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Abstract

Sliced Inverse Regression (SIR) is an effective method for dimen-
sionality reduction in high-dimensional regression problems. However,
the method has requirements on the distribution of the predictors that
are hard to check since they depend on unobserved variables. It has
been shown that, if the distribution of the predictors is elliptical, then
these requirements are satisfied. In case of mixture models, the el-
lipticity is violated and in addition there is no assurance of a single
underlying regression model among the different components. Our ap-
proach clusterizes the predictors space to force the condition to hold
on each cluster and includes a merging technique to look for different
underlying models in the data. A study on simulated data as well as
two real applications are provided. It appears that SIR, unsurpris-
ingly, is not capable of dealing with a mixture of Gaussians involving
different underlying models whereas our approach is able to correctly
investigate the mixture.

Keywords: Mixture models, inverse regression, sufficient dimension
regression.

1 Introduction

In multidimensional data analysis, one has to deal with a dataset made of n
points in dimension p. When p is large, classical statistical analysis methods
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and models fail. Supervised and unsupervised dimensionality reduction (d.r.)
techniques are widely used to preprocess high dimensional data retaining the
information useful to solve the original problem. Recently, more and more
investigations aim at developing non-linear unsupervised techniques to better
adapt to the complexity of our, often non-linear, world. A review is provided
in [28] concluding that even if the variety of non-linear methods is huge,
Principal Component Analysis (PCA) [23], despite its intrinsic limitations,
is still one of the best choices. PCA is not the best in specific cases (i.e.
when additional information on the structure of the data are available) but,
as expected, is rather general and can be easily controlled and applied. What
about the case of supervised d.r.? In unsupervised d.r. one is interested in
preserving all the information getting rid of the redundancies in the data.
In other words, the goal is to catch the intrinsic dimensionality of the data,
which is the minimum number of parameters needed to describe it [1, 15].
In supervised d.r., a response variable Y is given and the analysis aims at
providing a prediction (classification, when Y is categorical, or regression,
when Y is continuous). There is some additional information encoded in Y
of what we want to select in the data. Estimating the intrinsic dimensionality
is no more our goal since we are oriented by the information present in Y .

The regression framework is characterized by the assumption of a link
function betweenX and Y i.e. Y = f(X, ε), where ε is a random noise. In this
environment, it can be assumed that only a portion ofX is needed to correctly
explain Y . This is a reasonable assumption since data nowadays are rarely
tailored on the application and filled by too many details. If Y depends on
the multivariate predictor through an unknown number of linear projections
Y = f(XTβ1, . . . , X

Tβk, ε), the effective dimension reduction (e.d.r.) space
is what we are looking for [19]. It is defined as the smallest linear space
containing the information needed to correctly regress the function f . Under
the previous assumption, the e.d.r. space is spanned by β1, . . . , βk. Sliced
Inverse Regression (SIR) [19] has proven to achieve good results retrieving
a basis of the e.d.r. space. Recently, many papers focused on the complex
structure of real data showing that often the data is organized in subspaces,
see [6, 18] or [27] for a detailed discussion and references.

Here, our hypothesis is that the e.d.r. space is not unique all over the
data but varies through the components. We introduce a novel technique
to identify the number of e.d.r. spaces based on a weighted distance. With
this paper we try to give an answer to the question: Can SIR be as popular
as multiple linear regression? [9]. In Section 2, we briefly describe SIR and
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provide a discussion on the limitations of the method. The following Sec-
tion 3 is the core of our paper where our contribution, Collaborative SIR,
is introduced. The motivations and the main problem are described, some
asymptotic results are established under mild conditions. The simulation
study, Section 4, is where the performances of Collaborative SIR are shown
and analyzed on simulated specific test cases. The stability of the results
is detailed and commented. In Section 5, two real data applications are re-
ported showing the interest of this technique. A discussion and a conclusion
are finally drawn encouraging the community to improve our idea.

2 Sliced Inverse Regression (SIR)

2.1 Method

Back in 1991, SIR is introduced in [19] as a data-analytic tool : even if the per-
formance of computers and the capability to explore huge dataset increased
tremendously, SIR remains a useful tool for d.r. in the framework of regres-
sion. The visualization of high dimensional datasets is nowadays of extreme
importance because human beings are still, unfortunately, limited by a per-
ception which only allows us to display three dimensions at a time while the
capability to gather data is amazingly increasing. When p is large, a possi-
ble approach is to suppose that interesting features of high-dimensional data
are retrievable from low-dimensional projections. In other words, the model
proposed by Li is:

Y = f(XTβ1, . . . , X
Tβk, ε) (1)

where Y ∈ R is the response variable, X is a p-dimensional random vec-
tor with finite expectation, µ = E(X), and finite covariance matrix, Σ =
Cov(X). The noise ε is a random variable supposed to be independent of
X. If k � p the function f depends on k linear combinations of the original
predictors and the d.r. is achieved. The goal of SIR is to retrieve a basis of
the e.d.r. space. Under the Linearity Design Condition:

(LDC) E(XT b|XTβ1, . . . , X
Tβk) is linear in XTβ1, . . . , X

Tβk for any b ∈ Rp,

it has been shown [14] that the centered inverse regression curve is contained
in the k-dimensional linear subspace of Rp spanned by Σβ1, . . . ,Σβk. If we
consider a monotone transformation T of Y , the matrix Σ−1Γ is degener-
ated in any direction orthogonal to β1, . . . , βk, where Γ = Cov(E(X|T (Y ))).
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Therefore, the k eigenvectors corresponding to the k non zero eigenvalues
form a basis of the e.d.r. space. To estimate Γ, [19] used a slicing procedure
as candidate for T . Dividing the range of Y in H > 1 non-overlapping slices,
s1, . . . , sH , Γ can then be written as:

Γ =
H∑
h=1

ph(mh − µ)(mh − µ)T ,

where ph = P(Y ∈ sh) and mh = E(X|Y ∈ sh). The estimator Γ̂ can then be
defined by substituting ph,mh with the corresponding sample versions. The
range of Y can be divided either by fixing the width or the proportion of
samples ph in each slice. Through the paper we adopted the second slicing
strategy [9]. The k eigenvectors corresponding to the largest eigenvalues of
Σ̂−1Γ̂ are then an estimation of a basis of the e.d.r. space, where Σ̂ is the
usual sample covariance matrix.

2.2 Limitations

SIR theory is well established and comes fully equipped by asymptotic re-
sults [17, 24]. However, two main limitations affect the practical use of the
method:

• The inversion of the estimated covariance matrix Σ̂;

• The impossibility to check if the (LDC) holds.

When n ≤ p, the sample covariance matrix is singular, and when the variables
are highly correlated (e.g. in hyperspectral images) the covariance matrix is
ill-conditioned [4]. To compute the e.d.r. directions, the inversion of Σ̂
must nevertheless be achieved. Recently, many papers faced this problem
and provided solutions [10, 21, 25, 26, 29]. An homogeneous framework to
perform regularized SIR has also been proposed in [5] where, depending on
the choice of the prior covariance matrix, the above mentioned techniques
can be obtained and extended.

The (LDC), less studied in the literature, is yet the central assumption
of the theory and it depends on the unobserved e.d.r. directions, therefore it
cannot be directly checked [30]. It can be yet proved that, if X is elliptical
distributed, the condition holds. This ellipticity condition is much stronger
than (LDC) but easier to verify in practice since it does not depend on
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β1, . . . , βk. Good hope comes from a result of [16] that shows that, when the
dimension p tends to infinity, the measure of the set of directions for which
the (LDC) does not hold tends to zero. The condition becomes weaker and
weaker as soon as the dimension increases. The intuition comes from [13]
where the authors show that high dimensional dataset are nearly Gaussian
in most low dimensional projections. Since the (LDC) condition holds for
elliptical distributions, it is desirable to work in the direction that allows us
to use this property. Unfortunately, when X follows a mixture of elliptical
distributions, this property is not globally verified: [18], starting from an
idea of [20], proposed to clusterize the space to look locally for ellipticity
rather than globally while [8] introduced categorical predictors to distinguish
different populations. This is our very start, assuming X distributed from
a mixture model, we focus on decomposing the mixture and we extend the
basic model to improve SIR capability to explore complex datasets.

3 Collaborative SIR

First, we motivate and introduce in Subsection 3.1 the population version
of Collaborative SIR. Second, the different steps of the sample version are
detailed and an algorithm is outlined in Subsections 3.2–3.5. For sake of
simplicity, we focus on the case when k = 1 i.e. the effective dimension
reduction space is one-dimensional. Some extensions to k > 1 are discussed
in Subsection 5.3.

3.1 Population version

Recall that the underlying model of SIR through the whole predictors space
is Y = f(βTX, ε). When dealing with complex data, one could allow the un-
derlying model to change depending on the predictor space. Mixture models
provide a good framework to deal with such an hypothesis, considering the
data as realizations from a weighted sum of distributions with different pa-
rameters. As mentioned before, in such a case, there is no straightforward
way to check if the (LDC) holds. Let X be a p-dimensional random vec-
tor from a mixture model and be Z an unobserved latent random variable
Z ∈ {1, . . . , c}, where c is the number of components. Given Z = i, we have
the following model:

Y = fF (i)(β
T
F (i)X) + εi, (2)
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where Y is the random variable to predict, F is an unknown deterministic
function F : {1, . . . , c} → {1, . . . , D}, D ∈ N\{0}. The functions fj : R→ R,
j = 1, . . . , D are unknown link functions between βTj X and Y . Finally, εi
are random errors, i = 1, . . . , c, i.e. each component is allowed to have a
different related error.

Under model (2), D is the number of different e.d.r. spaces. The goal
is to find a basis of the D one-dimensional spaces spanned by β1, . . . , βD.
The number D (D ≤ c) of e.d.r. spaces is unknown and the link function
may change depending on the component. Function F selects the underlying
model for the specific component. It is assumed that the (LDC) holds in
each component:

(LDC) ∀i = 1, . . . , c, E(XT b|XTβF (i), Z = i) is linear in XTβF (i) for any b.

Given Z = i, we define the mean µi = E(X|Z = i), the covariance matrices
Σi = Cov(X|Z = i) and Γi = Cov(E(X|Y, Z = i)). Hence, the eigenvector
bi corresponding to the highest eigenvalue of Σ−1i Γi, is a basis of the e.d.r.
space: Span{bi} = Span{βF (i)} from SIR theory [19]. If F : {1, . . . , c} →
{1, . . . , D} is known, then the inverse image of the elements j ∈ {1, . . . , D}
can be defined:

F−1(j) = {i ∈ {1, . . . , c} such that F (i) = j}.

Since F is not supposed to be injective, an e.d.r. direction βi may be as-
sociated with several components. Suppose that the set {bi, i ∈ F−1(j)} is
observed. Given the proximity criteria between two unit vectors a and b:

m(a, b) := cos2(a, b) = (aT b)2, (3)

the “most collinear vector” to the set of directions {bi, i ∈ F−1(j)} is the
solution of the following problem:

max
v∈Rp,‖v‖=1

∑
i∈F−1(j)

m(v, bi) = max
v∈Rp,‖v‖=1

∑
i∈F−1(j)

(vT bi)
2

= max
v∈Rp,‖v‖=1

vT
( ∑
i∈F−1(j)

bib
T
i

)
v

= max
v∈Rp,‖v‖=1

vT (BjB
T
j )v,

where Bj is the p × |F−1(j)| matrix defined by Bj := [bi,i∈F−1(j)]. Using
Lagrange multipliers, it is easily shown that v is the eigenvector of the matrix
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BjB
T
j associated with the largest eigenvalue. The following lemma motivates

this argument.

Lemma 1. Assuming the (LCD) and model (2), for all j = 1, . . . , D, the
eigenvector β̃j associated to the unique non-zero eigenvalue of the matrix
BjB

T
j is collinear with βj.

Proof. For each j = 1, . . . , D and i ∈ F−1(j), bi is collinear with βj, that is
bi = αiβF (i), αi ∈ R \ {0}. Since Bj = [αiβi, i ∈ F−1(j)], we have:

BjB
T
j =

∑
i∈F−1(j)

α2
iβjβ

T
j = ‖α‖2βjβTj

which concludes the proof.

This lemma shows that β̃j is an e.d.r. direction for each j = 1, . . . , D and
the previous argument gives a strategy to estimate the directions βj based
on the proximity criteria (3).

Remark. If D = 1 then F−1(1) = {1, . . . , c}, the e.d.r. directions and the
link functions do not vary through all the mixture. This particular case is
addressed in [18].

3.2 Sample version: Z is observed, F and D known

Let {Y1, . . . , Yn} be a sample from Y , {X1, . . . , Xn} a sample fromX, {Z1, . . . , Zn}
a sample from Z. We suppose Z observed at this stage. Let Ci = {t such
that Zt = i} and ni = card(Ci), i = 1, . . . , c. We can now estimate for each
Ci the mean and covariance matrix:

X̄i =
1

ni

∑
t∈Ci

Xt, Σ̂i =
1

ni

∑
t∈Ci

(Xt − X̄i)(Xt − X̄i)
T ,

for each i = 1, . . . , c. To obtain an estimator for Γi, we introduce as in
classical SIR a slicing. For each Ci, we can define the slicing Ti of Yi into
Hi ∈ N \ {0} slices, i = 1, . . . , c. Let s1i , . . . , s

Hi
i be the slicing associated to

Ci, Γi = Cov(E(X|Y, Z = i)) can be written as:

Γi =

Hi∑
h=1

phi (m
h
i − µi)(mh

i − µi)T ,
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where phi = P(Y ∈ shi |Z = i), mh
i = E(X|Z = i, Y ∈ shi ). Let us recall that

µi = E(X|Z = i) and Σi = Cov(X|Z = i), as defined in Subsection 3.1.
Replacing phi ,m

h
i with the corresponding sample versions, it is possible to

estimate Γi as follows

Γ̂i =

Hj∑
h=1

p̂hi (m̂
h
i − X̄i)(m̂

h
i − X̄i)

T ,

m̂h
i =

1

nh,i

∑
t∈Ci

XtI[Yt ∈ sht ],

p̂hi =
nh,i
ni
,

nh,i =
∑
t∈Ci

I[Yt ∈ sht ],

where I is the indicator function. The estimated e.d.r. directions are then
b̂1, . . . , b̂c where b̂i is the major eigenvector of the matrix Σ̂−1i Γ̂i. This al-

lows us to estimate Bj and βj as B̂j = [b̂i,i∈F−1(j)] and with β̂j the major

eigenvector of B̂jB̂
T
j , j = 1, . . . , D.

Asymptotic results can be established similarly to [7]. We fix j ∈ {1, . . . , D}
and consider the sample {Xt, t ∈

⋃
i∈F−1(j) Ci} of size nj =

∑
i∈F−1(j) ni. The

following three assumptions are introduced:

• (A1) {Xt, t ∈
⋃
i∈F−1(j) Ci} is a sample of independent observations

from the single index model (2).

• (A2) For each i = 1, . . . , c, the support of {Yt, t ∈ Ci} is partitioned
into a fixed number Hi of slices such that phi > 0, h = 1, . . . , Hi.

• (A3) For each i = 1, . . . , c and h = 1, . . . , Hi, nh,i →∞ as n→∞.

Let us highlight that (A3) implies ni → ∞ for all i = 1, . . . , c and therefore
nj →∞.

Theorem 1. Under model (2), linearity condition (LDC) and assumptions
(A1)-(A3), we have:

(i) β̂j = βj +Op(1/
√
nj), where nj = min

i∈F−1(j)
ni;
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(ii) If, in addition ni = θijn
j, θij ∈ (0, 1) for each i ∈ F−1(j), then√

nj(β̂j − βj) converges to a centered Gaussian distribution.

Proof. (i) For each i ∈ F−1(j) and under the assumptions (LC), (A1)-(A3),

from the SIR theory [19], each estimated EDR direction b̂i converges to βj
at root nj rate: that is, for i ∈ F−1(j), b̂i = βj + Op(1/

√
nj). We then

have B̂jB̂
T
j = BjB

T
j + Op(1/

√
nj). Therefore, the principal eigenvector of

B̂jB̂
T
j converges to the corresponding one of BjB

T
j at the same rate: β̂j =

βj+Op(1/
√
nj). The estimated e.d.r. direction β̂j thus converges to an e.d.r.

direction at root nj rate.
(ii) The proof is similar to the one of [7], Theorem 2.

In the following paragraphs, a merging algorithm is introduced to infer the
number D based on the collinearity of the vectors bi and a procedure is given
to estimate the function F .

3.3 Sample version: D unknown, Z is observed and F

known

We assumed, so far, D known. To estimate D, a hierarchical merging proce-
dure is introduced based on the proximity measure (3) between the estimated
e.d.r. directions b̂1, . . . , b̂c. Let us note that a similar procedure has been used
in [12], Subsection 3.6 to cluster the components of the multivariate response
variable Y related to the same e.d.r. spaces.

Let V = {v1, . . . , v|V |} be a set of vectors in dimension p with associated
set of weights Ω = {w1, . . . , w|V |}. We define the quantity λ(V ) as

λ(V ) = max
v∈Rp

1

wV

|V |∑
i=1

wim(vi, v) such that ‖v‖ = 1,

where wV =
∑|V |

i=1wi is a normalizing constant. From an intuitive point of
view, the vector v maximizing λ(V ) is the most collinear vector to our set
of vectors V given the proximity criteria (3) and the set of weights Ω. It is

easily seen that λ(V ) is the largest eigenvalue of the matrix 1
wV

∑|V |
i=1wiviv

T
i .

In practice, to build the hierarchy, we consider the following iterative
algorithm initialized with the set A = {{b̂1}, . . . , {b̂c}}:
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While card(A) 6= 1,

• Let a, b ∈ A such that λ(a ∪ b) > λ(c ∪ d) for all c, d ∈ A,

• Set A := (A \ {a, b})
⋃
a ∪ b,

end.

In our applications, the weights are set equal to the number of samples in
each components, i.e. wi = ni, i = 1, . . . , c. At each step the cardinality of
the set A decreases merging the most collinear sets of directions, see Figure 1
for an illustration. The bottom up greedy algorithm proceeds as follows:

• First, the two most similar elements of A are merged considering all
the |A| × (|A| − 1) = c × (c − 1) pairs. For instance, b̂1 and b̂2 are
selected to be merged in Figure 1.

• In the following steps, the two most similar sets of vectors are merged,
considering all |A| × (|A| − 1) pairs in A. E.g., in the second step, we
have A = {{b̂1, b̂2}, {b̂3}, . . . , {b12}} in Figure 1.

Therefore, it is possible to infer the number D of underlying e.d.r. spaces an-
alyzing the values of λ in the hierarchy (see Figure 1 for an example) looking
for a discontinuity that will occur when two sets with different underlying
βj (i.e. non collinear) are merged. We automatically estimate D with the
following procedure:

• Draw a line from the first value of the graph (1, λ1) to the last (c, λc).

• Compute the distance between points in the graph and the line.

• Select the merging point maximizing that distance. D̂ := c−number of
merge selected.

Once achieved an estimation of D, denoted by D̂, the function F can be
estimated. Even if we used an automatic procedure, a visual selection of D̂
depending on the task and prior knowledge is strongly recommended.
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Figure 1: Left: Hierarchy built following the proximity criteria (3). Right:
Cost function λ(A), the number D of unknown e.d.r. directions decreases at
each step by one. D̂ := c−number of merge selected. In the above example
c = 12. The algorithm selects merge step 9 which corresponds to the correct
estimation of the parameter: D̂ = 3.
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3.4 Sample version: F unknown

For each node of the tree at level D̂, the “most collinear direction”, us-
ing (3), is computed. Solving the related D̂ diagonalization problems gives
β̂1, . . . , β̂D̂. In this paragraph, a procedure for the estimation F̂ of the func-
tion F is detailed.

Once the candidates β̂1, . . . , β̂D̂ are estimated, the whole dataset is con-
sidered to estimate F . Starting from i ∈ {1, . . . , ĉ}, the goal is to find
j ∈ {1, . . . , D̂} such that F (i) = j, under certain conditions. The D̂ covari-
ance matrices of the pairs (XT

t β̂j, Yt), t ∈ Ci, j ∈ {1, . . . , D̂} are considered.
The idea is to select the direction that best explains Yt, t ∈ Ci among the es-
timated directions β̂1, . . . , β̂D̂. Let us assume the fj functions to be “locally”
linear

• (A4): For all j = 1, . . . , D, fj can be approximated by a piecewise
linear function so that fj(X

T
t βj) = kiX

T
t βj, ∀t ∈ Ci, i ∈ F−1(j).

Lemma 2. Let j ∈ {1, . . . , D}. Under assumption (A4), the e.d.r. direction
βj is the vector minimizing the second eigenvalue of the covariance matrix of
the pairs (XT

t βs, Yt), s = 1, . . . , D, t ∈ Ci, i ∈ F−1(j).

Proof. We have

cov(XT
t βs, Yt) = cov(XT

t βs, kiX
T
t βj) =

(
βTs Σβs kiβ

T
s Σβj

kiβ
T
s Σβj k2i β

T
j Σβj

)
=

(
〈βs, βs〉 ki〈βs, βj〉
ki〈βs, βj〉 k2i 〈βj, βj〉

)
=

(
‖βs‖2 ki〈βs, βj〉

ki〈βs, βj〉 k2i ‖βj‖2
)

where the scalar product and the norm are induced by Σ. The characteristic
polynomial is given by

p(λ) = λ2 − λ(‖βs‖2 + k2j‖βj‖2) + k2j (‖βs‖2‖βj‖2 − 〈βs, βj〉2),

and has two real roots λ1 ≥ λ2. Cauchy-Schwarz inequality yields ‖βs‖2‖βj‖2−
〈βs, βj〉2 ≥ 0 and thus λ1 ≥ λ2 ≥ 0. Moreover, λ2 = 0 if and only if the equal-
ity holds. Since the βs, s = 1, . . . , D are linearly independent, it follows that
λ2 = 0 if and only if s = j.

In practice, for all fixed i ∈ {1, . . . , ĉ}, the vectors β̂j, j = 1, . . . , D̂ are the
candidates for (Xt, Yt), t ∈ Ci. Lemma 2 is stating that, under assumption
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(A4), the vector β̂j minimizing the second eigenvalue of the covariance matrix

of the pairs (XT
t β̂s, Yt), s = 1, . . . , D, t ∈ Ci is such that j = F (i). Here,

the link functions are supposed to be locally linear. If the functions are
approximately linear the estimation will work, but, in case of dramatic non
linearities the method may lead to unreasonable results. A possibility is to
resize the interval where we want to regress the functions and zoom until
we find a reasonable local behavior of the functions. It must be noted that,
in case where D is overestimated D̂ > D (e.g. due to instabilities in the
estimation of the direction in some components), we observed on simulated
data that the estimation of F mitigates this error often avoiding to select the
aberrant directions βj, j > D.

3.5 Estimation of Z via clustering

To estimate the latent variable Z the explanatory space X is partitioned us-
ing a k-means algorithm. It is worth noticing that we decided to use k-means
for simplicity and also to compare our results with [18], see Section 5. Several
other clustering procedures can be adopted, for instance High Dimensional
Data Clustering (HDDC) [3], a clustering method designed for high dimen-
sion. Twenty initial random centroids are chosen as initialization of k-means,
the one minimizing the sum of squares is retained.

4 Simulation study

We performed a study on simulated data, in order to test in a controlled
setting and evidence the weaknesses and strengths of the method. Two
aspects are of interest:

(A) Study the sensitivity to clustering (estimation of Z).

(B) Analyze the quality of the estimation of the e.d.r. space compared to
SIR performed independently in each cluster.

The first experiment is performed on a same dataset to investigate the ef-
fect of different initializations of k-means and how the quality of clustering
affects the result. In the second experiment, different simulated datasets are
analyzed to test the method under a variety of conditions.
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4.1 Test case A

To study the sensitivity to clustering, n = 2500 samples are drawn from
a Gaussian mixture model with uniform mixing proportions and c = 10
components. Each component follows a Gaussian distribution N (µi,Σi),
Σi = Qi∆iQ

t
i where Qi is a matrix drawn from the uniform distribution on

the set of orthogonal matrices and ∆i = diag{(p+ 1−k)/p)θi , k = 1, . . . , p},
i = 1, . . . , c. The parameter θi is randomly drawn from the standard uniform
distribution. To prevent too close centroids, each entry of µi is the result of
adding two samples from the standard uniform distribution. The projection
on the two first principal components of the considered mixture is reported
on Figure 2, where different colors represent different components. Data ap-
pear mixed and the clustering non-trivial. Clustering centroids are randomly
initialized 100 times, the iterations of k-means are limited to five to prevent
the clustering to converge. The number of clusters is supposed to be known.
The response variable Y is simulated as follows:

• For each i ∈ {1, . . . , c}, one of the two possible directions βj ∈ {β1, β2}
is randomly selected with probability 1/2.

• Yt = sinh(XT
t βj) + ε, for all t ∈ Ci, i ∈ F−1(j) where ε ∼ N (0, 0.12) is

an error independent of Xt.

The two e.d.r. spaces are randomly generated and orthogonalized: βT1 β2 = 0.
We are interested in the case where we insert in the same cluster samples
from different components. This is the case when we estimate Z by Ẑ such
that for some (t1, t2) we have Ẑt1 = Ẑt2 but Zt1 6= Zt2 .

For each of the 100 runs of k-means, the set of estimated directions by
Collaborative SIR {β̂F̂ (1), . . . , β̂F̂ (c)} is considered. The number of samples
in each slice is set to 250 resulting in H = 10 uniform slices. The aver-
age of the squared cosines (3) between the estimated and real directions
{βF (1), . . . , βF (c)} is computed according to Table 1.

SIR Collaborative SIR

1

c

c∑
i=1

cos2(b̂i, βF (i))
1

c

c∑
i=1

cos2(β̂F̂ (i), βF (i))

Table 1: Quality measures
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The 100 results are then averaged. The histogram of the percentage of
badly clustered samples is depiceted on Figure 3. In the cases where the
clustering has no error, the average of the quality measure is 0.90. Averaging
only on the runs of k-means with more than 10 percent of errors, the quality
measure decreases to 0.83. This shows that, even if an error on the estimation
of Z affects the solution, the influence is, empirically proved, not to be severe.
It must be noted that we obtain the worst results when we insert in the same
clusters samples with different underlying models: Ẑt1 = Ẑt2 but Zt1 6= Zt2
and there is no j such that Zt1 , Zt2 ∈ F−1(j). This is indeed the reason why
we extended SIR methodology.

4.2 Test case B

To investigate the strengths and limitations of the method, 100 different
mixtures of Gaussian models are generated. Different values of sample size
n, dimension p, number of components c and number of e.d.r. spaces D
were investigated. Only the case where n = 2500, p = 200, D = 2, c = 10
and βT1 β2 = 0 is displayed here. The response variable Y is generated as
in test case A for each of the 100 datasets. The same slicing strategy with
H = 10 is applied. We selected such dimension p to mimic the dimensionality
of hyperspectral satellite sensors that are of interest in future works. The
number of clusters is supposed to be known. Not surprisingly, as soon as
the dimension decreases, the performance of the algorithm are more and
more stable. Here, at dimension p = 50, the performance are still stable
and accurate. Analyzing on Figure 4 the histograms of the differences of
the average of the squared cosines (Table 1) between Collaborative SIR and
SIR, it is evident that Collaborative SIR is always improving the quality of
the estimation leading to a significant difference. The average and standard
deviation of the 100 quality measures are 0.50 ± 0.05 for SIR and 0.80 ±
0.07 for Collaborative SIR. Since the quality measure is bounded to one, a
relevant improvement is found using Collaborative SIR. The estimation D̂
of the number of e.d.r. spaces is displayed on Figure 5. The estimation is
concentrated around the true value, D = 2.

4.3 Comments on simulation results

In the simulations, the sensitivity to clustering and the effective gain in using
Collaborative SIR have been analyzed. Several tests changing the dimension
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Figure 2: Projection on the two first principal components of the considered
mixture, different colors represent different components.

Figure 3: Histogram of the percentage of badly clustered samples over 100
runs of k-means.
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Figure 4: Histogram of the differences between the quality measures (see
Table 1) of Collaborative SIR and SIR obtained over 100 different datasets.

Figure 5: Bar plot of frequencies of the number of estimated e.d.r. spaces D̂
over 100 different datasets. Here, the true value is D = 2.
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p and the collinearity of the βj’s were carried out. Non orthogonal e.d.r.
directions and multiple e.d.r. spaces (D = 2, 3) have been analyzed reporting
good results in case of orthogonality and non orthogonality of the βj’s. As
soon as the directions get collinear, our model is no more identifiable, despite
that, the results are not affected. In such a case, the different e.d.r. spaces
simply reduce to one.

Simulations are interesting but cannot cover the complexity of the real
applications. In the following, two real datasets where Collaborative SIR
shows its capabilities are discussed and analyzed.

5 Real data application

We show, in the following, two real applications where the number D of
different effective dimension spaces differs from one. Nevertheless, it must
be underlined that, for many different datasets, D = 1 was found. This
is extremely satisfying because it means that in those cases a single under-
lying model, Y = f(βTX, ε), is the best choice for the considered dataset.
First, the Horse-mussel dataset, that can be found in [18], is considered.
Second, a dataset composed of different parameters measured on galaxies is
investigated. Finally, a discussion on possible improvements, strengths and
limitations is drawn.

5.1 Horse-mussel dataset

The horse-mussel dataset X is composed of n = 192 samples of p = 4 nu-
merical measures of the shell: length, width, height and weight. A detailed
description can be found in [11]. The response variable Y to predict is the
weight of the edible portion of the mussel. To compare to [18], the dis-
crete response variable is transformed into a continuous variable Y := Y + ε,
ε ∼ N(0, 0.012). The clustering obtained by [18] into c = 5 clusters is adopted
and the number of slices is set to four: Hi = 4 for all i ∈ {1, . . . , 5}. The
following algorithm is used to analyze and compare SIR, cluster SIR and
Collaborative SIR:

(1) Randomly select 80% of X for training T and 20% for validation, V .

(2) Apply SIR, cluster SIR and collaborative SIR on the training.
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(3) Project and regress the functions using the training samples. Here, a
polynomial of degree 2 was used.

(4) Compute the Mean Absolute Relative Error (MARE) on the test:

MARE= 1
|V |
∑

Y ∈V
|Y−Ŷ |
Y

, where Ŷ is the prediction of Y .

We computed 100 different training and validation sets. The boxplots of
MARE associated with the three different methods are shown on Figure 6.
It must be noted that this dataset is low dimensional: p = 4. However it is
of interest that the number of e.d.r. spaces found is D̂ = 2. In Figure 8, the
data is decomposed into the two components and the regression of the two
link functions appears easier compared to the regression in Figure 7 where
the cloud of points associated with SIR is thicker and not well shaped. Using
different regression techniques (Gaussian kernel and polynomial regression),
the results do not change significantly. On this dataset, Collaborative SIR
performs better than SIR and cluster SIR. In addition, this result suggests
that two subgroups are present in the data.

5.2 Galaxy dataset

The Galaxy dataset is composed by n = 292, 766 different galaxies. Aberrant
samples have been removed from the dataset after a careful observation of the
histograms in each variable supervised by experts. The response variable Y
is the specific stellar formation rate. The predictor X is of dimension p = 46
and is composed of spectral characteristics of the galaxies. For all the tests,
the number of slices is set to H = 1000 and the number of samples in the
first H−1 slices is the closest integer to n/H. We applied Collaborative SIR
on the whole dataset to investigate the presence of subgroups and different
directions. After different runs and numbers c ∈ {2, . . . , 10} of clusters, we
observed two different subgroups (D̂ = 2) and hence directions β̂1, β̂2.

Best results are reported with ĉ = 5. The shapes of two nonlinear link
functions appear on the projected data, see Figure 9. Clouds are thick but
they show a very clear trend in the distributions. This dataset is a good
example of how, in high dimension, two families can be found in a dataset
using Collaborative SIR. The coefficients of the two estimated directions
β̂1, β̂2 are displayed on Figure 10. It is interesting to observe how some
variables are contributing in both linear combinations, but that there is also
a reasonable difference in four variables (variables 2, 3, 6 and 23). Let us note
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Figure 6: Boxplots of MARE for Collaborative SIR, SIR and Cluster SIR
using 100 different initializations.

Figure 7: Graph of Y versus the projection along the direction β̂ found by
SIR.
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Figure 8: Top: Graph of Y versus the projection along the first direction β̂1
found by Collaborative SIR. Bottom: Graph of Y versus the projection along
the second direction β̂2 found by Collaborative SIR. The estimated directions
β̂1, β̂2 are nearly orthogonal: cos2(β̂1, β̂2) = 0.01.

21



that, variable 40, found to be relevant for both directions, is often used to
estimate the specific stellar formation rate. Experts are working on a possible
physical interpretation of the results. Even if the link functions look similar,
we observe a significant difference in the coefficients of the two directions.
This could lead to a better understanding and designing of further analysis
of this kind of data.

5.3 Discussion on dimension k and the number of clus-
ters c

In the whole paper, we presented results for unidimensional e.d.r. spaces
(k = 1). It is worth noticing that the entire approach can be easily extended
to a higher value of k, common to all the e.d.r. spaces. To this end, k
should be estimated, which is a recurrent problem in SIR methodology [2, 19].
The graphical procedure introduced by [22] could be used for instance. It is
then sufficient to consider a proximity measure between the linear subspaces,
see [7] for a measure based on projectors. Our strategy can still be applied
leading to a hierarchical merging tree. In case the dimension k varies along
given mixture components, we suggest to set to zero the proximity between
the corresponding e.d.r. spaces. Let us also note that SIR is a method
to reduce dimensionality in order to “better” perform regression. When a
regression is performed, the visualization of the results is crucial, that is
one of the reasons for dimensionality reduction. If the dimension k is greater
than two, visualization is not possible. This explains why SIR and its variants
have mainly been applied with k = 1. Collaborative SIR is first dividing the
predictors space into clusters, it seems natural to assume that dimension k
locally would be smaller than globally. Considering k = 1 may not be a
severe restriction if a visualization is needed. Finally, another drawback of
increasing dimensionality is that the samples become more and more sparse
and may not cover enough the surface we want to regress. Different regression
techniques may then lead to dramatically different results.

We did not give an automatic way of selecting the number of clusters. In
SIR literature [18], this selection is translated into an optimization problem.
Nowadays, with the increasing capabilities of sensors, data are complex and
complicated and it is hard to define a general criteria, ignoring previous
knowledge, that could work for any kind of data. The number of clusters
is deeply connected with how we want to group elements, the same data
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can show two possible “correct” clusterings, depending on the task. Since
SIR and collaborative SIR are fast and simple techniques, the user, using
prior information, should orient the clustering and try different values for the
parameters and empirically check which is the most suitable for the purpose.
Developing flexible clustering capable of incorporating prior knowledge is one
of our interests.

6 Conclusion and future work

Sliced Inverse Regression is an interesting and fast tool to explore data in
regression, it is yet not so popular [9], but benefits from well established
theory and simple implementation. If the link function turns out to be linear,
SIR, not surprisingly, is outperformed by linear regression techniques. At the
opposite, in case of evidence of non linearities, linear regression techniques
force the model resulting in poor estimations. Collaborative SIR is meant to
deal with the increasing complexity of the datasets that statisticians are asked
to analyze. Often there is no reasonable criteria of gathering the samples,
resulting in dataset that are, at least, a mixture of different phenomena
and/or full of ambiguous samples. The hypothesis of having different families
with different underlying models gives flexibility not affecting tractability.
We encourage the community to improve our idea.
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[7] Marie Chavent, Stéphane Girard, Vanessa Kuentz-Simonet, Benoit Li-
quet, Thi Mong Ngoc Nguyen, and Jérôme Saracco. A sliced in-
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[22] Benôıt Liquet and Jérôme Saracco. A graphical tool for selecting the
number of slices and the dimension of the model in SIR and SAVE
approaches. Computational Statistics, 27(1):103–125, 2012.

[23] Karl Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(11):559–572, 1901.
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