Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed

Dimo Brockhoff 1, *
* Auteur correspondant
1 DOLPHIN - Parallel Cooperative Multi-criteria Optimization
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : Numerical black-box optimization problems occur frequently in engineering design, medical applications, finance, and many other areas of our society's interest. Often, those problems have expensive-to-calculate objective functions for example if the solution evaluation is based on numerical simulations. Starting with the seminal paper of Jones et al. on Efficient Global Optimization (EGO), several algorithms tailored towards expensive numerical black-box problems have been proposed. The recent MATLAB toolbox MATSuMoTo (short for MATLAB Surrogate Model Toolbox) is the focus of this paper and is benchmarked within the Black-box Optimization Benchmarking framework BBOB. A comparison with other already previously benchmarked algorithms for expensive numerical black-box optimization with the default setting of MATSuMoTo highlights the strengths and weaknesses of MATSuMoTo's cubic radial basis functions surrogate model in combination with a Latin Hypercube initial design in the range of 50 times dimension many function evaluations.
Type de document :
Communication dans un congrès
Congress on Evolutionary Computation (CEC 2015), May 2015, Sendai, Japan
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01157388
Contributeur : Dimo Brockhoff <>
Soumis le : jeudi 28 mai 2015 - 04:28:46
Dernière modification le : mercredi 25 avril 2018 - 15:42:45
Document(s) archivé(s) le : mardi 15 septembre 2015 - 07:22:26

Fichier

matsumotoCECpaper-authorversio...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01157388, version 1

Citation

Dimo Brockhoff. Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed. Congress on Evolutionary Computation (CEC 2015), May 2015, Sendai, Japan. 〈hal-01157388〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

154