
HAL Id: hal-01155618
https://hal.inria.fr/hal-01155618

Submitted on 27 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualizing Timed, Hierarchical Code Structures in
AscoGraph

Grigore Burloiu, Arshia Cont

To cite this version:
Grigore Burloiu, Arshia Cont. Visualizing Timed, Hierarchical Code Structures in AscoGraph. In-
ternational Conference on Information Visualisation, University of Barcelona, Jul 2015, Barcelona,
Spain. �hal-01155618�

https://hal.inria.fr/hal-01155618
https://hal.archives-ouvertes.fr


Visualizing Timed, Hierarchical Code Structures
in AscoGraph

Grigore Burloiu
Faculty of Electronics, Telecommunications

and Information Technology
University Politehnica of Bucharest

gburloiu@gmail.com

Arshia Cont
MuTant Team-Project

IRCAM STMS UMR, CNRS, INRIA, UPMC
cont@ircam.fr

Abstract—Antescofo is a state-of-the-art software package for
mixed music authorship and performance. In this paper, we apply
an information visualisation perspective to a set of revisions in
the timeline-based representation of action items in AscoGraph,
the dedicated user interface to Antescofo. Our contribution is
two-fold: (a) a design study of the proposed new model, and
(b) a technical, algorithmic component. In the former, we show
how our model relates to principles of information coherence and
clarity, facility of seeking and navigation, hierarchical distinction
and explicit linking. In the latter, we frame the problem of
arranging action rectangles in a 2D space as a strip packing
problem, with the additional constraint that the (horizontal)
time coordinates of each block are fixed. We introduce three
algorithms of increasing complexity for automatic arrangement,
estimate their packing performance and analyse their strengths
and weaknesses. We evaluate the systemic improvements achieved
and their applicability for other time-based datasets, while noting
the limitations of the model and resulting directions for future
research.

I. INTRODUCTION

The aim of information visualisation is to organise heteroge-
nous data graphically in a way that optimises human cognition,
based on an inherent model. The model should address specific
visualisation aims and yet be general enough to allow for
wide public adoption and adaption to other problems from
the domain. An interesting instance is the ”standard” model
of Western music notation: it developed over centuries to
render pitch and rhythm readable, writable and playable by
its users, while its semantics have been further extended to
wider harmonic, instrumental and stylistic applications over
the years, all the time keeping the basic framework. Still, the
notation will never capture all the sonic aspects a musician
might have in mind when authoring or reading a score. In this
sense, any visualisation must strike a bargain between what
is shown the user, and what remains hidden or implied. The
major advantage of interactive models is the enabling of user-
led exploration and focus, so that the visible domain becomes
fluid, adapting to one’s own needs and preferences.

This paper addresses the problem of ergonomically repre-
senting a set of timed hierarchical structures. Our use case
is a reactive system for mixed music Antescofo [1] and

This project was partially funded by the French ANR INEDIT Project.

its dedicated visual interface, AscoGraph [2]. Antescofo is
an award-winning software1 for authorship (programming)
and execution (performance) of mixed music, defined as the
live association of human musicians and reactive/interactive
computer software. The system has been rapidly adopted by
artists and is widely used in public concerts around the world.

Contributions of this work are however of interest to
the wider domain of time-based information visualisation.
Throughout this paper, we highlight aspects particular to Asco-
Graph and show how they relate to more general visualisation
principles and techniques. The design study thus constructed
represents the primary focus of this paper.

As a secondary contribution, we introduce three new algo-
rithms developed for spatial arrangement of timed modules in
AscoGraph. They are however not specific to our system, and
might be applied in other situations involving timed data-block
sets.

Other visual solutions for interactive media authorship
exist. We note Iannix [3] and Iscore [4], fully-featured
suites employing multiple timelines and drag-and-drop
type functionality to manipulate actions and events. What
distinguishes Antescofo-AscoGraph is the inherent system
coupling of a score follower [1] with a reactive action lan-
guage [5] which, unlike the alternatives, allows for unassisted
live performance of mixed music which is permanently respon-
sive to the musician. AscoGraph seamlessly integrates these
two core functions into a coherent visual presentation.

Inside the AscoGraph environment (Fig. 1), the code for a
mixed score is listed in the text editor on the right, whose
contents are reflected in the graphical display on the left hand
side. The two graphical views, an instrumental piano roll and
an electronic section, are coupled in musical time along a
common horizontal timeline. Each musical event in the top
view can have one or several corresponding action blocks in
the bottom view.

Our paper starts with a short discussion in section II of
the role of time in Antescofo, after which in section III we
delineate the problems tackled. We then present our revisions
to AscoGraph’s electronic action view, as it was first described
in [2], developed towards a clearer and more time-coherent

1http://repmus.ircam.fr/antescofo/

mailto:gburloiu@gmail.com
mailto:cont@ircam.fr
http://repmus.ircam.fr/antescofo/


Figure 1: The AscoGraph visual editor for Antescofo mixed music scores. Right: the textual score describing acoustic events
and connected electronic actions. Left, upper: the piano roll view of acoustic material. Left, lower: the electronic actions layout.

visualisation of Antescofo scores. Our algorithmic solution for
efficiently positioning action blocks is explained in section
IV. In section V we address the issue of coherence between
block width and musical time. Sections VI and VII cover block
filtering and colouring — two features meant to facilitate the
navigation of the score dataset. We conclude the paper with an
overall discussion of the present model and future perspectives.

II. REPRESENTING TIME IN AscoGraph

We present a brief overview of temporal concepts in the
Antescofo action language. It is the final goal of AscoGraph
to comprehensively and coherently visualise all instances of
such concepts.

We distinguish between two types of actions: atomic and
compound [6]. The former correspond to points in time, and
the latter to temporal intervals. For instance, an atomic action
might be a simple message trigger, or a specific computation.
A compound action could be an automation Curve2 unfolding
over time, or a Loop construct that repeats certain atomic
actions sequentially. Only compound actions can be said to
have a duration (which can be dynamically determined), while
atomic actions are by definition logically instantaneous.

Any combination of actions can be grouped together.
Nesting compound actions within each other produces a deep
hierarchy of action groups. Within a group, items can have
different start times, so the ”parent” action group start time is
by definition the start time of the first item.

The Antescofo language supports all three major types
of temporal structures: linear, cyclical and branching [7].
However, the current iteration of AscoGraph is organised
around a purely linear timeline. The reasons for this design
choice are the following: (1) the fact that a majority of musical
works are composed in linear time, (2) the analogy to classical
music notation that most musicians are familiar with, (3) the
similarity to commonly used timeline-based music software

2in Antescofo, Curves are interpreted as discrete sequences of actions,
whose parameters contain variables that change over time.

(e.g. ProTools, Ableton Live), and (4) the analogy to the
linear nature of Antescofo code. A limitation of the model
is that, while the Jump language feature allows for cyclical
or branching transitions in time, this does not currently impact
AscoGraph’s temporal organisation.

There remains a gap between the complexity of the An-
tescofo action language and AscoGraph’s representation ca-
pabilities. Along the development process, language concepts
have been introduced that are sometimes difficult to readily
represent visually. The next section details the problems that
our current contribution has addressed, as a step towards
bridging this gap.

III. PROBLEM DEFINITIONS

The following is a list of design requirements, to be tackled
in subsequent sections. They are ordered by visual scale, from
the level of action groups to the score as a whole:

• clearly represent action group content and duration. We
frame this issue as a strip packing problem in section
III-A, and we propose three new algorithms to solve it in
section IV;

• ensure time coherence between atomic and compound
action items. Section V covers this requirement;

• facilitate the locating of specific information. We achieve
this through action filtering, presented in section VI;

• represent the hierarchical structure of the code. Sections
V and VII show our advances in this regard;

• synthesise a useful overview of the score, showing the
degree of electronic complexity over musical time. All
the sections listed above contribute to this aspect, which
is further discussed in the concluding section.

A. The Bin Packing Perspective

In the initial iteration of AscoGraph, it was common to have
temporally overlapping action groups displayed on top of each
other along the timeline. The resulted in a loss of coherence



(a) Curve block is closed (b) Curve block is open

Figure 2: Expanding an action block leaves room for another
block to drop to the horizontal base.

and clarity, with the widths of some action blocks no longer
corresponding to their programmed durations.

In order to rectify this, we amended the model by stacking
action groups in downward non-overlapping order, similarly
to how the elements within groups are arranged. In the design
process, we faced two challenges: (1) managing the 2D space
efficiently (due to the new tendency towards vertical growth)
and (2) maximising readability and easy navigation. The
solutions we propose all strike a certain balance between these
parameters.

For arranging rectangular blocks in a two-dimensional
space, we translate the issue to a strip packing problem. A
subset of the bin packing approach, strip packing is used in
areas ranging from optimizing cloth fabric usage to multipro-
cessor scheduling [8]. Algorithms seek to arrange a set of
rectangles within a 2D space of fixed width and bottom base,
and of infinite height. In our present case, the width of the
strip corresponds to the total duration of the piece, and the
rectangles to be placed are the action group blocks.

Bin packing is a rapidly expanding research area, with
results often being difficult to track and compare [9]. A good
measure of algorithm efficiency is the absolute approximation
ratio: supIALG(I)/OPT(I), where ALG(I) is the strip height
produced by the algorithm ALG on an input I , and OPT is
the optimal algorithm. By calculating a superior bound for any
input we obtain a useful value for any input size [10].

Unlike existing bin packing problems, all AscoGraph action
blocks must retain their X coordinate along the time axis.
This constraint alone distinguishes our problem from the rest
of the bin packing literature. Even multiprocessor scheduling
strategies involve expediting or delaying tasks in time [8].
Thus, relying on existing algorithms becomes impractical.

IV. PACKING ALGORITHMS

We introduce three new algorithms for stacking action
groups in AscoGraph’s graphical editor. The user can switch
between each and the original display style through the ap-
plication’s View menu. The appropriate option will depend on
score complexity and the user’s personal taste.

The interactive nature of the software demands dynamic and
periodic calls to block arrangement calculation and rendering.
For instance, expanding an action group to reveal its contents
might free up space next to it – see Fig. 2. In order to
minimise user confusion and computer processing overhead,
we take several measures. Firstly, the ordering is computed
for all actions in the score, and not just the ones in a specific

timeframe; that way, when scrolling through a score at a
constant zoom level, recalculation is not necessary. Secondly,
we defined a number n = 10 of user actions between
recalculations. Finally, the most recently clicked action group
always stays in place, no matter what reordering process is
triggered otherwise.

It is important to note that following bin packing conven-
tions, we shall consider boxes as being placed on top of
the strip base. Naturally, in the AscoGraph environment the
situation is mirrored and we build downwards starting from
the upper border.

In this section, we define a set of rectangles I = {r1...rn},
with each ri being determined by height hi, width wi and start
time xi.

A. First Fit (FF)

The first option is the trivial solution of placing the blocks
in the first space they will fit, starting from the base. The main
strengths of this algorithm are speed and predictability: blocks
are placed in the order in which they appear in the source code
text, which is also their scheduled temporal order. Since spatial
position is in principle the strongest perceptual cue [11], if all
groups are considered equally important then it makes sense
to place the first occurring elements in the top positions. In
section VI we propose filtering as a way to express precedence
of certain blocks over others. Other options in this direction
remain to be examined.

The downside is evident in Fig. 3a and 3b. Let us consider
the worst-case scenario in order to calculate the absolute ap-
proximation ratio. Let I ′ = {r′1...r′n} with increasing heights
h′i = h′i−1 + εi and for simplicity, let all rectangle widths be
equal. While FF would stack them on top of each other (see
Fig. 3a), the optimal configuration would stack them two by
two (Fig. 3b), so that the maximum height is given by the
final two elements:

FF(I ′)
OPT(I ′)

=

∑n
i=1 h

′
i

h′n−1 + h′n
(1)

It is obvious that a finite upper bound cannot be defined.

B. First Fit Decreasing (FFD)

Note that in the previous case, the optimal configuration
could be reached by simply reordering the blocks by height.
This leaves room for blocks of smaller height to drop to the
baseline, as we saw in Figures 2 and 4b.

This insight lies at the root of the classic FFDH strip packing
algorithm [12]. In our case, the FFD algorithm orders the
blocks by non-increasing height, after which the First Fit
process is applied.3 Fig. 3c shows a basic example of an FFD
arrangement, along with its optimal solution at Fig. 3d.

It is obvious that, for any n = 4 blocks, the above configura-
tion is the one that produces the largest FFD(I)/OPT(I) ratio,

3The difference to the classic FFDH algorithm is the absence of horizontal
levels. New blocks are stacked at the minimum possible altitude rather than
a common level.



 

(a) FF

 

(b) OPT (FFD)

 

(c) FFD

 

(d) OPT (FFDT)

Figure 3: Horizontally constrained strip packing. The rectangle
set in (a) and (b) is first arranged by First Fit, and then
optimised by FFD. The set in (c) and (d) is first stacked by
FFD, then optimised by FFDT.

by means of the gap between blocks 3 and 4. Generalizing,
we can state the following:

Definition 1. Given an FFD layout, a pair of non-adjacent
blocks is called a basic broken pillar, if the horizontal
projection of one block, traversing upwards, intersects the
other block.

In Fig. 3c, blocks 2 and 3 form a basic broken pillar.

Definition 2. In an FFD layout, a broken pillar is a chain of
basic broken pillars where the top block of one is the bottom
block of the next.

Theorem 1. For any configuration of blocks I ,

FFD(I)− OPT(I) ≤ g, (2)

where g is the accumulated vertical gap inside the tallest
broken pillar.

Proof: Since, for a basic broken pillar, the reduction to be
made by layout optimisation is evidently limited by the basic
pillar’s internal gap, we can proceed along the chain to obtain
the overall maximum reduction.

Corollary 1. For any n > 4, the configuration that maximises
FFD(I)/OPT(I) is generated by sequentially adding to a
broken pillar exclusively.

Proof: When placing each block, if it is not adding
to a broken pillar, then the difference between FFD(I) and
OPT(I) remains constant. The goal must be to maximise the
accumulated gap for the given set of blocks.

Corollary 2. In a broken pillar, if the accumulated vertical
gap g is greater than the accumulated height of the member
blocks, then g will not contribute to layout optimisation.

(a) FF (b) OPT (FFD)

(c) FFD (d) OPT (FFDT)

Figure 4: The three AscoGraph packing options: (a) FF - action
group blocks are placed as close to the horizontal timeline as
possible, in the order in which they appear in the code. (b, c)
FFD - blocks are first ordered by height before being placed
as in FF. (d) FFDT - blocks are first ordered according to a
gap-minimisation heuristic before being placed on the timeline
as in FFD.

Proof: For a basic broken pillar that satisfies these condi-
tions4 the conclusion is obvious. Proceeding along the chain,
each gap’s contribution will continue to be annulled by the
stack on the opposite side.

It is now possible to present an upper bound to the
absolute approximation ratio.

Theorem 2. The absolute approximation ratio of the FFD
algorithm is lower than 2.

Proof:

sup
I

FFD(I)

OPT(I)
≤ hpillar + g

hpillar
= 1 +

g

hpillar
(3)

where g is the accumulated gap inside the tallest broken pillar.
If g ≥ hpillar, then its contribution is annulled and we must
look to the second tallest broken pillar. And so on, until the
fraction becomes subunitary.

C. First Fit Decreasing Towers (FFDT)

As before, the optimal configuration in the previous example
hints at the following algorithm. We propose a greedy heuristic
that builds upon FFD while tackling situations common in
AscoGraph, like one action block sharing time with several
blocks on both sides of it. (e.g. Fig. 3c and d). The basic goal
is to minimise the gaps in broken pillars.

The FFDT algorithm first orders all blocks as in FFD. Then,
action group towers are defined at the time-axis intersections
between two or more group blocks. Their height is equal
to the sum of the heights of their component blocks. For
instance, in Fig. 3c and d the rectangle 2 is part of four towers:
T{r1, r2},T{r2}5,T{r2, r3} and T{r2, r3, r4}.

4The minimum number of blocks to build a basic broken pillar is 5. 2
blocks form the broken pillar itself, and at least 3 blocks are needed (under
FFD conditions) to build a large enough gap.

5The minimal tower is one that is identical to an (isolated) action block.



The entire width being now split along these virtual vertical
strips we call towers, we are now able to refine the ordering
of the blocks. Alg. 1 below lists all the steps.

Algorithm 1 FFDT

(1) Compute all tower assignments and heights.
(2) For each block ri, compute:
• MTHi = the maximum tower height among the towers

containing the block;
• NTi = the number of towers containing the block;

(3) Order all action group blocks as follows:
(3a) by decreasing MTHi

if equal then
(3b) by decreasing NTi;
if equal then

(3c) by non-increasing block height (as in FFD).
end if

end if
(4) Place blocks using FF.

The maximum tower height is a definite lower bound of
any AscoGraph strip packing configuration. Therefore, in
the FFDT heuristic the top tower will always be placed
first, in an attempt not to overshoot this lower bound.
Among its component blocks, the ones that are shared with
many other towers are then given preference – the intention
again being to maintain tower integrity as much as possible.
Lastly, as with FFD, tall blocks are prioritised so as to fill
gaps efficiently.

We assert that the FFDT algorithm’s absolute approximation
ratio is lower than 2 (similarly to FFD), and it is safe to assume
it is much closer to 1.

V. TIME COHERENCE OF ATOMIC ACTIONS

As we have shown in section II, atomic actions are instanta-
neous and ideally should not take up horizontal space. More-
over, as seen in Figures 2 and 4, they introduce unnecessary
clutter in the workspace.

Our solution is to group all instances from a specific
hierarchical level and display them on a single line as small
circles, or conceptual points. When the mouse hovers over
such a point, a list of the messages it contains is shown. Fig.
5 shows the expanded list for Group THREE; the messages
are set at 3 different points in time, which is why 3 points are
present in the message line.

Figure 5: Time-coherent message circles display

This feature also harnesses the visualisation principle of
explicit linking [13]. When the user clicks on a certain

(a) No filtering: all group blocks are shown.

(b) One filter: SPAT1 track is active.

(c) Two filters: SPAT1 and SPAT2 tracks are active.

Figure 6: Track filtering in AscoGraph: A line is added just
below the timeline showing all available track names which
the user can filter by.

message in the expanded list, the corresponding line of code
is highlighted. Thus, we capitalise on the coupling between
adjoining views and their value is enhanced. This feature was
already present in AscoGraph among other elements: action
blocks, musical events in the piano roll, and specific lines of
code are all linked and clickable.

Our new model is fully time coherent and considerably
clearer than before. The user experience improvement over
the classic model becomes most obvious when dealing with
complex scores with many messages.

VI. TRACK FILTERING

AscoGraph implements the ”visual information seeking
mantra” – overview first, zoom and filter, details on
demand [14]. While zooming the timeline and expanding
blocks to reveal their contents have already been mentioned,
filtering is another function essential to information seeking
and score navigation.

In Antescofo, filters are defined in the score code through
regular expressions. The resulting set of objects that match a
certain user-defined expression is referred to as a track [6].
The user can define up to 32 such tracks.

Fig. 6 illustrates the use of filters. Note that any number
of tracks can combine into a filter. At any point, the user can
click the SHOW ALL button to return to the initial view.

VII. ACTION BLOCK COLOURS

In choosing the colour scheme for AscoGraph, we observed
the guidelines of Tufte [15] that large areas should use
desaturated colour and that high contrast between foreground
and background improves readability. We present an additional
contribution over the previous version of AscoGraph, in which
each action block header had a different, randomly assigned
colour.



In our new model, header colours signify (1) hierarchy and
(2) filters. Unless a block header’s colour is overridden by a
filter highlight, it will correspond to the block’s hierarchical
level. First-order action groups have blue headers; afterwards
we vary the hue angle in 45 degree increments. Filter high-
light tones are purer and more saturated in order to clearly
distinguish them from default hierarchical colours.

Message circles are by default transparent white, regardless
of hierarchy. Once allocated into tracks, their colours also
change accordingly.

VIII. CONCLUSIONS AND FUTURE WORK

We evaluated the current design informally over two
phases. During the planning and implementation of the new
features, we consulted with the internal community of com-
posers and musicians using Antescofo at IRCAM. Their
suggestions proved useful in guiding our design. In terms
of feedback, there was a lot of enthusiasm over the space
saving and clarity provided by the new atomic action display
mode, whereas appreciation of the difference between stacking
algorithms was generally more gradual. This supports the
common insight that algorithm complexity is often unrelated
to design impact.

The second phase started with the announcement of the
new features on the public Antescofo forum6. This allowed
the improvements to be also informally validated by the
AscoGraph user-base.

In general, we have achieved increased visual integrity and
coherence through the stacking of action group blocks. The
most basic stacking method, First Fit, is the most easily read-
able option for scores of moderate depth. We also proposed
two increasingly efficient stacking algorithms, FFD and FFDT,
for scores containing larger concentrations of actions per
time unit where vertical growth is a concern. While superior
algorithms for space optimisation are technically conceivable
(possibly a metaheuristic scheme built on top of FFDT), the
present options were deemed appropriate for the practical
use and the allowed processing overhead of the AscoGraph
software.

We have also introduced a method of displaying related
messages on a single line, preserving group hierarchy. The
main advantages are time coherence and vertical compactness.
Finally, through the filtering function and the hierarchical
colour scheme, navigation through large scores has been found
to be drastically improved. All the while, view linking ensures
that the navigation process correlates smoothly over all three
main views: score code, piano roll, and action blocks.

In the future, we consider employing more techniques to
further refine the action view. At wide zoom levels, we might
implement block aggregation of neighbouring groups instead
of drawing them separately. Semantic zooming might also be
of help: in the broad view it is pointless to burden the scene
with textual detail.

6http://forumnet.ircam.fr/user-groups/antescofo/forum/topic/new-
ascograph-display-features-2/

Despite improvements, the AscoGraph model is not yet able
to visualise some highly dynamic structures in an Antescofo
score, such as dynamic durations, processes and more as
briefly discussed in section II. This points us away from
AscoGraph’s linear timeline, towards a more flexible model
that would accommodate all dynamic constructs in the action
language.

REFERENCES

[1] A. Cont, “Antescofo: Anticipatory Synchronization and Control of
Interactive Parameters in Computer Music.” in International Computer
Music Conference (ICMC), Belfast, Ireland, Aug. 2008, pp. 33–40.
[Online]. Available: http://hal.inria.fr/hal-00694803

[2] T. Coffy, J.-L. Giavitto, and A. Cont, “AscoGraph: A User Interface for
Sequencing and Score Following for Interactive Music,” in ICMC 2014
- 40th International Computer Music Conference, Athens, Greece, Sep.
2014. [Online]. Available: https://hal.inria.fr/hal-01024865

[3] M. R. G. Jacquemin, T. Coduys, “Iannix 0.8,” in Actes des Journées
d’Informatique Musicale (JIM 2012), 2012, pp. 107–115.

[4] G. A. A. Allombert, Myriam Desainte-Catherine, “Iscore: A system for
writing interaction,” in DIMEA ’08, 2008.

[5] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard, “Operational
semantics of a domain specific language for real time musician-computer
interaction,” Discrete Event Dynamic Systems, vol. 23, no. 4, pp. 343–
383, Aug. 2013. [Online]. Available: http://hal.inria.fr/hal-00854719

[6] J.-L. Giavitto, A. Cont, and J. Echeveste. Antescofo a not-
so-short introduction to version 0. x. [Online]. Available: http:
//support.ircam.fr/docs/Antescofo/AntescofoReference.pdf

[7] W. Aigner, “Visualizing time-oriented data: A systematic view.” Com-
puters and Graphics, vol. 31, pp. 401 – 409, 2007.

[8] R. Thöle, “Approximation algorithms for packing and scheduling prob-
lems,” Ph.D. dissertation, Christian-Albrechts-Universität zu Kiel, 2008.

[9] M. C. Riff, X. Bonnaire, and B. Neveu, “A revision of recent
approaches for two-dimensional strip-packing problems,” Eng. Appl.
Artif. Intell., vol. 22, no. 4-5, pp. 833–837, Jun. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.engappai.2008.10.025

[10] R. Harren and R. van Stee, “Improved absolute approximation ratios for
two-dimensional packing problems,” in PROCEEDINGS OF THE 12-TH
INTERNATIONAL WORKSHOP ON APPROXIMATION ALGORITHMS
FOR COMBINATORIAL OPTIMIZATION PROBLEMS (APPROX’09),
177–189, 2009.

[11] J. Mackinlay, “Automating the design of graphical presentations of
relational information,” Acm Transactions On Graphics (Tog), vol. 5,
no. 2, pp. 110–141, 1986.

[12] J. Coffman, E. G., M. R. Garey, D. S. Johnson, and R. E. Tarjan, “Perfor-
mance bounds for level-oriented two-dimensional packing algorithms,”
SIAM J. Comput., no. 9, pp. 808–826, 1980.

[13] J. C. Roberts, “State of the art: Coordinated and multiple views in
exploratory visualization,” in Fifth International Conference on Coor-
dinated and Multiple Views in Exploratory Visualization (CMV 2007).
IEEE, 2007, pp. 61–71.

[14] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” in IEEE Symposium on Visual Languages.
IEEE, 1996, pp. 336 – 343.

[15] E. Tufte, Envisioning Information. Graphics Press, 1990.

http://hal.inria.fr/hal-00694803
https://hal.inria.fr/hal-01024865
http://hal.inria.fr/hal-00854719
http://support.ircam.fr/docs/Antescofo/AntescofoReference.pdf
http://support.ircam.fr/docs/Antescofo/AntescofoReference.pdf
http://dx.doi.org/10.1016/j.engappai.2008.10.025

