D. Breitkreutz, L. Hlatky, E. Rietman, and J. Tuszynski, Molecular signaling network complexity is correlated with cancer patient survivability, Proceedings of the National Academy of Sciences, vol.109, issue.23, pp.9209-9221, 2012.
DOI : 10.1073/pnas.1201416109

K. Takemoto and K. Kihara, Modular organization of cancer signaling networks is associated with patient survivability, Biosystems, vol.113, issue.3, pp.149-54, 2013.
DOI : 10.1016/j.biosystems.2013.06.003

H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological Persistence and Simplification, Discrete & Computational Geometry, vol.28, issue.4, pp.511-544, 2002.
DOI : 10.1007/s00454-002-2885-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8802

F. Berger, P. Gritzmann, and S. De-vries, Minimum Cycle Bases for Network Graphs, Algorithmica, vol.40, issue.1, pp.51-62, 2004.
DOI : 10.1007/s00453-004-1098-x

M. Newman, Networks: an introduction, 2010.
DOI : 10.1093/acprof:oso/9780199206650.001.0001

D. Cvetkovi?, P. Rowlinson, and S. Simi?, An introduction to theory of graph spectra, 2010.
DOI : 10.1017/CBO9780511801518

B. Junker and F. Schreiber, Analysis of Biological Networks, 2008.
DOI : 10.1002/9780470253489

B. Macarthur and R. Sanchez-garcia, Spectral characteristics of network redundancy, Physical Review E, vol.80, issue.2, p.26117, 2009.
DOI : 10.1103/PhysRevE.80.026117

D. Horak, S. Maleti?, and M. Rajkovi?, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2009, issue.03, p.3034, 2009.
DOI : 10.1088/1742-5468/2009/03/P03034

R. Milo, S. Shen-orr, S. Itzkovitz, N. Kashtan, D. Chklovskii et al., Network Motifs: Simple Building Blocks of Complex Networks, Science, vol.298, issue.5594, pp.824-831, 2002.
DOI : 10.1126/science.298.5594.824

R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications. Upper Saddle River, 1993.

T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi et al., Cycle bases in graphs characterization, algorithms, complexity, and applications, Computer Science Review, vol.3, issue.4, pp.199-243, 2009.
DOI : 10.1016/j.cosrev.2009.08.001

K. Paton, An algorithm for finding a fundamental set of cycles of a graph, Communications of the ACM, vol.12, issue.9, pp.514-522, 1969.
DOI : 10.1145/363219.363232

R. Ghrist, Barcodes: The persistent topology of data, Bulletin of the American Mathematical Society, vol.45, issue.01, pp.61-75, 2008.
DOI : 10.1090/S0273-0979-07-01191-3

A. Cox and C. Der, Ras Family Signaling: Therapeutic Targeting, Cancer Biology & Therapy, vol.1, issue.6, pp.599-606, 2002.
DOI : 10.4161/cbt.306

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, The KEGG resource for deciphering the genome, Nucleic Acids Research, vol.32, issue.90001, pp.277-80, 2004.
DOI : 10.1093/nar/gkh063

J. Zhang and S. Wiemann, KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor, Bioinformatics, vol.25, issue.11, pp.1470-1471, 2009.
DOI : 10.1093/bioinformatics/btp167

D. Huang, B. Sherman, and R. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.1038/nprot.2008.211

P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang et al., Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.2498-504, 2003.
DOI : 10.1101/gr.1239303