A classification method for binary predictors combining similarity measures and mixture models

Seydou Nourou Sylla 1, 2, 3 Stéphane Girard 1 Abdou Ka Diongue 3 Aldiouma Diallo 2 Cheikh Sokhna 2
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 URMITE - Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes
URMITE - Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes
Abstract : In this paper, a new supervised classification method dedicated to binary predictors is proposed. Its originality is to combine a model-based classification rule with similarity measures thanks to the introduction of new family of exponential kernels. Some links are established between existing similarity measures when applied to binary predictors. A new family of measures is also introduced to unify some of the existing literature. The performance of the new classification method is illustrated on two real datasets (verbal autopsy data and handwritten digit data) using 76 similarity measures.
Type de document :
Article dans une revue
Dependence Modeling, 2015, 3, pp.240--255. <10.1515/demo-2015-0017>
Liste complète des métadonnées


https://hal.inria.fr/hal-01158043
Contributeur : Stephane Girard <>
Soumis le : vendredi 22 avril 2016 - 09:28:33
Dernière modification le : jeudi 5 mai 2016 - 21:54:36

Fichier

review_article_statistical2.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Seydou Nourou Sylla, Stéphane Girard, Abdou Ka Diongue, Aldiouma Diallo, Cheikh Sokhna. A classification method for binary predictors combining similarity measures and mixture models. Dependence Modeling, 2015, 3, pp.240--255. <10.1515/demo-2015-0017>. <hal-01158043v5>

Partager

Métriques

Consultations de
la notice

489

Téléchargements du document

82