. Rauhut, Compressive sensing and structured random matrices, Theoretical Foundations and Numerical Methods for Sparse Recovery (Radon Series Comp. Appl. Math., deGruyter, pp.1-92, 2010.

. Cai, Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices, IEEE Transactions on Information Theory, vol.60, issue.1, pp.122-132, 2014.
DOI : 10.1109/TIT.2013.2288639

. Blumensath, Sampling and Reconstructing Signals From a Union of Linear Subspaces, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4660-4671, 2011.
DOI : 10.1109/TIT.2011.2146550

. Bourrier, Fundamental Performance Limits for Ideal Decoders in High-Dimensional Linear Inverse Problems, IEEE Transactions on Information Theory, vol.60, issue.12, pp.7928-7946, 2014.
DOI : 10.1109/TIT.2014.2364403

URL : https://hal.archives-ouvertes.fr/hal-00908358

E. J. Candès, Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements, IEEE Transactions on Information Theory, vol.57, issue.4, pp.2342-2359, 2011.
DOI : 10.1109/TIT.2011.2111771

. Eftekhari, New analysis of manifold embeddings and signal recovery from compressive measurements, Applied and Computational Harmonic Analysis, vol.39, issue.1, pp.67-109, 2015.
DOI : 10.1016/j.acha.2014.08.005

. Adcock, BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING, Forum of Mathematics, Sigma, vol.94840, 2013.
DOI : 10.1017/S0962492900002816

. Vetterli, Sampling signals with finite rate of innovation, IEEE Transactions on Signal Processing, vol.50, issue.6, pp.1417-1428, 2002.
DOI : 10.1109/TSP.2002.1003065

. Bourrier, Compressive Gaussian Mixture estimation, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.6024-6028, 2013.
DOI : 10.1109/ICASSP.2013.6638821

URL : https://hal.archives-ouvertes.fr/hal-00799896

. Mantzel, Compressed subspace matching on the continuum, Information and Inference, vol.4, issue.2, 2015.
DOI : 10.1093/imaiai/iav008

. Dirksen, Dimensionality Reduction with Subgaussian Matrices: A Unified Theory, Foundations of Computational Mathematics, vol.14, issue.1, p.2014
DOI : 10.1007/s10208-015-9280-x