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Abstract To interact and cooperate with humans in

their daily-life activities, robots should exhibit human-

like “intelligence”. This skill will substantially emerge

from the interconnection of all the algorithms used to

ensure cognitive and interaction capabilities. While new

robotics technologies allow us to extend such abilities,

their evaluation for social interaction is still challenging.

The quality of a human-robot interaction can not be re-

duced to the evaluation of the employed algorithms: we

should integrate the engagement information that natu-

rally arises during interaction in response to the robot’s

behaviors. In this paper we want to show a practical ap-

proach to evaluate the engagement aroused during in-

teractions between humans and social robots. We will

introduce a set of metrics useful in direct, face to face

scenarios, based on the behaviors analysis of the hu-
man partners. We will show how such metrics are use-
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ful to assess how the robot is perceived by humans and

how this perception changes according to the behaviors

shown by the social robot. We discuss experimental re-

sults obtained in two human-interaction studies, with

the robots Nao and iCub respectively.

Keywords Engagement · Social Intelligence · Gazing ·
Joint Attention · Synchrony · Personal Robots

1 Introduction

The development of social robots focuses on the design

of living machines that humans should perceive as re-

alistic, effective partners, able to communicate and co-

operate with them as naturally as possible [13]. To this

purpose, robots should be able to express, through their

shapes and their behaviors, a certain degree of “intelli-

gence” [31]. This skill entails the whole set of social and

cognitive abilities of the robot, which makes the inter-

action “possible” in a human-like manner, through ex-

change of verbal and nonverbal communication, learn-

ing how to predict and adapt to the partner’s response,

ensuring engagement during interactions, and so on.

The development of such abilities, for a robotics re-

searcher, translates into the implementation of several

complex algorithms to endow the robot with differ-

ent cognitive and social capabilities: multimodal peo-

ple tracking [5], face recognition [79], gesture recogni-

tion [17], speech recognition [18,21], object learning [40],

motor skills learning [7], action synchronization [2,54],

just to name a few. Each algorithm or module is eval-

uated in the metric space of its specific problem. If we

limit ourselves at evaluating their performance or their

coordination, we make the mistake of evaluating their

efficiency as algorithms [59] rather than their capabil-

ity to obtain a desired effect once they are used in a
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Fig. 1: Typical human-robot interactions scenarios with the iCub robot [52].

human-robot interaction context. If all those modules

worked perfectly, would the robot be perceived as intel-

ligent? The answer is not granted, for example recent

studies showed that humans prefer to interact with a

“non-perfect” robot that makes mistakes and exhibit

some uncertainty or delays [63,1].

Evaluating the quality of the experiences with a

social robot is critical if we want robots to interact

socially with humans to provide assistance and enter

their private and personal dimension [67]. But how can

we evaluate whether a robot is capable of engaging a

human in social tasks? Do we have metrics to deter-

mine whether different robot behaviors can improve the

quality of such human-robot interaction? Most impor-

tantly, can we find good metrics that can be retrieved

by cheap sensors (e.g., a Kinect) and in “natural” inter-

action scenarios, without recurring to the use of invasive

measuring devices (e.g., eye-trackers or motion capture

systems)?

Measuring the quality of the experiences [57] in-

volving social robots can be a quite challenging task,
involving the assessment of several aspects of the in-

teraction, such as the user expectations, his feelings,

his perceptions and his satisfaction [23,46]. A charac-

terizing feature of the user experience is given by the

ability of robot to engage users in the social task. As

stated by [55]: “Engagement is a category of user ex-

perience characterized by attributes of challenge, pos-

itive affect, endurability, aesthetic and sensory appeal,

attention, feedback, variety/novelty, interactivity, and

perceived user control”. The paper will focus on en-

gagement as characterizing feature of the quality of

the experiences with social robots, defining it as “the

process by which individuals involved in an interac-

tion start, maintain and end their perceived connection

to one another” [65]. In direct, face-to-face scenarios,

measurable changes of the human partners behaviors

will reflect this engagement through both physiological

variations [51], as heart rate [77] or skin conductivity

changes [45], and movements [60], as synchronous and

asynchronous motions such as nodding [47], gazing [66,

58] or mimicry [11]. Such movements correspond to the

non-verbal body language that humans use to commu-

nicate each other [31,14]. In the light of this obser-

vation, it seems possible to infer the engagement of a

person involved in a social interaction with the robot

through an analysis of his non-verbal cues. With social

interactions we do not refer exclusively to cooperative

scenarios, in which, for instance, nodding or joint at-

tention can be seen as feedback given to the partners.

To some extent, the same holds to competitive and de-

ceptive interactions [72], where the dynamics of non-

verbal behaviors are still used as feedback to humans,

for instance, to communicate boring, misunderstand-

ings, rejections or surprise. In any case, variations of

non-verbal cues between study groups can inform about

the engagement of the partners involved in the social

task. This assumption is then very general and able to

include a large variety of social interactions and it be-

comes a powerful instrument to evaluate and, in some

cases, to manipulate the synergy between the peers.

Several social signals have been proposed in litera-

ture to study the engagement. Hall et al. [34] manip-

ulated nonverbal gestures, like nodding, blinking and

gaze aversion, to study the perceived engagement of the

human participants, retrieved by a post-experimental

questionnaire. Significant works focusing on engagement

during verbal interactions were proposed by Rich and

Sidner. In particular, in [58] manually annotated en-

gagement was analyzed through mutual and directed

gaze, and correlated with spoken utterances. In [66]

and [65], via manual labeling, gaze signals have been

used by the authors distinguishing between head nods

and quick looks; in [38], where the authors combined

different gaze behaviors, captured using eye tracker,

for conversational agents. Ivaldi et al. [39] also used

post- experimental questionnaires to evaluate engage-

ment, but obtained indirect measurements of engage-

ment through the rhythm of interaction, the directional

gaze and the timing of the response to robot’s stim-

uli, captured by the use of RGB-D data. In [60], en-

gagement is automatically evaluated from videos of in-
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teractions with robots, using visual features related to

the body posture, precisely to the inclination of the

trunk/back. Similar measures have been used to eval-

uate behaviors in medical contexts [12] using audio

features and video analysis [10] [62] [61].

In this paper we propose a methodology to evaluate

the engagement aroused during interactions between

social robots and human partners, based on metrics

that can be easily retrieved from off-the-shelves sensors.

Such metrics are principally extracted by static and dy-

namic behavioral analysis of posture and gaze, and have

been supporting our research activities in human-robot

interaction.

We remark that our study is focused on method-

ologies that do not require intrusive devices that could

make the human-robot interaction unnatural, such as

eye-trackers or wearable sensors. We choose to work

with cheap sensors like Kinects and microphones that

can be easily placed in indoor environments and are

easy to accept for ordinary people. These features are

important since we target real applications with users

that are not familiar with robotics. Users’ perception

and need is an element that must be taken into account

by the experimental and robotics setting [71].

2 Material and Methods

To evaluate the engagement, here we address direct,

face-to-face, interaction scenarios, where a robot is used

to elicit behaviors on humans. This is the case, for ex-

ample, of a robot playing interactive games with a hu-

man partner, or the case of a human tutoring the robot

in a cooperative or learning task. The choice of such

kind of scenarios, as in Figure 1, does not represent a

huge limitation on the validity and on the use of the pro-

posed methodology: many social interactions between

humans usually occur in similar conditions.

In this scenario, we assume the human standing in

front of the robot. An RGB-D sensor is placed close to

the robot, in the most convenient position to capture

(as much as possible) the environment and the inter-

acting partner. The information about the robot status

and behavior is continuously logged; at the same time,

the RGB-D sensor captures, synchronizes and stores

the data perceived about the environment and the hu-

man [3]. The human posture and his head movements

are tracked, according to the processing pipeline shown

in Figure 2. Such information is then statically and

dynamically analyzed to retrieve: body posture vari-

ation, head movements, synchronous events, imitation

cues and joint attention.

Fig. 2: The algorithm’s pipeline employed for the ex-

traction of social measures.

2.1 People Tracking

The presence, position and activity of people interact-

ing with the robot is processed by a posture track-

ing system based on the data captured by the RGB-D

sensor. The humans location and their body parts are

tracked in the visible range of the camera to extract

gestures, body movements and posture.

Precisely, the depth data perceived by the sensor

is processed through a background subtraction algo-

rithm [64]; from each point of the foreground, local fea-

tures are calculated and classified to assess to which

body part (among 31 possible patches) they belong.

Finally, through a randomized decision forest, a dense

probabilistic skeleton is obtained. Joints of the body are

calculated according to the position and the density of

each patch.

The tracking algorithm provides a complete map of

the body, characterized by the position and the orienta-

tion of 15 anatomical parts, including the two arms, the

two legs, the torso and the head. Concerning the latter,

the algorithm is not able to retrieve an accurate ori-

entation of the head: to accomplish this task, we need

a different, dedicated approach that we describe in the
following.

2.2 Head Movements

Once the presence of the human partner is found and

his body is tracked, the information about the head

pose can be extracted.

From the 3D information about the body of the per-

son interacting with the robot, the estimated position

of the head is back projected over the RGB image cap-

tured by the sensor, to obtain the coordinates in the

image space in which the face should appear. A rectan-

gular area of the camera image, centred on such coordi-

nates, is then cropped to retrieve the face, as shown in

Figure 3. A face tracking algorithm is then applied to re-

trieve the head pose: our face tracking implementation

is based on a Constrained Local Model approach [24].

This class of trackers is based on a statistical model

of the faces based on a set of constrained landmarks,
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Fig. 3: The face detection and the head pose extraction.

such as the face shape, its texture, its appearance. Such

landmarks are used to approximate the contour of the

face, the lips, the eyes, the nose. The algorithm tries to

adapt iteratively the shape defined by the landmarks

to find the best fit. The result of the algorithm is the

best fitting set of facial landmarks approximating the

actual face. From the facial landmarks, the orientation

of the whole head is calculated and integrated in the

full body model.

The head pose provides only an approximation of

the gazing direction, since it cannot capture the eyes

movements or their direction. However, it continues to

be an informative estimator in the case in which poten-

tial targets of the interactions are displaced respect to

the person’s field of view. In such scenarios, the objects

are located in a way that they are not visible unless the

participants turn their heads toward them, then they

are forced to turn the head toward the targets to gaze

them. In absence of high resolution cameras that could

provide more accurate images of the eyes, the head ori-

entation provides a fair estimate of the human gaze di-

rection. Most importantly, it does not require invasive

devices as wearable eye-trackers.

2.3 Static Analysis

We hereby extract and analyze the information related

to the posture and gaze of the human interacting with

the robot. Histograms are used to study the distribution

of the measured data.

Figure 4 shows the 2D histogram of the position of

each joint of a person while performing the “Jumping

jack” exercise. The time distribution of the joints/bodies

positions is conveniently represented as a heat map

overlapped with a snapshot of the person performing

such movement. In this exercise, the person jumps from

Fig. 4: The histogram heat map during the jumping jack

exercise. Red spots highlight the start/stop position of

each body articulation.

Fig. 5: The histogram heat map of a person’s head

movements. Peaks correspond to three different focuses

of attention, on the center, on the left and on the right.

Overlapped, the k-means classification of such data.

a standing position with the feet together and arms at

the sides of the body, to a position with legs spread wide

and hands over the head. The heat map shows hot spots

over the positions in which the body joints spend more

time. In particular, red spots depict the start/stop po-

sition of each joint during the jumping jack movement.

The heat map allows to capture with a simple visu-

alization the posture information in time, such as the

movement of the trunk and its stability. Also, it is able

to show the variability of the trajectories of arms and

legs.

A similar analysis can be done for the gaze. Figure 5

shows the 2D histogram of a person gazing to a tutor,
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Fig. 6: The evolution over time of the robot’s arm joint,

in red, overlapped to the head yaw movements of the

human, in blue. This highlights two synchrony events

between the pointing gesture of the robot and the gaz-

ing behavior of the human.

standing in front of him, and over objects on his two

sides. The resulting heat map is again a very conve-

nient visualization tool: it shows the focus of attention

of the person, highlighting the correspondent hot spots

of the head gazing towards the tutor and towards the

two objects. It must be noted that the gaze direction

is projected on the pitch-yaw plane of the head, since

the gaze is approximated by the head orientation as

described in Section 2.2.

One possible way to study the head movements is

by applying data mining algorithms. In the bottom-left

corner of Figure 5, we can see the three areas found ap-

plying a clustering algorithm – precisely k-means (k=3,

as the 3 hot spots). The information related to the clus-

ters, such as their average, barycenter, density and vari-

ance, can be used to extract useful descriptive features

of the gaze behaviors of the humans interacting with

the robot. The analysis of such signals can also provide

information about the head stabilization during fixa-

tion. As we will show in the next Section, the clusters

information can be used for example to compare the

outcome of different experimental conditions.

2.4 Dynamic Analysis

The histogram analysis of the head movements and of

the body posture gives only a partial description of the

human behaviors, because it does not capture the move-

ment dynamic.

The time analysis can be useful to individuate syn-

chronous events and phenomena occurring when the in-

teracting agents synchronize their actions. In particu-

lar it can capture causality, synchronous and delayed

events [27]. Figure 6 reports the elicitation of a gaze in

response to a robot attention cue: precisely, the robot

points its arm twice towards some objects. The figure

Fig. 7: The evolution over time of the robot’s arm joint,

in red, overlapped to the arm movements of the human,

in blue. This highlights a synchrony event in terms of

imitation, between the pointing gesture of the robot

and the pointing behavior of the human.

Fig. 8: The evolution over time of the robot’s head

yaw, in red, overlapped to the head yaw movements of

the human, in blue. This highlights several synchrony

events in terms of joint attention, between the head

movement of the robot and the gazing behavior of the

human.

plots in blue the yaw movement of the human head,

and in red the movement of the shoulder of a robot: we

can see that the head movement is induced by the robot

goal-directed action. Figure 7 shows in blue the behav-

ior of the shoulder of a person, and in red the same data

from the robot. The plot highlights how the robot fails

the first elicitation, while the human imitates it in the

second elicitation.

The time between the beginning of the robot’s arm

movement and the beginning of the human gaze can

be interpreted as a measure of the effectiveness of the

nonverbal communication abilities of the robot [9]. Hu-

mans could respond as fast as if they were communicat-

ing with another human, if the robot was readable and

“interactable” [39]. If the robot lacks in communication

abilities, humans could struggle on understanding the

communication cue, thus responding slower than in the

ideal case; this delay, if not controlled, can make the

response non-contingent. Lastly, humans may not re-
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Analysis Information
Focus of Attention
Clustering of gaze

Static Head stability
Head pose, variance
Body posture stability
Barycenter, bodies/joints pose, variance
Joint attention
Clustering of gaze, response times

Dynamic Synchrony
Response times, rhythm of interaction
Imitation
Response times, rhythm of interaction, variance

Table 1: Static and dynamic metrics for evaluating the

quality of dyadic and triadic face-to-face interactions.

spond at all, because of a complete inability of the robot

to communicate with nonverbal-behaviors or gestures.

The synchrony of human-robot movements and the

contingent response to reciprocal cues are critical fea-

tures for evaluating the quality of imitation and joint

attention [48,30]. Figure 8 highlights the joint atten-

tion elicited by the robot towards a human: in blue the

yaw head movement of the human, in red the robot’s.

Here, the robot is always able to elicit joint attention,

as there is a contingent response to each attention cue

– a gaze towards an object on the left or right.

Among the temporal features of an interaction, we

can account the rhythm of interaction [39] or the pace

of interaction [58]: this measure relates to the time be-

tween consecutive interactions. The more the pace of

human-robot interaction tends to the one of human-

human interaction, the more this interaction is per-

ceived as natural [35].

An important matter is the automatic discovery of

events, such as beginning and end of interactions. This

can be relatively easy from the robot’s point of view,

since its actions are typically determined by a state ma-

chine or some parametrized policy: it is trivial to get the

time of the perception events triggering a behavior. On

the contrary, it becomes trickier to retrieve the events

describing human behaviors from the flow of RGB-D

data. One possible way to discriminate easily between

activity and inactivity period is to analyze the time

spectrum of the joint trajectories, and threshold the

energy of such signals computed across a sliding win-

dow.

3 Case studies

The presented methods have been successfully employed

in two different human-robot interaction experiments.

Both experiments focused on a triadic interaction where

Fig. 9: The iCub robot learns about objects colors from

a human partner in a tutoring scenario.

the robot tried to engage the human partner during a

specific task. The first case study is a social teaching

experiment, where a human teaches the color of some

objects to the iCub humanoid robot [39]. In the second

case study, the Nao robot tries to elicit behaviors on

children affected by autism spectrum disorder and on

children in typical development. This section presents

the two studies and report on the results that were ob-

tained applying our evaluation methods to discriminate

between behaviors from different conditions in the task

and different groups.

3.1 Interactive Behaviors Assessment

In this scenario, the robot interacts with a human part-

ner to improve its knowledge about the environment.

The two peers stand in front of each other, as shown in

Figure 9. The robot can interrogate the human about

the objects on the table, to discover their color prop-

erties. A simple speech recognition system, based on a

fixed dictionary [59], is used to retrieve the verbal in-

formation from the human. The match between color

information and object is possible thanks to the shared

attention system: the robot is capable to select, among

the different objects, the one currently observed by the

human. The ability of the robot to retrieve the focus

of attention of the human is based on the estimation

of the partner’s head orientation provided by the head

tracking system. Remarkably, the head orientation is

not only used for the post-experiment evaluation of the

interaction, but it is used in runtime to provide to the

robot control system the information about the gaze of

the human partner. This way, the robot can gaze at the

same direction.
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Fig. 10: A schematic representation of the experimental

protocol to study the effect of the robot initiative in a

tutoring scenario. The teaching phase changes accord-

ing to the partner that begins the interaction: robot

initiative (RI) or human initiative (HI). In the verifica-

tion phase the robot always asks the human to chose

an object.

In this tutoring scenario, described in detail in [39],

the authors investigated whether the initiative of the

robot could produce an effect in the engagement of the

human partner. The experiments consisted in a teach-

ing phase, where the robot had to learn the colors of all

the objects, and a verification phase where it had to tell

to the human the colors of all the objects. The authors

manipulated the robot initiative in the teaching phase,

as shown in Figure 10.

Two conditions were tested. In a first condition (RI)

the robot initiates the interaction by selecting an ob-

ject, gazing at it, and interrogating the human about

its properties. In the second condition (HI) the human

decides which object to teach, by gazing at it once

the robot is ready. The experiments were performed

by 13 participants without previous interactions with

the robot: 7 people (26 ± 3 years old) in the RI case, 6

people (22 ± 1 years old) in the HI case.

Head movements have been analyzed with the meth-

ods discussed in the previous Section. Figure 11 shows

samples of the estimated gaze of some participants.

Both static and dynamic features related to the vali-

dation stage have been retrieved. The static analysis of

the gaze shows four hot spots in both conditions. These

Fig. 11: Examples of gaze behaviors during the exper-

iments. The superposition of human and robot gaze is

used to study the reaction time to the robot’s attention

stimuli. Each vertical bar marks the beginning of a new

interaction.

hot spots correspond to the head gazing over the robot

and over the three objects placed on the table. The dif-

ferences between the two conditions are highlighted by

the clustering of the data using the k-means algorithm,

as shown in Figure 12.

The dynamic analysis of the head movements show

statistical relevant differences between the two groups:

the reaction time in response to the robot attention

stimuli over an object in the verification stage is faster

if the robot initiates the interaction (p<0.005), rather

than if the human initiates. This result is confirmed

(p<1.5e-5) by the analysis of the pace of the interac-

tion, the time interval between consecutive robots at-

tention stimuli during the verification stage. The pace is

faster if robot manifests proactive behaviors, initiating

the interaction.

3.2 Autism Assessment

The proposed evaluation methodology has been used

in an interactive scenario to match differences between

children affected by Autism Spectrum Disorder (ASD)

and children in Typical Development (TD). In this as-

sessment scenario, described in detail in [6], a robot is

placed in front of the child and used as an instrument

to elicit joint attention. As shown in Figure 13, two im-

ages of a cat and of a dog conveniently placed on the

environment are used as targets for the attention for the

two peers. The RGB-D sensor provides to the robot the

capability to look at the child and, at the same time; it

stores all the information related to the behavior of the

children, paired and synchronized with the movements

of the robot.
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(a) Human leader condition

(b) Robot leader condition

Fig. 12: The heat maps of the human gaze (head yaw on

X-axis, pitch on Y-axis) in the two conditions (HI and

RI) highlights differences in the human gazing behavior.

We can observe four different areas of focus of attention:

the robot (in front of the human) and the three objects.

Their location was chosen to conveniently highlight the

three areas of gaze.

Fig. 13: A Nao robot tries to elicit joint attention over

two focus of attention in an interactive scenario.

The experiment is composed by three stages in which

the robot tries to induce joint attention increasing the

informative content it provides to the human. In the

first stage the robot gazes over the two focuses of at-

tention; then it gazes and points over them; finally it

Fig. 14: In the experimental protocol, the robot tries to

elicit joint attention in children in different conditions

that mix multimodal social cues: gazing, pointing and

vocalization.

gazes, points and vocalizes “look at the cat”, “look at

the dog”, as shown in Figure 14.

Thirty-two children have been chosen for the exper-

iments:

– Group ASD: 16 people (13 males, 5 females), 9.25±
1.87 years old.

– Group TD: 16 people (9 males, 6 females), 8.06 ±
2.49 years old.

In this case, head movements and posture have been

analyzed and compared between the two groups. Using

generalized linear mixed models, we found a significant

higher variance of the yaw movements in TD children

rather than in the children with ASD (b = 1.66, p =

0.002). The analysis showed also a significant effect on

the yaw movements in accord to the induction modali-

ties used to stimulate Joint Attention: higher variance

has been found in vocalizing + pointing compared to

pointing (b = 1.52, p <0.001) and compared to gaz-

ing only (b = 1.55, p <0.001). At the same time, pitch

movements analysis revealed a lower variance in TD

children (b = -0.84, p = 0.019) rather than children

affected by ASD.

As highlighted in Figure 15, both the heat maps of

the head pitch and yaw movements show a central hot

spot: this area represents the gaze of the child towards

the robot. The two lobes corresponding to the two fo-

cuses of attention on the sides of the room are less high-

lighted in ASD children rather than in TD children. An

analysis of the clusters obtained using k-means on the

TD children data shows that both left and right direc-

tions gathered 30.2% of all the occurrences. Applying

the same k-means model to ASD children data shows

that left and right represented just 8.72% of all the oc-

currences (Fisher’s exact test, p = 2.2×10−16): during
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(a) Head movements in TD condition

(b) Head movements in ASD condition

Fig. 15: The heat maps of the children head yaw (on

X-axis) and pitch (on Y-axis) in the two conditions

highlights differences on their behavior: ASD children

present a lower response to the elicitation and less sta-

bility of their gazing towards the robot.

the Joint Attention task, TD children gazed over the

focus of attention placed on the room 4.6 times more

frequently during than the children with ASD (95%

Confidence; Interval: 4.4-4.6). Those results highlight

an higher response to the robot’s elicitation by children

in typical development, while less stability on the gaz-

ing is found in ASD children.

A similar analysis has been performed using the

body pose, Figure 16, and body posture data, Figure 17.

In particular, the displacements of each child from the

zero position shown a higher stability in TD children:

using multivariate regression, the pose variance was sig-

nificantly lower than in ASD children, within all axes

(x, estimates = 28.1, p = 0.001; y, estimates = 7, p =

0.006; z, estimates = 12, p = 0.009). A similar behavior

has been found from the analysis of body posture data,

considering the pitch and the yaw of the trunk. Also, in

this case, ASD children data results less stable than TD

children data: posture variance was significantly lower

in the TD children than in ASD children, within all

axes (x, estimates = 13.9, p = 0.0016; y, estimates =

(a) Trunk pose in TD condi-
tion

(b) Trunk pose in ASD con-
dition

Fig. 17: Heat maps of the body pose of the children in

the two conditions highlight differences among the two

groups: ASD children posture is less stable than in TD

children.

9.2, p = 0.016; z, estimates = 1.6, p = 0.003). Such

results highlight lower stability of the body posture in

ASD children rather than in TD children.

4 Discussion

We proposed in this paper a methodology for analyzing

the engagement between humans and social robots in

direct, face-to-face, interactive scenarios. The method-

ology is based on an evaluation of the engagement aroused

by a robot during the interaction, focusing on the non-

verbal behaviors expressed by the human partner. Both

static and dynamic interaction cues have been consid-

ered, as they can be used to extract different meaningful

measures. The ones described in Section 2 were able to

characterize different aspects of the social interaction

between humans and robots in two different use cases.

In both scenarios, the human and the robot estab-

lished a mutual communication. In such contexts, a

correct comprehension and proper use of nonverbal be-

haviors are essential tools to achieve an “optimal” in-

teraction: to provide readable behaviors, and to arouse

on human partners the illusion of a social intelligence.

The importance of nonverbal behaviors has been high-

lighted by developmental sciences [50]. Toddlers learn

about the world in a social way. They develop commu-

nication skills through nonverbal cues, and such skills

gradually evolve together with verbal language [70]. Im-

itation, joint-attention, gesticulation, synchrony are all

learned in the very first stages of childhood develop-

ment, and seem to be pivotal traits of the developmen-

tal process [69,43]. In adulthood, those become semi-

automatic, almost involuntary behaviors, influenced by

the culture, used in daily communications, eventually

in combination with spoken language to reinforce it or

to completely alter its meaning.



10 Salvatore M. Anzalone et al.

(a) Displacement in TD condition (front) (b) Displacement in ASD condition (front)

(c) Displacement in TD condition (top) (d) Displacement in ASD condition (top)

Fig. 16: Heat maps of the trunk displacement from the zero position of the children in the two conditions highlight

differences among the two groups: ASD children’s position in the space is less stable than in TD children.

The measurement of nonverbal signals during in-

teractions with robots can provide information about

the engagement between pairs [27]. The static analysis

of the movements of the body articulations can reveal

how humans respond to the robot stimuli, if they re-

spond as engaged partners or not. The analysis of the

gaze behavior can be used to model the attention sys-

tem of the human partner and improve joint attention.

The dynamic analysis can be used to study the motor

resonance, synchrony of movements, and can improve

imitations and gestures. A robot capable to capture the

attention of the human partner should leverage all those

nonverbal cues to increase the engagement.

4.1 A practical set of measures

Similar measures can be retrieved using motion cap-

ture systems. However, usually such systems use marker

based technologies: they require passive or active bea-

cons that should be worn by the user. This do not only

increase the complexity of the system, but they crit-

ically reduces the naturalness of the interaction. The

proposed system, instead, is based on a simple RGB-D

camera, a marker-less technology that can be still used

to track human movement [33,4]. Despite its lower res-

olution, this system allows researchers to explore the

engagement in very natural scenarios, without the re-

strictions and the complexity imposed by wearable de-

vices and marker holders.

While such measures have been developed to enable

studies in naturalistic settings, those can be aggregated

with the features obtained from physiological responses

of the participants in specially designed experiments

during which participants would forget the existence

of worn sensors, to establishing natural interactions as

much as possible. In such case, it would be possible to

capture a larger dynamic of possible interactions and,

at the same time, to study the neurophysiological bases

of the engagement [28,76].

Several researches in social robotics make use of

post-experiment questionnaires to gather information

about the engagement after the experiments [42,41].

Unfortunately, while quick and easy to analyze, ques-

tionnaires can be strongly affected by several kind of bi-

ases [22]. Without being exhaustive, it is possible to find

at least three important sources of errors in question-

naires: their design, the experimental subjects, and the

experimenter. The design of the questionnaire can in-

troduce artifacts due to complexity, ambiguity or speci-

ficity of the questions, or due to the number, too few

or too many, of the answers’ options (question word-

ing [56]). The subjects can also introduce errors, be-

cause of their unconscious will to be positive experi-

mental subjects and to provide socially desirable re-

sponses (response bias [32]). Lastly, the researchers can

also be a source of error with their tendency to inter-

pret the answers as a confirmation of their hypothesis

(confirmation bias [53]). The measures presented in this

paper can be used as a practical and objective tool to

explore the interaction with robots; they can also serve

as a complement to verify and eventually to reinforce

the results obtained by questionnaires and surveys.
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4.2 Readability of robot’s nonverbal cues

As social animals, humans are extraordinarily able to

infer information about their partners, and to build

models of the other and of their society. Nonverbal be-

haviors play a central role for making this inference [29].

In the first scenario, the presented metrics have been

used to show that humans react faster to the attention

cues of a proactive robot. It is possible to speculate

about the manipulation of the proactive behavior of

the robot to strengthen the engagement, regulate the

rhythm of interaction, and arouse in people the percep-

tion of social intelligence. The engagement, here, comes

essentially from the readability provided by the nonver-

bal cues. This result is confirmed also in the experiment

with children affected by ASD and TD children: a sig-

nificant difference in the two groups has been found

according to the amount of information expressed by

the nonverbal language of the robot. The more modali-

ties the robot uses to communicate its focus of attention

(from gazing, to gazing and pointing, to vocalizing), the

more its behavior becomes readable by the children.

The results obtained in the two case studies confirm

that the proposed measures are effective to study the

engagement. These metrics can be used by the robot

as a continuous, online feedback signal to evaluate (and

eventually manipulate) the engagement with the human

partner [5].

Future studies, however, will focus on the use of the

presented metrics in long term scenarios, in which the

novelty effect of the robot became less relevant with

time. In such settings people will interact day-by-day

with the robot becoming accustomed to its behaviors;

at the same time, human subjects could adapt their

own behaviors to the robot.

4.3 The “bias” of the anthropomorphic design

People have the natural tendency of projecting human-

like features on animals and inanimate objects. This is

the so called “anthropomorphism” [49]: as “social ma-

chines”, we seek in the unknown the same intelligence

patterns we are used to recognize in our peers, project-

ing our social intelligence. The robot is not perceived

as a machine: people have frequently the illusion that

the robot understands them, needs their help and wants

to communicate. During an interaction, the human can

naturally develop a feeling a “partnership” with the

robot [15]. The anthropomorphic design of the robots

can help the readability of their behaviors, facilitating

the interaction with human partners [16].

The robots used in our experiments, iCub and Nao,

have a baby-like, humanoid shape, which makes them

particularly suited for interaction but also introduces an

anthropomorphism bias in their human partners. These

robots communicate implicitly, just with their design,

very human-like traits such as a personality, emotions

and intention, and arouse a sense of co-presence [78].

The presented metrics can be used to study the per-

ceived engagement with other types of robots. They

should be as well able to highlight differences due to

different types of robot, even if it is difficult to make

predictions about the human reaction to non-humanoid

robots or “headless” robots. It would be very interest-

ing to see if our results with humanoids hold in the case

of androids and very human-like robots. A relational

analysis with respect to the uncanny valley could not

be so quite obvious [36,37]. Our intuition is that the

presented metrics should be able to highlight the dif-

ferent reactions and behaviors of the human partners

in all cases, but it is difficult to imagine how much the

results will diverge in similar experiments involving an-

droids (maybe revealing aversion effects).

We plan future experiments where we will use the

proposed metrics to assess the engagement between hu-

mans and different types of robots. Since the robot de-

sign practically impacts the span of their behaviors, we

will carefully ponder such a study, considering the lim-

its and capabilities of each robot and evaluating their

“social intelligence” on comparable tasks and desired

behaviors.

4.4 Are we measuring social intelligence?

Explaining the concept of “intelligence” is a non-trivial
problem [44]. Intelligence could be intuitively associ-

ated to the ability of humans to understand the world.

However, this definition still lacks of generality, due to

the observation of certain kinds of intelligence in the

living. The idea of intelligence in humans is context-

dependent. The psychometric approach to human intel-

ligence provides a definition according to three points of

view [68]: the abstract intelligence, as the ability of un-

derstanding and managing ideas and symbols; the me-

chanical intelligence, as the capability of working with

concrete objects; the social intelligence [20], as “ability

to get along with others” [73].

These definitions can be also employed in robotics,

with an interesting parallelism [25,26]. The abstract in-

telligence can be identified with the capability of the

robots of learning, reasoning using symbols, exploring

the knowledge and deducing new facts. This roughly

corresponds to the area of “Artificial Intelligence”. We

can refer mechanical intelligence to the perceptuo-motor

intelligence or body intelligence, the ability to interact
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with the physical world, to perceive it and to coor-

dinate proper actions on it. This kind of intelligence

comes from the robot embodiment. The robot should

be able to capture the relevant information from the

world and to link them to high level, abstract, symbols.

Reasoning on these symbols should take into account

the physical possibilities and capabilities provided by

the robot’s embodiment in its physical world.

Finally, social intelligence would refer to the ability

of robots to act socially with humans, to communicate

and interact with them in a human-like way, follow-

ing social behaviors and rules attached to their role, to

learn and adapt their own behaviors throughout their

lifetime, incorporating shared experiences with other

individuals into their understanding of self, of others,

and of the relationships they share [16]. The domain of

“Social Signal Processing” [74] aims to provide comput-

ers and robots with social intelligence, addressing to a

correct perception, accurate interpretation and appro-

priate display of social signals [75].

Expressing social intelligence is a key feature to achieve

an optimal interaction with humans. The perception of

“social intelligence” can be aroused if the robot is ca-

pable to exhibit social cues: accomplishing coherent be-

haviors, following social rules and communicating with

the humans in natural way.

The proposed methodology focuses on the analy-

sis of non-verbal human’s behaviors during interaction

with robots. We can speculate about the use of the pre-

sented metrics as a feedback of the social intelligence

perceived by the humans. From this point of view, re-

sponsive behaviors produced by a robot will induce in

the human partners a perception of intelligence that

can be quantitatively captured by the proposed mea-

sures by observing changes to the human’s reactions

to the robot social cues. This interpretation comes out

from the experiments we discussed.

In the first experiment, it is possible to speculate

about the social intelligence expressed by the robot and

perceived by the human partner, according to slight

changes on the plot of the interaction. Questionnaires

given to the participants of the experiments, reported

as more intelligent the robot that initiates the interac-

tion. In our view this can be attributed to the increased

readability of the proactive case, which makes the hu-

man “aware” of the robot status and creates the illusion

of a greater intelligence than in the other case. This illu-

sion could be one of the reasons for the human interact

notably faster.

The second experiment is remarkable since Autism

is characterized by a lack of social intelligence [8,19].

Here, the behaviors shown by the robot and, at the

same time, the plot of the interaction do not vary be-

tween the two conditions, so the differences are due

to the different ability of the children to recognize so-

cial cues. The proposed metrics to evaluate the engage-

ment highlight the lacking of social intelligence in the

ASD children, showing behavioral differences between

the two groups.

4.5 Conclusions

In this paper a set of metrics has been proposed to

evaluate the engagement between humans and robots

in direct, face to face scenarios. Those metrics have

been applied to study the interaction in two different

use cases, characterized by natural settings and differ-

ent objectives, and to assess effectively different human

responses to robot behaviors. In both the scenarios,

the metrics confirmed the importance of the study of

non-verbal cue to improve the interactions between hu-

mans and robots. Nevertheless, thanks to their easiness

of use in real world scenarios, due to employment of

non-intrusive sensors, such metrics present a strong po-

tential for scalability and a further generalization to

different applications and contexts. Limitations of the

metrics would be studied in future works, in particular

in long-term scenarios, in which human subjects will be

accustomed to the behaviors of the robot, and according

to the use of different robotic designs, anthropomorphic

and not.
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