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Abstract—We consider the problem of embedding a low-dimensional
set, M, from an infinite-dimensional Hilbert space to a finite-dimensional
space. Defining appropriate random linear projections, we construct a
linear map which has the restricted isometry property on the secant
set of M, with high probability for a number of projections essentially
proportional to the intrinsic dimension of M.

I. INTRODUCTION

In compressed sensing (CS), the restricted isometry property (RIP)
has been widely used to study the performance of explicit decoders
[1], [3] and, more generally, to study the existence of instance optimal
decoders for arbitrary models [4]. A matrix A ∈ Rm×n satisfies the
restricted isometry property on a general set S ⊂ Rn, if there exists
a constant 0 < δ < 1, such that for all x ∈ S,

(1− δ) ‖x‖22 6 ‖Ax‖22 6 (1 + δ) ‖x‖22 . (1)

For example, if A satisfies the RIP on the set S of 2s-sparse with
constant δ < 1/

√
2 then every s-sparse vector x is accurately and

stably recovered from its noisy measurements z = Ax+n by solving
the Basis Pursuit problem [2]. For more general low-dimensional
model Σ ⊂ Rn, one needs to show that the matrix A satisfies the
RIP on the secant set S(Σ) to ensure stable recovery [3]–[6].

In this finite dimensional setting, random matrices with indepen-
dent entries drawn from the centered Gaussian distribution with
variance m−1 are examples of matrices that satisfies the RIP with
high probability for many different low-dimensional models Σ in Rn:
sparse signals [1], low-rank matrices [5], or compact Riemannian
manifold [6]. In these scenarios, the RIP holds for a number of
measurements m essentially proportional to the dimension of Σ.

In this work, we are interested in constructing a finite-dimensional
linear map which has the RIP on low-dimensional signal models M
in an infinite-dimensional real Hilbert space H. These developments
are important, e.g., in CS to extend the theory to an analog setting [7]
and explore connections with the sampling of signals with finite rate
of innovation [8], and also in machine learning to develop efficient
methods to compute information-preserving sketches of probability
distributions [9].

II. A LINEAR EMBEDDING OFM IN Rm

In this section, H denotes a real Hilbert space with scalar product
〈·, ·〉 and associated norm denoted by ‖·‖.

A. Signal model with finite box-counting dimension

We consider here a signal model M ⊂ H and our goal is to
construct a linear map L : H → Rm that satisfies1

(1− δ) ‖x1 − x2‖ 6 ‖L(x1 − x2)‖2 6 (1 + δ) ‖x1 − x2‖ (2)
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1Remark that the “non-squared” RIP, as in (2), implies the “squared” RIP,
as in (1), with a RIP constant multiplied by 3.

for all pairs of vectors x1,x2 ∈ M. This is equivalent to show
that supy∈S(M)

∣∣‖L(y)‖2 − 1
∣∣ 6 δ where S(M) is the normalized

secant set:

S(M) =

{
y =

x1 − x2

‖x1 − x2‖

∣∣∣ x1,x2 ∈M,x1 6= x2

}
. (3)

We then make the following assumption on the “dimension” of
S(M).

Assumption II.1. The normalized secant set S(M) ofM has finite
upper-box counting dimension strictly bounded by s > 0.

Assumption II.1 means that there exists ε0 > 0 such that, for all
ε ∈ (0, ε0), S(M) can be covered by at most ε−s balls of radius ε.
We denote by T (ε) the set of centers of these balls. We remark that
if M is the set of k-sparse signals in an orthonormal basis in finite
dimension then s = 2k. However, our result is not restricted to this
example and extends, e.g., to low-dimensional manifolds in L2(R).

Let us highlight that other definitions of dimension exist. However,
in an infinite-dimensional Hilbert space, one should be careful
with the definition used. Indeed, there are examples of sets with
finite dimension (according to some definition) for which no stable
embedding exists (see, e.g., [11] for further details).

B. Construction of a linear map which has the RIP

Fix a resolution ε ∈ (0, ε0). Let Vε ⊂ H be the finite-dimensional
linear subspace spanned by T (ε) and (a1, . . . ,ad) be an orthonormal
basis for V . Draw m independent centered isotropic random gaussian
vectors α1, . . . ,αm ∈ Rd and set

li =
1√
m

m∑
k=1

αik ak ∈ V, for all i ∈ {1, . . . ,m}, (4)

where αik is the kth entry of αi. We define our linear map Lε : H →
Rm as x 7→ Lε(x) = (〈l1,x〉 , . . . , 〈lm,x〉)ᵀ.

Theorem II.2. There exist absolute constants D1, D2, D3 > 0 with
D1 < 1 such that if Assumption II.1 holds, then for any 0 < δ <
min(D1, ε0) and ρ ∈ (0, 1), if ε 6 δ/2 and

m > D2δ
−2 max {s log (D3/δ) , log (6/ρ)} , (5)

then supy∈S(M)

∣∣‖Lε(y)‖2 − 1
∣∣ 6 δ with probability at least 1− ρ.

The proof is based on a chaining argument such as used, e.g.,
in [6], [10] in a finite-dimensional ambient space. Also inspired
by a monograph of Robinson [11], we adapt their technique and
the construction of the linear map to handle signal models in an
infinite-dimensional Hilbert space [12]. Finally, let us acknowledge
the related work of Dirksen [13] where the ambient space is also
infinite-dimensional. The linear map L we propose does not appear
in [13] but a similar result to Theorem II.2 could be derived using
his generic result. However, our technique can handle structured
measurement processes and infinite-dimensional Banach spaces.
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