L. Amsaleg, O. Chelly, T. Furon, S. Girard, E. Michael et al., Estimating Local Intrinsic Dimensionality, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.29-38, 2015.
DOI : 10.1145/2783258.2783405

URL : https://hal.archives-ouvertes.fr/hal-01159217

M. Pilar-barrios and S. Velilla, A bootstrap method for assessing the dimension of a general regression problem, Statistics & Probability Letters, vol.77, issue.3, pp.247-255, 2007.
DOI : 10.1016/j.spl.2006.07.020

L. Bergé, C. Bouveyron, and S. Girard, Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data, Journal of Statistical Software, vol.46, issue.6, pp.1-29, 2012.
DOI : 10.18637/jss.v046.i06

C. Bernard-michel, S. Douté, M. Fauvel, L. Gardes, and S. Girard, Retrieval of Mars surface physical properties from OMEGA hyperspectral images using regularized sliced inverse regression, Journal of Geophysical Research, vol.20, issue.2, p.114, 1991.
DOI : 10.1029/2008JE003171

URL : https://hal.archives-ouvertes.fr/inria-00276116

C. Bernard-michel, L. Gardes, and S. Girard, Gaussian Regularized Sliced Inverse Regression, Statistics and Computing, vol.5, issue.22, pp.85-98, 2009.
DOI : 10.1007/s11222-008-9073-z

URL : https://hal.archives-ouvertes.fr/inria-00180458

C. Bouveyron, S. Girard, and C. Schmid, High-dimensional data clustering, Computational Statistics & Data Analysis, vol.52, issue.1, pp.502-519, 2007.
DOI : 10.1016/j.csda.2007.02.009

URL : https://hal.archives-ouvertes.fr/inria-00548573

M. Chavent, S. Girard, V. Kuentz-simonet, B. Liquet, T. M. et al., A sliced inverse regression approach for data stream, Computational Statistics, vol.51, issue.22, pp.1129-1152, 2014.
DOI : 10.1007/s00180-014-0483-4

URL : https://hal.archives-ouvertes.fr/hal-00688609

M. Chavent, V. Kuentz, B. Liquet, and J. Saracco, A Sliced Inverse Regression Approach for a Stratified Population, Communications in Statistics - Theory and Methods, vol.5, issue.21, pp.3857-3878, 2011.
DOI : 10.1214/aos/1032526955

C. Chen and K. Li, Can SIR be as popular as multiple linear regression?, Statistica Sinica, vol.8, issue.2, pp.289-316, 1998.

F. Chiaromonte and J. Martinelli, Dimension reduction strategies for analyzing global gene expression data with a response, Mathematical Biosciences, vol.176, issue.1, pp.123-144, 2002.
DOI : 10.1016/S0025-5564(01)00106-7

R. Dennis, C. , and S. Weisberg, Applied regression including computing and graphics, 2009.

R. Coudret, S. Girard, and J. Saracco, A new sliced inverse regression method for multivariate response, Computational Statistics & Data Analysis, vol.77, pp.285-299, 2014.
DOI : 10.1016/j.csda.2014.03.006

URL : https://hal.archives-ouvertes.fr/hal-00714981

P. Diaconis and D. Freedman, Asymptotics of graphical projection pursuit. The Annals of Statistics, pp.793-815, 1984.

N. Duan and K. Li, Slicing Regression: A Link-Free Regression Method, The Annals of Statistics, vol.19, issue.2, pp.505-530, 1991.
DOI : 10.1214/aos/1176348109

K. Fukunaga, Introduction to statistical pattern recognition. Academic press, 2013.

P. Hall and K. Li, On almost linearity of low dimensional projections from high dimensional data. The Annals of Statistics, pp.867-889, 1993.

T. Hsing and R. J. Carroll, An asymptotic theory for sliced inverse regression. The Annals of Statistics, pp.1040-1061, 1992.

V. Kuentz and J. Saracco, Cluster-based Sliced Inverse Regression, Journal of the Korean Statistical Society, vol.39, issue.2, pp.251-267, 2010.
DOI : 10.1016/j.jkss.2009.08.004

URL : https://hal.archives-ouvertes.fr/hal-00547252

K. Li, Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association, vol.13, issue.414, pp.316-327, 1991.
DOI : 10.1214/aos/1176345514

L. Li, D. Cook, J. Christopher, and . Nachtsheim, Cluster-based estimation for sufficient dimension reduction, Computational Statistics & Data Analysis, vol.47, issue.1, pp.175-193, 2004.
DOI : 10.1016/j.csda.2003.10.017

L. Li and H. Li, Dimension reduction methods for microarrays with application to censored survival data, Bioinformatics, vol.20, issue.18, pp.3406-3412, 2004.
DOI : 10.1093/bioinformatics/bth415

B. Liquet and J. Saracco, A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches, Computational Statistics, vol.98, issue.1, pp.103-125, 2012.
DOI : 10.1007/s00180-011-0241-9

URL : https://hal.archives-ouvertes.fr/hal-00938090

J. Saracco, An asymptotic theory for sliced inverse regression, Communications in Statistics - Theory and Methods, vol.5, issue.9, pp.2141-2171, 1997.
DOI : 10.1214/aos/1176345514

L. Scrucca, Regularized Sliced Inverse Regression with Applications in Classification, Data Analysis, Classification and the Forward Search, pp.59-66, 2006.
DOI : 10.1007/3-540-35978-8_7

L. Scrucca, Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression, Computational Statistics & Data Analysis, vol.52, issue.1, pp.438-451, 2007.
DOI : 10.1016/j.csda.2007.02.005

M. Soltanolkotabi, E. Elhamifar, and E. J. Candes, Robust subspace clustering. The Annals of Statistics, pp.669-699, 2014.

J. Laurens, . Van-der-maaten, O. Eric, H. Postma, . Jaap-van-den et al., Dimensionality reduction: A comparative review, Journal of Machine Learning Research, vol.10, pp.1-4166, 2009.

W. Zhong, P. Zeng, P. Ma, S. Liu, and Y. Zhu, RSIR: regularized sliced inverse regression for motif discovery, Bioinformatics, vol.21, issue.22, pp.4169-4175, 2005.
DOI : 10.1093/bioinformatics/bti680

L. Zhu, Extending the Scope of Inverse Regression Methods in Sufficient Dimension Reduction, Communications in Statistics - Theory and Methods, vol.40, issue.1, pp.84-95, 2010.
DOI : 10.1080/03610920903350531