original color differs from that of p1.

Our metric can then be compared to previous er-

rors for color attributes [8,12,15]. It combines all the

following advantages:

– Neither local parameterization nor projection is needed.

– It can be extended to functional attributes like ra-

diance.

– The combination with common quadratic geometric

errors is invariant under scaling (see section 4.4).

In the results section (Fig. 9), we show competitive re-
sults compared to a state-of-the-art metric on colors.

4.3 Embedding and metric for edge collapse

Compared to half-edge collapse the more general edge
collapse case requires an embedding strategy for all at-

tributes (p, n and L) of the vertex resulting from the

collapse. We used the optimal position p as proposed

in [7]. However, in order to define the normal n, we

Fig. 4 Illustration of the contribution of a single triangle
t (red) to the error of the collapse of v0v1 onto v1 (equa-
tion (7)). The shaded background represents its extrapolated
color Lt while dots p0, p′

0 and p′′
0 represent 3 possible

positions and original colors (i.e., at v0 before collapse, see
Fig. 3). The color error between a dot and the background is
measured by d2 in equation (7).
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Fig. 5 Edge collapse.

don’t use the extended QEM [8] because mixing nor-

mals and geometry is somehow arbitrary. Instead we
project p onto the edge p0p1 and then linearly interpo-

late between n1 and n2 accordingly. The reflected radi-

ance L̃(p, ω) is interpolated in the same way, by restrict-

ing equation (1) to one dimension along the edge. Unlike

half-edge collapse, an explicit expression of L̃(p, ω) is
required here. Thus a rotation-invariant spherical basis

is needed (see section 6).

Finally, the RF error is computed by summing equa-

tion (7) applied once for p0 over the triangles depicted
in blue in Fig. 5 and once for p1 over the triangles de-

picted in green.

4.4 Combination with geometric error

To be effective, simplification must consider all the at-

tributes. We therefore linearly combineE with the mem-

oryless variant of the standard QEM [12] because our
radiance metric is also memoryless. Like the QEM, our

metric has quadratic growth in the mesh size, so the

balance between both does not depend on the geomet-

ric scaling. Still, the balance depends on the mesh den-
sity and on the color space encoding. In our examples,

the radiance error is very low because color changes are

gradual and specular effects impact only part of the

hemisphere. So we empirically weighted 1% geometry

and 99% radiance on all our examples.

4.5 Progressive meshes

Considering we have at our disposal an edge collapse

metric and an embedding strategy, one can build pro-

gressive meshes with radiance attributes. A key ap-

plication here is level-of-detail rendering. It consists

in adapting the resolution to the rendering conditions
(viewpoint, memory and time resources, screen-space

resolution). The issue is to dynamically adapt the res-

olution in such a way that collapses and splits are not

perceptible. Static pictures are therefore not suited for
illustrating this, especially since radiance is visible when

the viewpoint changes. The accompanying video (On-

line Resource 2) shows that this application is effective.

5 Rendering

Eventually, the object is rendered. In section 4, we de-

termined a metric that considers interpolation of r-RF

within each triangle. In this section, we define how to
render accordingly and visually show why this interpo-

lation is important.

A straightforward technique for shading triangles

with RF defined on their vertices consists in evaluating

the RF on these vertices within the vertex shader and

then interpolating resulting colors at fragment level,
i.e., within the triangle. This approach works well when

triangle meshes are extremely dense w.r.t. the view-

point, i.e., a triangle covers only a few pixels in screen-

space. Conversely, when considering simplified meshes,

triangles can be large in screen-space. This technique
then tends to sweep out specular highlights, as shown

in Fig. 6. One can notice that this is equivalent to per

fragment naive interpolation of RF (Fig. 2, dashed line).

It generates artifacts analogous to those of Gouraud-
shading with vanishing highlights inside the triangles.

Rendering quality can significantly benefit from the

RF interpolation proposed in section 3.2. In practice,
the reflected functions L̃ are stored and transferred to

the GPU. The r-RF evaluation is now done in the frag-

Fig. 6 Toy example generalizing Fig. 2: four radiance func-
tions are stored on a four-vertex plane. Their normals diverge
and the functions represent a diffuse + specular behavior (i.e.,
a Phong-like BRDF). Left (naive interpolation): the specular
highlight fades out at some angles. Right (equation (8)): the
specular highlight is well interpolated.
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ment shader as follows:

Lt(p, ω) = α1L̃(p1, Rnω)

+ α2L̃(p2, Rnω) + α3L̃(p3, Rnω) (8)

which is actually equation (2) with r-RF on the right-

hand side. The improvement of this r-RF interpolation

over naive RF interpolation is analogous to the well-
known improvement of Phong shading over Gouraud

shading, but applied to stored RF. Fig. 6 shows a quad

(2 triangles) with divergent normals: equation (8) pre-

vents the specular peak to fade out inside the quad.
To evaluate equation 8 at fragment level, implemen-

tation needs to be adapted. The following data is re-

quired for each fragment:

– the interpolated position p and normal n;
– barycentric coordinates α1, α2 and α3;

– all three r-RF of its triangle (L̃ at p1, p2 and p3).

To obtain the three r-RF per fragment, they are du-

plicated on the provoking vertex of the triangle in the
geometry shader and exported as flat output attributes.

We actually duplicate only references to the r-RF which

are stored in arrays.

Note that switching from per-vertex to per-fragment

evaluation impacts performance. It moves the complex-
ity from O(visible vertices) to O(object-covered screen-

space pixels). This implies that rendering speed increa-

ses when visualizing the object from a distance. Con-

versely, rendering speed decreases when visualizing a
simplified mesh, i.e., when triangles cover many pix-

els. It is however in the latter case that visual qual-

ity is improved by per-fragment evaluation. So even-

tually, the user can see the choice of per-vertex versus

per-fragment evaluation as a trade-off between, respec-
tively, rendering speed and quality.

6 Results

Basis functions. We experimented with two linear bases.

First, a space of polynomials [19] that represent hemi-
spherical functions by orthogonal projection on the tan-

gent plane. These functions must be expressed in a local

frame and the space is invariant under rotation around

the normal. For all figures but Fig. 7 we used a poly-
nomial basis (PB) of bi-degree d = 4 which require
(d+1)(d+2)

2 = 15 coefficients per channel and a rotation

(from global to local frame). We also experimented with

spherical harmonics [18] which represent functions on

the entire sphere. They can be expressed either in a lo-
cal or a global frame and the space is invariant under

any rotation. Although functions are encoded on the en-

tire sphere, they contain relevant information only for

607MB 152MB 149MB

188MB 47MB 44MB

0 Max

Fig. 7 The original (left) is reduced by mesh simplification
(middle) and degree reduction (right). Memory reduction is
similar. All objects use spherical harmonics in global frame.
Elephant, respectively: d = 6 & 1M vertices, d = 6 & 250K
vertices, d = 2 & 1M vertices. Mask, respectively: d = 8 &
193K vertices, d = 8 & 48K vertices, d = 3 & 192K vertices.

the visible hemisphere, so it is compliant with the com-

putations of previous subsections. We show spherical

harmonics (SH) of degree d = 2, 3, 6 and 8 expressed in

global frame (Fig. 7), which require (d+1)2 = 9, 16, 49

and 81 coefficients per color channel, respectively.

We emphasize that our algorithms do not depend
on the basis chosen, neither on the basis degree, nor

on the frame. We argue that the choice should be left

to the final user according to the application needs.

Simplification results only slightly differ according to

the basis (see Online Resource 1). Equations (1) to (8)
apply whatever the basis and the frame. However, for

hemispherical functions, (1) to (4) can be computed for

a fixed ω only because it requires rotations around arbi-

trary vectors. On the contrary, rotation-invariant spher-
ical functions allow for an explicit expression of the re-

sults in the basis. In other words, equations on functions

translate into equations on coefficients. A global frame

is not mandatory: it makes most computations simpler,

except reflection which is trivial in a local frame.

Spatial versus directional data reduction. Fig. 7 shows

that, to save memory, it may be beneficial to simplify
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Fig. 8 Original data (top row) exhibits diffuse strips on spec-
ular material. Compared to radiance error (bottom), color
error (middle) fails to preserve specular features. Simplifica-
tion to 50% is processed through half-edge collapse. The color
error is extended QEM [8] applied to the RF’s average color.

the mesh (spatial resolution) rather than to reduce the

degree of the basis (directional resolution). On such

glossy objects, preserving specular highlights is essen-
tial for perceiving the material and the geometry, as

becomes clear on animated objects in the accompany-

ing video (Online Resource 2). The colored errors em-

phasize that simplification tends to remove fine details

scattered on the surface, while degree reduction tends
to produce large errors on the highlights.

Comparison to color metrics. With existing techniques,

the best one can do is to use color metrics applied on

per-vertex diffuse (i.e., non-directional) color. Fig. 8 il-

lustrates the need for improvement over the latter on
a synthetic example. Slight simplification is performed

on a sphere alternating diffuse and specular materials

(top). It shows that straightforward usage of a color

metric is unable to detect and preserve specular fea-

tures, while our radiance metric does (bottom).

To show a fair comparison of our metric w.r.t. state
of the art methods we compare it with color metrics

when applied on the diffuse color component of our ob-

jects. In this case, our metric reduces to a color distance

(see section 4.2). The lower pair of Fig. 9 illustrates

this on the mask forehead. Simplification at 25% still
preserves fine wood veins; at 1.5%, only pronounced

features are preserved. Our metric applied on the full

radiance (top row) does not deteriorate the results com-

pared to color metrics. Both our radiance metric (top)
and its application on diffuse color (middle) compete

with the extended QEM (bottom) on this material hav-

ing predominant non-directional color features. Note
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Fig. 9 The mask forehead exhibits few geometry or reflec-
tion but strong color features. Our metric on radiance (top)
and its application to diffuse colors only (middle) amount
to similar results, and they compete with QEM extended to
colors (bottom) [8], even for severe simplification. Note how
well the triangles adapt to the features (right column). RF are
encoded with PB(d = 4) and respectively consume 42MB,
10MB and 0.7MB of memory.

how the resulting triangles follow the color features at

high simplification ratios (right column).

The mask face in contrast has a quite uniform color
and few geometry but high specular effects, as shown

by different viewpoints in Fig. 10. In such case the ra-

diance metric (middle) improves over the metric on dif-

fuse colors (bottom): the triangles on the eyebrow and
the eyelid are much better adapted to the features.

Finally, we drove tests on another large and complex

acquired dataset (double dragon, 921k vertices, Fig. 1)

which combines geometry, color, and directional fea-

tures. It resists to severe simplification and the differ-
ent types of features have been preserved. A good bal-

ance between them is ensured by the geometry-radiance

combination described in section 4.4.

Edge vs. half-edge collapse. In section 4, we discussed

two embedding strategies: edge collapse and half-edge

collapse. Fig. 7 shows edge-collapse whereas Fig. 9 and
Fig. 10 show half-edge collapse. There are no significant

differences between results: half-edge collapse generates

more elongated triangles while edge collapse may mix

colors. This did not result in issues on our examples so

one or the other can be used safely.

7 Technical details

Color channels. Besides RGB, we tested CIELUV and

CIELAB color spaces because they are perceptually

uniform. Since we observed only minor differences (see
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Fig. 10 Simplification of the mask model (original on top
row) using our radiance metric (middle) and its restriction
to diffuse color (bottom). Different viewpoints and close-ups
show important light reflections on the face. The radiance
metric better preserves important visual features (e.g., eye-
brow, eyelid). See caption of Fig. 9 for model details.

Online Resource 3), we worked in RGB endowed with

the 2-norm. This norm has the advantage that the 3
color channels can be treated separately in equation (7).

Numerical integration of errors. The computation of

errors (equation (7)) requires to integrate a mix of func-

tions over a hemisphere. Deriving a closed form would

be tedious, if even possible. When using polynomials,

this is due to local frame alignments and domain in-
tersections. When using spherical harmonics, it is due

to the arbitrary orientation of the integration domain.

Therefore we perform numerical integration using Lebe-

dev quadrature on the sphere.

Time complexity. Simplifications typically take a few
hours for our acquired data. The complexity is Θ(N(logN+

BP )) where N is the number of vertices, B the num-

ber of basis functions, and P the number of integra-

tion points. The numerical integration (BP ) actually

dominates the priority queue update (logN). Thus the
algorithm is suitable and scalable for an offline process.

Data acquisition and reconstruction. The double dragon

(Fig. 1), the mask (Fig. 9 and Fig. 10) and the elephant

(Fig. 7) are acquisitions of real objects. Geometry is

acquired with a 3D-scanner operating with structured
light. It generates point clouds which are approximated

by a triangle mesh using the Poisson surface recon-

struction algorithm [13]. Radiance functions are fitted

on photographs that are taken with a hand-held high-

resolution camera and projected onto the mesh [24].

The radiance functions attached to the plane and the

spheres (Fig. 6 and 8 and accompanying video in On-

line Resource 2) are fitted on virtually acquired pho-
tographs of a synthetic scene characterized by point

light sources and BRDF.

Exceeding hemispheres. RF may have to be evaluated
outside of their hemisphere of definition. This happens

i) during simplification when comparing RF with differ-

ent normals, or ii) during visualization when a vertex is

visible from under its tangent plane. To solve this prob-

lem, colors of the hemisphere’s border are prolonged on
the opposite hemisphere. This avoids popping artifacts

during rendering (except at the opposite pole, which is

never visible in practice).

8 Conclusion

In this paper, we treated the problem of the mem-

ory load of digitized surface light fields represented by

radiance functions stored as attributes on mesh ver-
tices. This load can be problematic for visualization and

streaming. We first derived interpolation and gradient

formulas as well as a distance measure for RF. Then,

we defined a first RF-aware metric that we exploit in a

mesh simplification algorithm. Our metric has proven
to be a true added value w.r.t. existing techniques (i.e.,

adaptations from metrics on colors) in terms of qual-

ity when directional features are present. When the RF

are diffuse, our algorithm reduces to a color metric and
competes with the state of the art.

As a result, the user now has a new choice to reduce

the memory load: besides reducing the directional res-

olution (lowering the degree of RF functions), we pro-

vided an algorithm for reducing the spatial resolution
while preserving geometric and directional features. We

have shown that this may be preferable for higher over-

all realism. We point out that compression strategies

for the set of RF [2,25] can be applied as a subsequent
complementary stage in the processing pipeline.

As a complementary contribution, we defined how

to improve rendering quality for local RF by determin-

ing smart interpolation of reflected RF. We have also

shown that progressive meshes constitutes an effective
application for level-of-detail rendering.

Based on our interpolation and distance measure,

we think of dealing with RF stored in textures, in-

cluding filtering and mip-mapping. One severe issue is
the management of parameterization boundaries. An-

other problem for mip-mapping is the explicit averag-

ing of several RF if hemispherical functions are chosen.
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A more accurate view-dependent filtering also requires

accounting for geometry-related masking effects.

We would also like to push the comparison further.

Indeed, under a rendering perspective, simplification

can be compared to compression techniques. However,
whereas the memory load can be measured objectively,

the visual quality is more subjective. To this end we

consider that a perceptual study would be helpful.

Finally, another prospect is advanced signal pro-
cessing on the mesh. Indeed, interpolation and gradient

computations essentially provide spatial continuity for

SLF. Investigating further differentiation on the surface

could lead to processing through differential equations.
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his technical assistance.

References

1. Cabral, B., Olano, M., Nemec, P.: Reflection space image
based rendering. In: Proceedings of SIGGRAPH ’99, pp.
165–170. ACMPress (1999). DOI 10.1145/311535.311553

2. Chen, W.C., Bouguet, J.Y., Chu, M.H., Grzeszczuk, R.:
Light field mapping: Efficient representation and hard-
ware rendering of surface light fields. In: Proceedings
of the 29th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’02, pp.
447–456. ACM, New York, NY, USA (2002). DOI
10.1145/566570.566601

3. Choi, H., Kim, H., Lee, K.: An improved mesh simplifi-
cation method using additional attributes with optimal
positioning. The International Journal of Advanced Man-
ufacturing Technology 50(1-4), 235–252 (2010). DOI
10.1007/s00170-009-2484-y

4. Cohen, J., Olano, M., Manocha, D.: Appearance-
preserving simplification. In: Proceedings of SIG-
GRAPH ’98, pp. 115–122. ACM Press (1998). DOI
10.1145/280814.280832

5. Coombe, G., Hantak, C., Lastra, A., Grzeszczuk,
R.: Online construction of surface light fields. In:
Proceedings of the Sixteenth Eurographics conference
on Rendering, EGSR’05, pp. 83–90 (2005). DOI
10.2312/EGWR/EGSR05/083-090

6. Do Carmo, M.P.: Differential Geometry of Curves and
Surfaces. Prentice-Hall (1976)

7. Garland, M., Heckbert, P.S.: Surface simplification us-
ing quadric error metrics. In: Proceedings of SIG-
GRAPH ’97, pp. 209–216. ACM Press (1997). DOI
10.1145/258734.258849

8. Garland, M., Heckbert, P.S.: Simplifying surfaces with
color and texture using quadric error metrics. In: Pro-
ceedings of the conference on Visualization ’98, VIS ’98,
pp. 263–269. IEEE Computer Society Press, Los Alami-
tos, CA, USA (1998)
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