J. L. Andrews and &. D. Mcnicholas, Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions, Statistics and Computing, vol.1, issue.4, pp.1021-1029, 2012.
DOI : 10.1007/s11222-011-9272-x

V. Batagelj and &. M. Bren, Comparing resemblance measures, Journal of Classification, vol.25, issue.2, pp.73-90, 1995.
DOI : 10.1007/BF01202268

F. B. Baulieu, A classification of presence/absence based dissimilarity coefficients, Journal of Classification, vol.34, issue.1, pp.233-246, 1989.
DOI : 10.1007/BF01908601

L. Bergé, C. Bouveyron, and &. S. Girard, Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data, Journal of Statistical Software, vol.46, issue.6, pp.1-29, 2012.
DOI : 10.18637/jss.v046.i06

N. Bouguila, D. Ziou, and &. J. Vaillancourt, Novel Mixtures Based on the Dirichlet Distribution: Application to Data and Image Classification, Machine Learning and Data Mining in Pattern Recognition, pp.172-181, 2003.
DOI : 10.1007/3-540-45065-3_15

C. Bouveyron and &. C. Brunet, Simultaneous model-based clustering and visualization in the Fisher discriminative subspace, Statistics and Computing, vol.20, issue.2, pp.301-324, 2012.
DOI : 10.1007/s11222-011-9249-9

URL : https://hal.archives-ouvertes.fr/hal-00492406

C. Bouveyron, M. Fauvel, and &. S. Girard, Kernel discriminant analysis and clustering with parsimonious Gaussian process models, Statistics and Computing, vol.22, issue.5, 2015.
DOI : 10.1007/s11222-014-9505-x

URL : https://hal.archives-ouvertes.fr/hal-00707056

C. Bouveyron, S. Girard, &. C. Schmid, and C. , High-Dimensional Discriminant Analysis, Communications in Statistics - Theory and Methods, vol.1, issue.14, pp.2607-2623, 2007.
DOI : 10.1214/aos/1176344136

URL : https://hal.archives-ouvertes.fr/inria-00548516

C. Bouveyron, S. Girard, and &. C. Schmid, High-dimensional data clustering, Computational Statistics & Data Analysis, vol.52, issue.1, pp.502-519, 2007.
DOI : 10.1016/j.csda.2007.02.009

URL : https://hal.archives-ouvertes.fr/inria-00548573

P. Byass, D. L. Huong, and &. H. Minh, A probabilistic approach to interpreting verbal autopsies: methodology and preliminary validation in Vietnam, Scandinavian Journal of Public Health, vol.30, issue.62, pp.3132-3169, 2003.
DOI : 10.1080/14034950310015086

G. Celeux and &. G. Govaert, Clustering criteria for discrete data and latent class models, Journal of Classification, vol.4, issue.4, pp.157-176, 1991.
DOI : 10.1007/BF02616237

URL : https://hal.archives-ouvertes.fr/inria-00075437

M. M. Dundar and &. D. Landgrebe, Toward an Optimal Supervised Classifier for the Analysis of Hyperspectral Data, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.1, pp.271-277, 2004.
DOI : 10.1109/TGRS.2003.817813

M. Fauvel, C. Bouveyron, and &. S. Girard, Parsimonious Gaussian process models for the classification of hyperspectral remote sensing images. Geoscience and Remote Sensing Letters, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203269

F. Forbes and &. D. Wraith, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering, Statistics and Computing, vol.94, issue.1, pp.971-984, 2014.
DOI : 10.1007/s11222-013-9414-4

B. C. Franczak, R. P. Browne, and &. D. Mcnicholas, Mixtures of Shifted AsymmetricLaplace Distributions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.6, pp.1149-1157, 2014.
DOI : 10.1109/TPAMI.2013.216

L. Goodman and &. W. , Measures of association for cross classifications, Journal of the American Statistical Association, vol.49, pp.732-764, 1954.

L. Goodman and &. W. , Measures of association for cross classifications II. Further discussion and references, Journal of the American Statistical Association, vol.54, pp.35-75, 1959.

M. Gönen and &. E. Alpaydin, Multiple kernel learning algorithms, Journal of Machine Learning Research, vol.12, pp.2211-2268, 2011.

Y. Guermeur, Combining Discriminant Models with New Multi-Class SVMs, Pattern Analysis & Applications, vol.5, issue.2, pp.168-179, 2002.
DOI : 10.1007/s100440200015

URL : https://hal.archives-ouvertes.fr/inria-00107869

Y. Guermeur, VC theory of large margin multi-category classifiers, Journal of Machine Learning Research, vol.8, pp.2551-2594, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00203093

T. Hastie, R. Tibshirani, and &. J. Friedman, The elements of statistical learning Springer series in statistics, 2009.

T. Hofmann, B. Schölkopf, &. A. Smola, and A. , Kernel methods in machine learning, The Annals of Statistics, vol.36, issue.3, pp.1171-1220, 2008.
DOI : 10.1214/009053607000000677

D. L. Huong, H. V. Minh, and &. P. Byass, Applying verbal autopsy to determine cause of death in rural Vietnam, Scand. J. Public Health, issue.62, pp.31-50, 2003.

Y. Lecun, L. Bottou, Y. Bengio, and &. P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

P. Jaccard, Etude comparative de la distribution florale dans une portion des Alpes et du Jura, Bull. Soc. Vaudoise Sci. Nat, vol.37, pp.547-579, 1901.

S. Lee and &. G. Mclachlan, Finite mixtures of multivariate skew t-distributions: some recent and new results, Statistics and Computing, vol.82, issue.4, pp.181-202, 2013.
DOI : 10.1007/s11222-012-9362-4

T. I. Lin, Robust mixture modeling using multivariate skew t??distributions, Statistics and Computing, vol.14, issue.3, pp.343-356, 2010.
DOI : 10.1007/s11222-009-9128-9

G. Mclachlan, Discriminant Analysis and Statistical Pattern Recognition, 1992.
DOI : 10.1002/0471725293

G. Mclachlan, D. Peel, and &. R. Bean, Modelling high-dimensional data by mixtures of factor analyzers, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.379-388, 2003.
DOI : 10.1016/S0167-9473(02)00183-4

P. Mcnicholas and &. B. Murphy, Parsimonious Gaussian mixture models, Statistics and Computing, vol.61, issue.3, pp.285-296, 2008.
DOI : 10.1007/s11222-008-9056-0

S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and &. K. Müllers, Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), pp.41-48, 1999.
DOI : 10.1109/NNSP.1999.788121

A. Montanari and &. C. Viroli, Heteroscedastic factor mixture analysis, Statistical Modelling, vol.10, issue.4, pp.441-460, 2010.
DOI : 10.1177/1471082X0901000405

T. B. Murphy, N. Dean, and &. E. Raftery, Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications, The Annals of Applied Statistics, vol.4, issue.1, pp.219-223, 2010.
DOI : 10.1214/09-AOAS279SUPP

E. Pekalska and &. B. Haasdonk, Kernel Discriminant Analysis for Positive Definite and Indefinite Kernels, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.6, pp.1017-1032, 2009.
DOI : 10.1109/TPAMI.2008.290

C. Seung-seok, C. Sung-hyuk, and &. C. Tappert, A survey of binary similarity and distance measures, Systemics, Cybernetics and Informatics, vol.8, pp.43-48, 2010.

J. Shawe-taylor and &. N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

B. C. Reeves and &. M. Quigley, A review of data-derived methods for assigning causes of death from verbal autopsy data, International Journal of Epidemiology, vol.26, issue.5, pp.1080-1089, 1997.
DOI : 10.1093/ije/26.5.1080

P. H. Sneath and &. R. Sokal, Numerical Taxonomy, 1973.
DOI : 10.1002/9781118960608.bm00018

S. Sylla, S. Girard, A. Diongue, A. Diallo, and &. C. Sokhna, Classification supervisée par modèle de mélange: Application aux diagnostics par autopsie verbale, 2014.

A. Tversky, Features of similarity., Psychological Review, vol.84, issue.4, pp.327-352, 1977.
DOI : 10.1037/0033-295X.84.4.327

F. Vilca, N. Balakrishnan, and &. C. Zeller, Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties, Journal of Multivariate Analysis, vol.128, pp.73-85, 2014.
DOI : 10.1016/j.jmva.2014.03.002

J. Wang, J. Lee, and &. C. Zhang, Kernel Trick Embedded Gaussian Mixture Model, Proceedings of the 14th International Conference on Algorithmic Learning Theory, pp.159-174, 2003.
DOI : 10.1007/978-3-540-39624-6_14

D. Wraith and &. F. Forbes, Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering, Computational Statistics & Data Analysis, vol.90, pp.61-73, 2015.
DOI : 10.1016/j.csda.2015.04.008

URL : https://hal.archives-ouvertes.fr/hal-01254178

Z. Xu, K. Huang, J. Zhu, I. King, and &. R. Lyu, A novel kernel-based maximum a posteriori classification method, Neural Networks, vol.22, issue.7, pp.977-987, 2009.
DOI : 10.1016/j.neunet.2008.11.005