
HAL Id: hal-01155518
https://inria.hal.science/hal-01155518v2

Submitted on 27 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective Data Management for Interactive Trace
Analysis

Generoso Pagano, Vania Marangozova-Martin

To cite this version:
Generoso Pagano, Vania Marangozova-Martin. Effective Data Management for Interactive Trace
Analysis. [Technical Report] RT-0460, Inria - Research Centre Grenoble – Rhône-Alpes; INRIA.
2015, pp.26. �hal-01155518v2�

https://inria.hal.science/hal-01155518v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-4
60

--
FR

+E
N

G

TECHNICAL
REPORT
N° 460
May 2015

Project-Team MESCAL

Effective Data
Management for
Interactive Trace
Analysis
Generoso Pagano, Vania Marangozova-Martin

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Effective Data Management for Interactive
Trace Analysis

Generoso Pagano ∗, Vania Marangozova-Martin †

Équipe-Projet MESCAL

Rapport technique n° 460 — May 2015 — 26 pages

Résumé : Ce rapport technique décrit les améliorations proposées et mises en œuvre dans
Framesoc, l’infrastructure de gestion de traces du projet SoC-Trace [2,3], par rapport à ce qui est
décrit dans le RT-447 [4], dont le contenu est considéré comme connu ici. Le thème central du
présent document est la façon dont Framesoc gère la grande quantité de données de trace pour
permettre une analyse de trace interactive, tout en abordant les questions de stockage dans une
base de données relationnelle.

Mots-clés : Traces d’exécution, gestion de traces, infrastructure, représentation de données,
interface utilisateur, interaction utilisateur, ergonomie, mécanisme publication/souscription, con-
ception de logiciel, base de données, chargement de données.

This research is supported by the FUI SoC-TRACE project [1]

∗ INRIA, generoso.pagano@inria.fr
† UJF, Vania.Marangozova-Martin@imag.fr

Effective Data Management for Interactive Trace Analysis
Abstract: This technical report describes the enhancements proposed and implemented in
Framesoc, the SoC-Trace project trace management infrastructure [2,3], with respect to what is
described in the RT-447 [4], whose content is considered as known here. The central topic of the
present document is how Framesoc manages huge trace data to enable interactive trace analysis,
while tackling the issues of a relational database storage.

Key-words: Execution traces, trace management, infrastructure, data representation, user
interface, user interaction, ergonomics, publish-subscribe, software design, relational database,
data loading.

Effective Data Management for Interactive Trace Analysis 3

Table of contents
1 Introduction 4

2 Framesoc Data Management Principles 4
2.1 Data Loading and Visualization Architecture . 4
2.2 Management of the Displayed Time Interval . 6
2.3 View Synchronization . 6

3 Framesoc Interactive Views 7
3.1 Gantt Chart . 7
3.2 Event Table . 10
3.3 Statistics Pie Chart . 12
3.4 Event Density Chart . 14

4 Performance Evaluation 16
4.1 Impact of Indexing on Trace Import . 18
4.2 Gantt Chart Loading . 20
4.3 Event Table Loading . 22

5 Conclusions 24

RT n° 460

4 G.Pagano & V.Marangozova-Martin

1 Introduction
Framesoc [5] provides a graphical user environment with several views for execution trace

management and analysis. A detailed description of this environment, presented from the user
point of view, is available in the Framesoc user guide 1. In this document, we provide a more
technical description of the issues, and the corresponding solutions, related to effective data
management for interactive trace analysis.

The document is structured as follows. Section 2 describes the general principles adopted
for data management, dealing with a relational database storage. Section 3 describes how the
general principles are implemented for the different analysis views; we highlight here the view-
specific solutions aimed at improving the user experience and at reducing the analysis pitfalls.
Section 4 presents a performance evaluation study, concerning the technical choices implemented
in Framesoc for data management. Section 5 presents our conclusions and perspectives.

2 Framesoc Data Management Principles

2.1 Data Loading and Visualization Architecture
Framesoc analysis views aim at providing different visualizations over trace data, trying to

ensure a good interactivity and responsiveness. Considering that trace databases typically contain
a lot of data (i.e., millions of events), data management is a major issue in maximizing user
experience and supporting effective analysis. When dealing with millions of events, the simple
pattern consisting in loading all relevant information in memory, computing an analysis and
finally visualizing it in a view, does not scale. Indeed, on one hand, memory limits may simply
prevent the loading or the analysis phases from completing successfully. On the other hand,
manipulating big data requires long periods of time and the analyst may find herself waiting for
the final result.

This kind of considerations motivated the choice of creating a pipeline between data loading
and result visualization treatments for all Framesoc views. Figure 1 shows a generic representation
of this pipeline pattern.

There are two active entities, a Loader Entity and a Drawer Entity. The Loader Entity is in
charge of submitting a series of queries to the Framesoc database, receiving for each query a new
chunk of raw data. Using this raw data, the Loader Entity updates a Shared Data Structure.
The update may directly push the raw data in the data structure or require its preprocessing.
On the other side, the Drawer Entity waits for new data to come into the Shared Data Structure,
retrieves it and updates the view. The loading process continues until all requested data (e.g.,
the data in a given time interval) is loaded and displayed, or until the user stops it.

The above architecture ensures that partial results are available for the analyst almost im-
mediately, i.e., after the first query. This partial result gets updated without freezing the user
interface. The analyst can therefore start observing the trace data or stop the loading process.

Given a global data request, the pipeline pattern needs a strategy for creating the partial
queries. This strategy should fulfill the following objectives:

• Limit the pitfalls in the analysis that are due to the display of partial results.
• Ensure a low latency and a high interactivity.
• Limit the overhead due to request partitioning.
The first point may easily benefit from the fact that a simple and intuitive way to provide

partial trace visualizations is to use the time chronology of the execution trace. The global

1. https://github.com/soctrace-inria/framesoc/blob/master/src/fr.inria.soctrace.maven.
repository/archive/doc/framesoc_user_guide.pdf?raw=true

Inria

https://github.com/soctrace-inria/framesoc/blob/master/src/fr.inria.soctrace.maven.repository/archive/doc/framesoc_user_guide.pdf?raw=true
https://github.com/soctrace-inria/framesoc/blob/master/src/fr.inria.soctrace.maven.repository/archive/doc/framesoc_user_guide.pdf?raw=true

Effective Data Management for Interactive Trace Analysis 5

Loader Entity Drawer Entity

Framesoc DB

Shared Data
Structure

Framesoc
View

queries raw data

update get

update

Figure 1 – General architecture of pipelined data loading and display.

request is partitioned using subsequent time intervals (query intervals), and the data related to
the different intervals is displayed sequentially.

To address the other two points, we have to use a query interval that is small enough to ensure
low latency, but big enough to ensure low partitioning overhead. Considering that different traces
have different density of events for a given time interval, this kind of “query interval” selection
must be done in terms of “number of events in the result set”. A translation between this number
(N) and the actual time interval (T) is done passing through the average event density (d) in
the trace, according to the following relation:

T = N/d

where d is computed as:

d = number_of_events/trace_duration

Using this approach we ensure that each intermediate query returns a result set containing
N elements, on the average. The value of N differs for the different views and targets a good
trade-off between low latency and low overhead.

This generic pipeline is instantiated for each Framesoc analysis view. The corresponding
details will be described in Section 3.

RT n° 460

6 G.Pagano & V.Marangozova-Martin

2.2 Management of the Displayed Time Interval
The implemented data loading mechanism is generic and imposes no constraint on the time

interval to be displayed. As a consequence, each Framesoc analysis view is capable of loading
whatever sub interval of the whole trace. A view therefore loads only the data actually necessary
for its particular analysis.

The user controls the portion of the trace displayed in the analysis view using a time man-
agement bar, located at the bottom of each Framesoc analysis view (Figure 2).

Figure 2 – Time management bar present in all Framesoc analysis view.

The main element of this bar is a double range time slider, whose length represents the
whole trace duration. The colored part of the slider represents the trace portion that is already
loaded or that we want to load by pressing the rightmost button, as explained below. Two arrow
buttons on the sides of the time bar can move the blackened part to the left or to the right.
The four buttons to the right respectively select the whole trace duration, specify the start and
end timestamps of the selection, resynchronize the selection with the displayed trace portion and
load the current selection into the view.

2.3 View Synchronization
The possibility to load any time interval in each view enables the synchronization of different

views. In other terms, views can simply display the same time interval. Each Framesoc analysis
view has in fact a button for each one of the other analysis views (Figure 10). The button switches
to the other view while keeping the same time interval.

Figure 3 – Toolbar buttons used to switch from one analysis view to another.

In terms of implementation, this mechanism is based on the Framesoc Bus 2. When pressing a
view button, a special visualization request message is sent on the Framesoc Bus. In the topic, the
message indicates the desired visualization (e.g., Gantt, Pie, etc.). The message content specifies
the target trace, the target time interval, and the group of the view sending the request. A group
defines a family of different types of views (i.e., Gantt, Pie, etc.) for a given trace. Framesoc,
in fact, allows to open several instances of the same type of view for a given trace (e.g., several
instances of the Gantt for trace t). Each different instance will belong to a different group. The
time sychronization takes place only within the different views of the same group.

With this view sychronization mechanism it is easy to implement an iterative analysis work-
flow, where the base iteration could be following:

• Load the whole trace in the Event Density Chart, identify an interesting time zone and
zoom on it using the time bar.

• Switch to the Gantt Chart visualization using the specific button, loading only the zoomed
time interval.

• Reduce again the time interval using the time bar.

2. The Framesoc Bus is a simple Publish-Subscribe bus available in the Framesoc runtime. All the details are
available in the RT-447 [4]

Inria

Effective Data Management for Interactive Trace Analysis 7

• Visualize a given statistical metric for that time interval in the Statistics Pie Chart view,
switching to it using the specific button.

• Finally switch to the Event Table visualization, to see all the details of the events in the
interval.

3 Framesoc Interactive Views

In this section, we detail the implementation of the data management principles described
in Section 2. We consider the different Framesoc analysis views and discuss their respective
implementations. All the cited Java packages, interfaces or classes can be found in the Framesoc
source code on GitHub 3.

3.1 Gantt Chart

Figure 4 – Gantt Chart analysis view.

The Framesoc Gantt Chart analysis view (Figure 4) has been developed using the Time Graph
viewer provided by the Trace Compass project 4. It is implemented as a Gantt Chart Framesoc
plugin (fr.inria.soctrace.framesoc.ui.gantt).

Data loading

To instantiate the general data loading architecture (cf. Figure 1), the Gantt Chart Framesoc
plugin proceeds as follows.

The Loader Entity is an Eclipse Job. The job uses an object implementing
the fr.inria.soctrace.framesoc.ui.gantt.model.IEventLoader interface. The Drawer
Entity is a normal Java Thread. The thread uses an object implementing the

3. https://github.com/soctrace-inria/framesoc
4. https://projects.eclipse.org/projects/tools.tracecompass

RT n° 460

https://github.com/soctrace-inria/framesoc
https://projects.eclipse.org/projects/tools.tracecompass

8 G.Pagano & V.Marangozova-Martin

fr.inria.soctrace.framesoc.ui.gantt.model.IEventDrawer interface. The IEventLoader
declares the loadWindow() method, which takes as input the global time interval we want
to load. The partitioning of the global request in several queries to the database event ta-
ble is done in the method implementation. The results of the partial queries are stored in
a fr.inria.soctrace.framesoc.ui.model.LoaderQueue, which corresponds to the Shared
Data Structure in Figure 1. The elements of this queue are lists of ReducedEvent objects. A
ReducedEvent contains the minimal information to draw an event (state, link or punctual event)
in the Gantt Chart. When a new list is ready, the drawer thread uses the IEventDrawer to
transform the ReducedEvent objects in a model understandable by the Time Graph viewer. This
model is basically a hierarchy of lines, where a line corresponds to an event producer and contains
a list of graphical events.

The Gantt Chart plugin defines an extension point 5 allowing other plugins to provide a
concrete IEventLoader and IEventDrawer implementations for a given trace type. Framesoc
provides default implementations of the two interfaces. These default implementations rely on the
Framesoc data model semantics, supporting states, links and punctual events as they are stored
in the Framesoc trace database. The default implementation of the IEventLoader performs a
partitioning of the global request loading 100 000 events, on the average, for each partial query.
This number has been chosen as a good compromise between low visualization latency and small
partitioning overhead.

Data manipulation

The Gantt Chart viewer is capable of doing some manipulations over displayed data, either
automatically, or guided by the user. The automatic manipulations performed by the Gantt
Chart are state aggregation and link filtering. The guided manipulations are event type filtering
and event producer filtering.

State aggregation consists in aggregating different states in a given producer time line,
where there are not enough pixels to draw all of them. If the level of zoom is such that more than
one state is to be represented in a given pixel, those states get aggregated (only one graphical
object is represented) and a black dot is displayed on top of the point where aggregation took
place. This dot informs the user that the graphical object under the dot is not an actual state,
but simply the aggregate of several states. With this piece of information the analyst knows that,
to draw correct conclusions over a given point of the trace, he has to zoom in more, to show
all the states. This state aggregation technique limits the pitfalls of the uncontrolled graphical
aggregation, which would be performed anyway by the computer graphic card or by the screen if
we tried to draw all the states. Furthermore, this technique actually draws less graphical objects
on the screen (at most one per pixel), so it is more efficient in both time and memory.

Link filtering consists in applying a similar idea to links, i.e., the arrows that may exist
between two points of the Gantt Chart. Given that typically links connect two points belonging
to two different event producer lines, it is not straightforward to easily apply a merge among links
as we do for states. For this reason, a simpler technique is used, which consists in displaying only
a subset of links, based on the amount of pixels we have. The heuristic currently implemented
acts as follows. Links whose duration exceeds the time interval corresponding to a single pixel,
are always displayed (non vertical arrows). For all the other links (vertical arrows), at most one
link is displayed for a given pixel: the link chosen for displaying is the first one in the time interval
corresponding to the current displayed pixel. Link filtering enables the control of the amount of
information lost due to screen limitation: in fact, the percentage of links actually drawn in the

5. https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

Inria

https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

Effective Data Management for Interactive Trace Analysis 9

(a) Gantt Chart with no link filtering.

(b) Gantt Chart with link filtering.

Figure 5 – Gantt Chart visualization without and with link filtering.

displayed time interval is shown at the top left corner of the Gantt Chart view. It is worth noting
that, without link filtering, information would be lost as well, but this would be out of control,
depending only on the graphic card or the screen. Furthermore the analyst would not be aware
of this loss. In this case too, with link filtering we actually draw less graphical objects, thus being
more efficient in memory consumption and achieving a more fluid and interactive display.

In Figure 5, we can see the difference between having or not the link filtering feature. Figure 5a
shows a time interval where all links are displayed on the screen. From this representation, the
only information we have is that there are a lot of links, but almost any other information is
lost. Even the states behind the links are almost completely hidden. Figure 5b, on the contrary,
provides a more useful information. Here we are still able to conclude that there are a lot of links
(a lot of arrows are displayed even if only 8% of the actual number of links is displayed), but we
can also see the different states connected by the links. Besides, having 92% less graphical objects
on the screen has a significant positive impact on the latency of zoom in/zoom out operations.

One of the well-known problems of Gantt Chart representations is the lack of spatial scala-
bility. Indeed, when a high number of event producers is present in the trace, a high number of
time lines will be displayed in the Gantt chart, thus obliging the analyst to scroll over these lines
to analyze its trace. This easily leads to context loss, thus making trace analysis way harder, if
not impossible. A simple step to limit this problem is offering to the analyst the possibility to
explicitly filter event producers, saying which ones she wants see and which ones she wants

RT n° 460

10 G.Pagano & V.Marangozova-Martin

to hide. For example, if we are interested only in the events occurring on two producers, it is not
necessary nor useful to show all the trace producers. The Gantt Chart view provides this kind
of filter: pressing the corresponding button in the view toolbar, a dialog is displayed where the
user can check/uncheck event producers according to her needs.

With a similar dialog, accessible through another toolbar button, the user can explicitly filter
event types. It is possible to check/uncheck which event types we want to see and which ones
we want to hide. Figure 6 shows the difference between the Gantt Chart representation where
all types are shown, and the one where a dominating type has been hidden, to better focus on
the other types of events.

(a) Gantt Chart visualization where all types are displayed.

(b) Gantt Chart visualization after hiding a type.

Figure 6 – Event type hiding in Gantt Chart.

3.2 Event Table

Framesoc Event Table analysis view (Figure 7) has been developed using the Virtual Table
viewer provided by the Trace Compass project. We chose the Trace Compass viewer, over the
default Eclipse Table viewer, since it is more lightweight and scales better. The basic idea behind
this viewer is that only displayed rows have a corresponding graphical object in memory. For all
the other rows, only the information related to the row content is kept in memory in a cache.

Inria

Effective Data Management for Interactive Trace Analysis 11

Figure 7 – Event Table analysis view.

This cache is used to get the data needed to create graphical rows on demand: only when, using
the scrollbar, the row must be actually displayed, the graphical object is created.

Data loading

The data loading architecture implemented in the Event Table Framesoc plugin
(fr.inria.soctrace.framesoc.ui.eventtable) is an instantiation of the generic one (Fig-
ure 1).

The Loader Entity is an Eclipse Job internally using an object implement-
ing the fr.inria.soctrace.framesoc.ui.eventtable.loader.IEventLoader interface. The
IEventLoader declares the loadWindow() method, which takes as input the global time in-
terval we want to load. Concrete implementations of this method are in charge of parti-
tioning this global request in several partial queries on the database event table. The de-
fault implementation of the IEventLoader loads 20000 events, on the average, for each par-
tial query. This number has been chosen as a good compromise between low visualization
latency and small partitioning overhead. The results of the partial queries are stored in a
fr.inria.soctrace.framesoc.ui.model.LoaderQueue, which corresponds to the Shared Data
Structure in Figure 1. The elements of this queue are lists of Event objects, and not ReducedEvent
objects as it was in the Gantt Chart case. In fact, in this case a complete Event object is nec-
essary, since all event information must be displayed. In particular, the table also displays event
custom parameters, not visible in the Gantt Chart.

The Drawer Entity is a normal Java Thread, in charge of filling the
fr.inria.soctrace.framesoc.ui.eventtable.view.EventTableCache. The drawer thread
waits for new lists of Event to be pushed into the LoaderQueue. When a new list is ready, the
drawer thread uses the Event information to fill the cache. Both this cache and the table viewer
are rank based. This means that each table row corresponds to an index, and this index is used
to retrieve the information related to one row from the cache. When the table is first loaded, the
row at index k in the viewer, corresponds to the information accessible in the cache at index k.

RT n° 460

12 G.Pagano & V.Marangozova-Martin

Column Filtering

The Framesoc Event Table allows for filtering over the different column values, using regular
expressions. To do so, the first row of the table viewer contains editable text fields. For each
column, it is therefore possible to specify a regular expression to be matched by the different
rows. This kind of filtering is performed within a background thread and the filtering results are
progressively shown in the view.

Given the fact that both the cache and the table viewer are rank based, filtering makes it
necessary to re-index the cache. In fact, when no filter is present, there is an identity relation
between the table viewer index and the cache index: e.g., the row corresponding to index k in
the table, corresponds to the row information accessible in the cache at index k. On the contrary,
when we apply a filter, some rows will probably not be present in the table, so this identity does
not stand any more. For example, if we apply a filter and the result contains only rows 3, 45 and
48, in the resulting table there will be only 3 rows whose indexes will be 0, 1 and 2 for the table
viewer. When the table viewer will ask the cache for index 0, the cache will answer with what was
before at index 3, and so on. To achieve this, the cache must be re-indexed. The implementation
of the cache simply support this feature using an intermediate index for the remapping.

3.3 Statistics Pie Chart

Figure 8 – Statistics Pie Chart analysis view.

The Framesoc Statistics Pie Chart analysis view provides the possibility to compute several
statistical metrics over trace events and display them in the form of a Pie Chart. Beside the Pie
Chart, a tabular representation is provided as well, in order to offer some data manipulation
capabilities to the analyst.

Data loading

The data loading architecture implemented in the Statistics Pie Chart Framesoc plugin
(fr.inria.soctrace.framesoc.ui.piechart) is an instantiation of the one presented in Fig-
ure 1.

The Loader Entity is a normal Java Thread, internally using an object implementing the
fr.inria.soctrace.framesoc.ui.piechart.model.IPieChartLoader interface. Concrete im-
plementations of this interface correspond to actual statistical operators. The interface, therefore,
declares a set of methods defining the specific behavior for the computation and the representation

Inria

Effective Data Management for Interactive Trace Analysis 13

of a specific statistical variable. First of all, the interface offers a load() method, taking as input
the trace and the time interval of interest. Concrete implementations of this method are in charge
of partitioning the global request into partial requests, storing a snapshot of the computed sta-
tistical metric in a fr.inria.soctrace.framesoc.ui.piechart.model.PieChartLoaderMap,
which corresponds to the Shared Data Structure in Figure 1. For the existing implementations,
each partial request processes 100 000 events on the average, to get a good view responsiveness
and a small partitioning overhead. The PieChartLoaderMap provides the abstraction of a map
between entity names and the statistical metric value for that entity. If, for example, we are com-
puting the state duration, this map will link each state name with the corresponding duration.
This data structure differs from the queues seen for the Gantt Chart and the Event Table, since
it does not store incremental data, but simply a snapshot of the computed statistical metric at
a given time. If, for example, the global request over a time interval is partitioned in 10 requests
over 10 subsequent time intervals, each time the data from a new time interval are processed by
the IPieChartLoader, a new snapshot of the metric is created: this new snapshot contains, of
course, also the information coming from previous time intervals. So, when a new snapshot is
available, it replaces the previous one in the PieChartLoaderMap.

The Drawer Entity is an Eclipse Job waiting for new snapshots to be set into the
PieChartLoaderMap. When a new snapshot is available, this job simply translates the content
of the map into something that we can visualize directly in a pie chart and in a table. To do so,
it uses two methods still provided by the IPieChartLoader, since they depend on the specific
statistical operator considered: getPieDataset() and getTableDataset().

The IPieChartLoader offers also some methods to get the colors for the different entities,
the numerical format for the values, and how aggregation of small values is performed 6. In
particular, for the aggregation, the loader implementation specifies if it is supported, which is
the aggregation threshold and which is the label for the aggregated slice.

The Statistics Pie Chart plugin defines an extension point allowing other plugins to pro-
vide concrete IPieChartLoader implementations for different statistical metrics. The Statistics
Pie Chart plugin itself currently provides four extensions to this extension point, providing the
following statistical operators:

• Event Producer instances: each pie slice represents the number of events having a given
event producer.

• Event Type instances: each pie slice represents the number of events having a given event
type.

• Link duration: each pie slice represents the duration of a given type of links.
• State duration: each pie slice represents the duration of a given type of state.

Event Type and Event Producer Filtering

The Statistics Pie Chart analysis view offers some filtering capabilities, to reduce the scope
of the analysis and focus only on relevant events. In particular it is possible to interactively filter
over event types and event producers, specifying which ones must be used in the computation
of the selected metric. The user can check/uncheck types and producers of interest using the
corresponding dialogs accessible via two toolbars buttons. When a filtering is done using this
mechanism, the chart is immediately updated for the current metric. When changing the metric,
the filters are kept: if necessary, the metric is recomputed to match the current filters.

6. As described in RT-447 [4], entities whose values are smaller than a given threshold are aggregated in the
pie chart in a single slice, and grouped in the table into a dedicated folder.

RT n° 460

14 G.Pagano & V.Marangozova-Martin

Data manipulation

The Statistics Pie Chart analysis view allows for some data manipulation aimed at extracting
meaningful information from the computed statistical metric.

First, it is possible to exclude from the metric computation one or more of the entities.
In fact, the default behavior when computing a metric is to consider all the corresponding trace
entities: if we are computing state duration, all the state types will be considered by default.
Opening the possibility to exclude entities interactively, allows the analyst to progressively ignore
uninteresting information and let interesting information emerge.

Second, the user has also the possibility to define custom groups of entities, to immediately
see their aggregated value. The user can select two or more entities and group them, defining the
color and the name for the new aggregated entity.

Note that these data manipulations take place after the type/producer filtering described
above: if an entity has been excluded because of a filter, it will not be possible to remove it or
to put it in a group, since it will not be shown in the first place. In other words, it is possible to
manipulate only not filtered entities.

Figure 9 shows the application of the two data manipulation techniques for the State Duration
operator. In Figure 9a, all the state types are considered in the metric computation. We observe
that there is a dominating state, active more than 99% of the time, which prevents to have a
good understanding of what else is happening. First of all, we exclude this state from metric
computation, obtaining the result shown in Figure 9b. While before all the other state types
were in the aggregated slice, now we can better understand their proportions in the trace. Going
even further, we want to group all the states related to the real execution: that is the states of
type *RUN*. To this purpose, we create a new group, called RUN_STATUS, containing the above
mentioned states. We chose the red color for this aggregated slice. The result of this manipulation
is shown in Figure 9c.

Note that excluded entities can be restored, reintroducing them in the computation of the
metric. Similarly, aggregated entities can be disaggregated.

3.4 Event Density Chart

The Framesoc Event Density Chart analysis view provides a histogram representation of the
event density over time. Each histogram bin corresponds to the number of events produced in
the corresponding time interval. This analysis view provides the possibility to filter over time,
space and types.

Data loading

The data loading architecture implemented in the Event Density Chart Framesoc plugin
(fr.inria.soctrace.framesoc.ui.histogram) is an instantiation of the one presented in Fig-
ure 1.

The Loader Entity is a normal Java Thread, internally using a
fr.inria.soctrace.framesoc.ui.histogram.loaders.DensityHistogramLoader. This
class offers a load() method, taking as input the trace, the time interval of interest, the event
types to consider and the event producers to consider. This method is in charge of partitioning
the global request into partial requests, storing a snapshot of the computed event density in a
fr.inria.soctrace.framesoc.ui.histogram.model.HistogramLoaderDataset, which corre-
sponds to the Shared Data Structure in Figure 1. The implementation of the load() method
partitions the requests over subsequent time intervals. Each sub-interval contains on the average

Inria

Effective Data Management for Interactive Trace Analysis 15

(a) State duration pie chart, where all state types are used for statistics
computation.

(b) State duration pie chart where a given type of state has been removed
from statistics computation.

(c) State duration pie chart where two types of state have been merged
in a given group.

Figure 9 – Statistics Pie Chart interactive data manipulation for a given trace, considering the
state duration metric.

the timestamps of 1 000 000 events: once again, this number has been chosen to minimize the
partitioning overhead and improve the reactiveness of the view. The HistogramLoaderDataset
directly contains a dataset understandable by the histogram viewer. Setting a snapshot into the
data structure simply means setting an array containing all the timestamps found so far for the
events of interest. As for the Statistics Pie Chart case, each new snapshot replaces the previous

RT n° 460

16 G.Pagano & V.Marangozova-Martin

Figure 10 – Event Density Chart analysis view.

one.
The Drawer Entity is an Eclipse Job waiting for new snapshots to be set into the

HistogramLoaderDataset. When a new snapshot is available, this job simply gets the histogram
dataset and refreshes the histogram viewer.

Event Type and Event Producer Filtering

The Event Density Chart analysis view offers the possibility to interactively filter over event
types and event producers, specifying which ones must be used in the computation of the event
density. The user can check/uncheck types and producers of interest using the corresponding
dialogs, as it happens for the Statistics Pie Chart view. When a filtering is done using this
mechanism, the chart is immediately updated.

4 Performance Evaluation

This section presents some performance measurements related to Framesoc data management.
The experiments have been designed in order to clarify some of the concepts anticipated in the
previous sections. The obtained results motivate the data management design choices made in
Framesoc.

The following analysis supposes a preliminary knowledge of the Framesoc data model 7.

Vocabulary Used

• Parameter: something influencing the behavior of the system.
• Factor: parameter chosen to variate during experiment.
• Level: value given to a factor.
• Metric: what is to be measured.
• Repetition: one execution of a given experimental configuration.

System Environment

• Framesoc version: 1.0.3

7. We refer in particular to the relational implementation of the Self Defining Pattern. Please refer to the
RT-427 [3] for all the details.

Inria

Effective Data Management for Interactive Trace Analysis 17

• DBMS used: SQLite 3.7.2
• Operating System: Linux Fedora 17, 64 bit (3.9.10-100.fc17.x86_64)
• CPU Details:
◦ model name: Intel(R) Xeon(R) CPU E5-1660 0 @ 3.30GHz
◦ number of cores: 6
◦ hyperthreading: active, 2 threads per core
◦ scaling governor: performance

• RAM: 16360588 kB
• Hard Disk Details (output of hdparm -i)

Model=Hitachi HDS721010CLA630, FwRev=JP4OA41A, SerialNo=JP2940N03MSP5V
Config={ HardSect NotMFM HdSw>15uSec Fixed DTR>10Mbs }
RawCHS=16383/16/63, TrkSize=0, SectSize=0, ECCbytes=56
BuffType=DualPortCache, BuffSize=29999kB, MaxMultSect=16, MultSect=16
CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=1953525168
IORDY=on/off, tPIO={min:120,w/IORDY:120}, tDMA={min:120,rec:120}
PIO modes: pio0 pio1 pio2 pio3 pio4
DMA modes: mdma0 mdma1 mdma2
UDMA modes: udma0 udma1 udma2 udma3 udma4 udma5 *udma6
AdvancedPM=no WriteCache=enabled
Drive conforms to: unknown: ATA/ATAPI-2,3,4,5,6,7

Experiments

The following subsections present three main analyses. The experiments presented in Sub-
section 4.1 measure the impact of database indexing on trace import time. The experiments
presented in Subsection 4.2 and Subsection 4.3 consider the performance of the Gantt Chart and
Event Table views respectively. The performance reflects the impact of database indexing and
pipelined data loading/visualization. No experiment will be presented for the Statistics Pie Chart
or the Event Density Chart use-cases, since from a data-loading point of view these use-cases are
small variations on the Gantt Chart use-case, where only a subset of the event table columns is
considered.

Concerning database indexing, three configurations will be considered:
• No Index: no custom index is created at trace import time.
• Timestamp Index: an index on the TIMESTAMP column of EVENT table is created at trace

import time.
• Timestamp and Event-ID Index: beside the above Timestamp Index, another index on
EVENT_ID column of EVENT_PARAM table is created at trace import time.

Custom indexes, when present, are created just after the actual writing of all trace events
into the database, since this is more efficient than updating the index while importing the trace.
Indexing time is included in the import time when custom indexes are created.

In the different experiments, we will always use the trace size, in number of events, as a
factor. All trace events have 2 event parameters: this number has been chosen as an average
value over different trace formats. The number of events, once the number of event parameters is
fixed, translates directly into the trace database size. This translation depends on the indexing
configuration used as well, as shown in Table 1. For ease of description, we will classify traces as
small, medium and big (Table 1).

The traces used for the experiments are fake traces, generated and imported using the tool

RT n° 460

18 G.Pagano & V.Marangozova-Martin

Trace
Alias

Number
of Events

Database Size
No Index Timestamp Index Timestamp and Event-ID Index

Small 1 Million 66.3 MB 81.2 MB 121.8 MB
Medium 10 Millions 692.6 MB 843.9 MB 1.3 GB

Big 100 Millions 7.5 GB 9.3 GB 13.2 GB

Table 1 – Used traces

Temictli 8. The event timestamps are uniformly distributed over trace duration. The database
IDs are assigned incrementally.

4.1 Impact of Indexing on Trace Import

Description

When dealing with a database for data storage, indexes play a key role to have good
performance. The pipelined data loading and visualization, resulting in continuous database
queries requesting events from different time intervals, calls for the creation of an index
on the event timestamp. Furthermore, the Event Table view use-case adds the complexity of
loading event parameters too, thus calling for an index on the event ID, in the table of parameters.

The following experiments measure the impact of database indexing on import time. The
detailed experimental configuration is the following:

• Factors: trace size, indexing configuration.
• Levels:
◦ trace size: small, medium, big.
◦ indexing: no index, timestamp index, timestamp and event ID index.

• Metric: import time.
• Number of repetitions:
◦ small traces: 30.
◦ medium traces: 10.
◦ big traces: 5.

Analysis

Figure 11 shows the import times for small, medium and big traces, obtained using all three
indexing configurations. Figure 12 is only a detail of the previous one, showing only the results
for small and medium traces. From Figure 11, we have a global overview of trace import time.

We observe that, without indexes, the import time grows linearly with the trace size. Adding
indexes, the import time growth becomes more than linear: the more the indexes, the bigger the
non linearity.

The increase factors in import times due to indexing on timestamp or event ID are summarized
in Table 2. These factors are computed with respect to the case where no index is created.

We can summarize the whole analysis saying that for small and medium traces, indexing
increases import times between 40% and 80%. The actual import times are by the way always
relatively small (less than 4.5 minutes for the medium trace with both indexes). On the other

8. Temictli is available on https://github.com/soctrace-inria/framesoc.various.

Inria

https://github.com/soctrace-inria/framesoc.various

Effective Data Management for Interactive Trace Analysis 19

;

●●●

●
●●

●

●

●

0

1000

2000

3000

4000

5000

1 10 100
Millions of Events

Im
po

rt
 T

im
e

(s
)

index

●

●

●

None

Timestamp

Timestamp and Event−ID

Figure 11 – Import times for small, medium and big traces, using different indexing configura-
tions.

●

●
●

●

●

●

50

100

150

200

250

1 10
Millions of Events

Im
po

rt
 T

im
e

(s
)

index

●

●

●

None

Timestamp

Timestamp and Event−ID

Figure 12 – Import times for small and medium traces, using different indexing configurations.

hand, import times for big traces are quite big even without indexing (about 24 minutes), and
double or triple when adding one or two more indexes.

RT n° 460

20 G.Pagano & V.Marangozova-Martin

Trace Timestamp Index Timestamp and Event-ID Index
Small 1.4× 1.6×

Medium 1.5× 1.8×
Big 2.0× 3.1×

Table 2 – Import time increase factor using different indexing configurations.

4.2 Gantt Chart Loading
Description

Gantt Chart display is done in Framesoc by pipelining data loading and screen drawing.
The data loading part is thus implemented with several queries for events in subsequent time
intervals.

The following experiments show the advantages of pipelined loading, as opposite to all-or-
nothing loading 9, measuring the impact of timestamp indexing on load time. Pipelined loading
type will be referred as pipelined while the all-or-nothing loading type will be referred as all.
The screen drawing part of Gantt display is not taken into account: only the loading part times
are measured. The detailed experimental configuration is the following:

• Factors: trace size, indexing configuration, loading type.
• Levels:
◦ trace size: small, medium, big (not complete tests, see after).
◦ indexing: no index, timestamp index.
◦ loading type: all, pipelined.

• Metric: import time, time to get the first interval.
• Number of repetitions:
◦ small traces: 30.
◦ medium traces: 10.
◦ big traces: 5 repetitions (1000 intervals per repetition) for the pipelined loading type,

to get a good estimation of the time to read an interval; no repetition for the all loading
type, because of reached memory limits.

Analysis

Figure 13 shows the total Gantt Chart load time for small and medium traces, using all and
pipelined loading types, and using or not the timestamp index.

We observe that, using a pipelined loading type adds a significant overhead if we do not
use timestamp indexing. This was expected since pipelined loading relies on several queries over
different time intervals. Adding the timestamp indexing, a small overhead is still present, but
it becomes smaller and smaller as trace size increases (the total load time for medium traces
increases by a factor 1.6).

Paying this small overhead has two major benefits. The first one can be appreciated in
Figure 14, which shows the time the user has to wait before starting to see meaningful information
on the screen. Here we can see that pipelined loading type provides a better user experience,
since the user starts seeing meaningful information almost immediately (the time to load an
interval). On the contrary, with the all loading type, the user has to wait the loading of the

9. With the expression all-or-nothing loading, we mean a solution where either the whole trace is loaded or
nothing can be displayed.

Inria

Effective Data Management for Interactive Trace Analysis 21

whole trace, before seeing anything. The possibility to immediately start the analysis, basically
erases the overhead paid for pipelined loading and visualization.

0

1

2

3

No Index Timestamp Index
Indexing

To
ta

l L
oa

d
T

im
e

(s
)

Loading Type

all

pipelined

(a) Small Trace

0

50

100

150

200

250

No Index Timestamp Index
Indexing

To
ta

l L
oa

d
T

im
e

(s
)

Loading Type

all

pipelined

(b) Medium Trace

Figure 13 – Total Gantt Chart load time for small and medium traces, using different loading
types, and using or not timestamp indexing.

0

250

500

750

1000

No Index Timestamp Index
Indexing

Lo
ad

 T
im

e
(m

s)

Loading Type

all

pipelined

(a) Small Trace

0

5000

10000

15000

No Index Timestamp Index
Indexing

Lo
ad

 T
im

e
(m

s)

Loading Type

all

pipelined

(b) Medium Trace

Figure 14 – Gantt Chart load time needed to get the first meaningful information for small and
medium traces, using different loading types, and using or not timestamp indexing.

The second benefit is that pipelined loading is a more scalable solution, compared to all-or-
nothing loading. This is clear from Table 3, which shows interval and total load time for big
traces. First of all, we observe that all-or-nothing loading could not be tested on big traces, since
the memory limit (16 GB) was reached during tests. Furthermore, using timestamp indexing,
the time to start seeing meaningful information (time to load an interval) is basically the same
as small or medium traces. The whole trace is then loaded in about 4 minutes (without indexing,
it would be 17 hours, i.e., about 250 times slower).

We conclude this analysis saying that pipelined loading, used in combination with timestamp
indexing, provides the best user experience (high responsiveness) with small overhead. This kind

RT n° 460

22 G.Pagano & V.Marangozova-Martin

Indexing Pipelined Loading All-Or-Nothing Loading
Load interval Load whole trace Load whole trace

No Index 61 s 17 hours memory limit reached
Timestamp Index 250 ms 4 min 10 s memory limit reached

Table 3 – Gantt Chart loading time for big traces, using or not time index.

of loading is also the only one possible when dealing with big traces, since performing a single
huge request to the database to get all the events would not scale.

4.3 Event Table Loading
Description

As for the Gantt Chart, the Event Table display is done in Framesoc by pipelining data
loading and screen drawing. The data loading part is also implemented with several queries for
events in subsequent time intervals. The Event Table use-case queries differ from the Gantt Chart
ones, since here we have to load also all the event parameters. This peculiarity motivates the
presence of an index on the event ID in the table of event parameters.

The following experiments show the advantages of pipelined loading, as opposed to all-or-
nothing loading, measuring the impact of indexing on event timestamp and on event ID. Pipelined
loading type will be referred as pipelined while the all-or-nothing loading type will be referred
as all. The screen drawing part of Event Table display is not taken into account: only the loading
part times are measured. The detailed experimental configuration is the following:

• Factors: trace size, indexing configuration, loading type.
• Levels:
◦ trace size: small, medium, big (not complete tests, see after).
◦ indexing: no index, timestamp index, timestamp and event ID index.
◦ loading type: all, pipelined.

• Metric: import time, time to get the first interval.
• Number of repetitions:
◦ small traces: 30.
◦ medium traces: 10.
◦ big traces: 1 repetition (5000 intervals) for the pipelined loading type, to get a good

estimation of the time to read an interval; no repetition for the all loading type, because
of reached memory limits.

Analysis

Figure 15 shows the total Event Table load time for small and medium traces, using all and
pipelined loading types, using three different indexing configurations.

For the all loading type, changing the indexing configuration does not affect the performance,
since we always load all the events and all the parameters, without any specific query condition.
On the other hand, with the pipelined loading type we have huge gains in performance using
both timestamp and event ID indexing. Using no index, the overhead compared to the all
loading type is not acceptable. Using only the timestamp index, we gain a bit (load time reduced
by about 15% for medium traces) but the overhead is still huge, since, if the query on the table
of events is optimized, the query on the table of parameters is still very slow. Adding the index

Inria

Effective Data Management for Interactive Trace Analysis 23

on the event ID in the table of parameters, we manage to optimize all the queries, thus reducing
the load time drastically (we gain about 98% in time, compared with the configuration without
indexes for medium traces).

Even with both indexes, a small overhead compared to the all loading type is still present.
However, this overhead becomes smaller and smaller as trace size increases (the total load time
for medium traces increases by a factor 1.3). Furthermore, as we have seen for the Gantt Chart
use-case, paying this small overhead has two major benefits. The first one can be appreciated
in Figure 16, which shows the time the user has to wait before starting to see meaningful in-
formation on the screen. Here we can see that pipelined loading type, combined with the use of
timestamp and event ID indexes, provides a better user experience, since the user starts seeing
meaningful information almost immediately (the time to load an interval). On the contrary, with
the all loading type, the user has to wait the loading of the whole trace, before seeing anything.
The possibility to immediately start the analysis, basically erases the small overhead paid for
pipelining loading and visualization.

0

20

40

60

No Index Timestamp Index Timestamp and Event−ID Index
Indexing

To
ta

l L
oa

d
T

im
e

(s
)

Loading Type

all

pipelined

(a) Small Trace

0

2000

4000

6000

No Index Timestamp Index Timestamp and Event−ID Index
Indexing

To
ta

l L
oa

d
T

im
e

(s
)

Loading Type

all

pipelined

(b) Medium Trace

Figure 15 – Total Event Table load time for small and medium traces, using different loading
types and different indexing types.

Also for the Event Table use-case, the second benefit is scalability. Pipelined loading is a more
scalable solution, compared to all-or-nothing loading. This is clear from Table 4, which shows
interval and total load time for big traces. As it happened for the Gantt Chart, all-or-nothing
loading could not be tested on big traces, since the memory limit (16 GB) was reached during
tests. Furthermore, using timestamp and event ID indexing, the time to start seeing meaningful
information (time to load an interval) is basically the same as small or medium traces. The whole
trace is then loaded in about 25 minutes (without any indexing it would be 202 hours, i.e., about
485 times slower).

We conclude this analysis saying that pipelined loading, used in combination with timestamp
and event ID indexing, provides the best user experience (high responsiveness) with small over-
head. As for the Gantt Chart use-case, this kind of loading is also the only one possible when
dealing with big traces. For the Event Table use-case, this point is even more critical, since also
the event parameters are loaded: performing a single huge request to the database to get all the
events and all their parameters would not scale.

RT n° 460

24 G.Pagano & V.Marangozova-Martin

0

2000

4000

6000

No Index Timestamp Index Timestamp and Event−ID Index
Indexing

Lo
ad

 T
im

e
(m

s)

Loading Type

all

pipelined

(a) Small Trace

0

20000

40000

60000

No Index Timestamp Index Timestamp and Event−ID Index
Indexing

Lo
ad

 T
im

e
(m

s)

Loading Type

all

pipelined

(b) Medium Trace

Figure 16 – Event Table load time needed to get the first meaningful information for small and
medium traces, using different loading types and different indexing types.

Indexing Pipelined Loading All-Or-Nothing Loading
Load interval Load whole trace Load whole trace

No Index 146 s 202 hours memory limit reached
Timestamp Index 118 s 163 hours memory limit reached

Timestamp and Event-ID Index 300 ms 25 minutes memory limit reached

Table 4 – Event Table loading time for big traces, using different indexing configurations.

5 Conclusions

In this technical report, we described the solutions proposed by Framesoc for an effective and
efficient management of huge traces.

The data management has been built using a pipeline architecture between data loading and
data visualization phases. This enables an interactive analysis on partial data and provides a
good performance with low latency, especially when dealing with huge traces.

Framesoc ensures a scalable trace analysis through an interactive visualization workflow and
data filtering. Indeed, the view synchronization over time intervals offers the possibility to link the
different analysis views in an interactive workflow, where at each step we can reduce the scope
of the analysis through filtering. To get an overview of the whole trace, we can use memory-
cheap visualizations like the Event Density Chart, or more sophisticated aggregated view as the
one provided by Ocelotl [6]. Then we can load only portions of the trace in more detailed and
memory-expensive views, like the Gantt Chart or the Event Table.

Currently, all Framesoc analysis views are able to filter over the three dimensions of space,
time and types. As for the near future, it would be interesting to provide the possibility to
synchronize the different views not only over the time dimension, but also over the other two
(space and types), thus obtaining a multi-dimensional view synchronization. Among our other
perspectives, we plan to investigate new forms of storage, based on non relational distributed
solutions. This could allow for a parallelization of data writing (import) and reading (analysis),
thus increasing the global performance and improving scalability. Then, in the long term, we

Inria

Effective Data Management for Interactive Trace Analysis 25

would like to enrich Framesoc in order to better support new use cases related to parallel and
distributed application analysis. In particular, it would be interesting to have new analysis views
supporting a scalable visualization of huge task-dependency graph.

RT n° 460

26 G.Pagano & V.Marangozova-Martin

References
[1] SoC-TRACE project. http://tinyurl.com/minalogic-soc-trace.
[2] Generoso Pagano, Damien Dosimont, Guillaume Huard, Vania Marangozova-Martin, and

Jean-Marc Vincent. Trace Management and Analysis for Embedded Systems. In Proceedings
of the IEEE seventh International Symposium on Embedded Multicore SoCs (MCSoC-13),
Tokyo, Japan, sep 2013.

[3] Generoso Pagano and Vania Marangonzova-Martin. SoC-Trace Infrastructure. Rapport Tech-
nique RT-0427, INRIA, November 2012.

[4] Generoso Pagano and Vania Marangozova-Martin. FrameSoC Workbench: Facilitating Trace
Analysis through a Consistent User Interface. Technical Report RT-0447, Inria, April 2014.

[5] Framesoc website. http://soctrace-inria.github.io/framesoc/.
[6] Damien Dosimont, Robin Lamarche-Perrin, Lucas Mello Schnorr, Guillaume Huard, and

Jean-Marc Vincent. A Spatiotemporal Data Aggregation Technique for Performance Analysis
of Large-scale Execution Traces. In IEEE Cluster 2014, Madrid, Spain, September 2014.

Inria

http://tinyurl.com/minalogic-soc-trace
http://soctrace-inria.github.io/framesoc/

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803

	Introduction
	Framesoc Data Management Principles
	Data Loading and Visualization Architecture
	Management of the Displayed Time Interval
	View Synchronization

	Framesoc Interactive Views
	Gantt Chart
	Event Table
	Statistics Pie Chart
	Event Density Chart

	Performance Evaluation
	Impact of Indexing on Trace Import
	Gantt Chart Loading
	Event Table Loading

	Conclusions

