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Abstract: Client-side apps (e.g., mobile or in-browser) need cloud data to be available in a
cache, for both reads and updates. The cache should use resources sparingly, be consistent and
fault-tolerant. The system needs to scale to high numbers of unreliable and resource-poor clients,
and large database. The SwiftCloud distributed object database is the first to provide fast reads
and writes via a causally-consistent client-side local cache. It is thrifty in resources and scales
well, thanks to consistent versioning provided by the cloud, using small and bounded metadata.
It remains available during faults, switching to a different data centre when the current one is
not responsive, while maintaining its consistency guarantees. This paper presents the SwiftCloud
algorithms, design, and experimental evaluation. It shows that client-side apps enjoy the high
performance and availability, under the same guarantees as a remote cloud data store, at a small
cost.

Key-words: geo-replication, causal consistency, eventual consistency, fault tolerance, client-side
applications



Écriture rapide, lecture dans le passé : cohérence causale
pour les applications localisées côté client

Résumé : Les applications localisées côté client, par exemple les applications mobiles ou les
applications dans le navigateur, ont besoin que les données du nuage soient disponibles dans un
cache local, aussi bien pour l’écriture que pour la lecture. Ce cache doit utiliser les ressources
avec économie, être cohérent, et tolérer les fautes. Le système doit passer à l’échelle d’un nombre
élevé de clients non fiables et disposant de peu de ressources, et d’une base de données de grande
capacité. La base de données répartie SwiftCloud est la première qui permet les lectures et les
écritures rapides et cohérentes par l’intermédiaire d’un cache situé côté client. Elle utilise les
ressources avec parcimonie, et passe bien à l’échelle, grâce au fait que le nuage sert des versions
cohérentes tout en ne nécessitant que des métadonnées de taille petite et bornée. Les données
restent disponibles pendant les fautes de réseau, car, quand le centre de calcul courant ne répond
pas, le cache peut passer à un nouveau centre de calcul sans violer ses garanties de cohérence.

Le présent papier présente les algorithmes, la conception et l’évaluation expérimentale de
SwiftCloud. Il montre que le système fournit aux applications côté client, à la fois des perfor-
mances et une disponibilité élevées, et à la fois les mêmes garanties qu’un stockage distant dans
le nuage, à un faible coût.

Mots-clés : géo-réplication, cohérence causale, cohérence finale, tolérance aux pannes, appli-
cations localisées côté client
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1 Introduction

Client-side applications, such as in-browser and mobile apps, are poorly supported by the current
technology for sharing mutable data over the wide area. App developers end up resorting to ad-
hoc application-level caching and buffering implementations, in order to avoid slow, costly and
sometimes unavailable round-trips to a data centre, but they cannot solve system issues such as
fault tolerance or session guarantees [40]. Recent application frameworks such as Google Drive
Realtime API [14], TouchDevelop [12] or Mobius [15] support client-side access at a small scale,
but do not provide system-wide consistency and/or fault tolerance guarantees. Algorithms for
geo-replication [4, 6, 19, 27, 28] or for managing database replicas on clients [9, 30] ensure some
of the right properties, but were not designed to support high numbers of client replicas.

Our thesis is that it is up to the system to provide client-side applications with correct and
scalable database access. The system should address the (somewhat conflicting) requirements
of consistency, availability, and convergence [29], and uphold them at least as well as a server-
side system. Concurrent updates (which are unavoidable if updates are to be always available)
should neither be lost nor cause the database to diverge permanently. Under these requirements,
the strongest possible consistency model is causal consistency with convergent objects (CRDTs)
[27, 29, 38].

Supporting thousands or millions of client-side replicas challenges classical assumptions, as
we explain in more detail later in this article: (i) To track causality precisely, per client,
creates unacceptably fat metadata; but the more compact server-side metadata management has
fault-tolerance issues. (ii) Full replication at high numbers of resource-poor devices would be
unacceptable [9]; but partial replication of data and metadata could cause anomalous message
delivery or unavailability. (iii) Unlike many previous approaches [4, 19, 27, 28], fault tolerance
and consistency cannot be solved by assuming that the application is located inside the data
centre (DC), or has a sticky session to a single DC [7, 40].

This work addresses these challenges. We present the algorithms, design, and evaluation of
SwiftCloud, the first distributed object store designed for a high number of replicas. It efficiently
ensures consistent, available, and convergent access to client nodes, tolerating failures. To enable
both small metadata and fault tolerance, SwiftCloud uses a flexible client-server topology, and
decouples reads from writes. The client writes fast into the local cache, and reads in the past
(also fast) data that is consistent, but occasionally stale. Our main contribution is a combination
of two techniques:

Cloud-backed support for partial replicas (Section 3) A DC serves a consistent view of the
database to the client, which the client merges with its own updates. In some failure situations,
a client may connect to a DC that happens to be inconsistent with its previous DC. Because the
client does not have a full replica, it cannot fix the issue on its own. We leverage “reading in the
past” to avoid this situation in the common case, and provide control over the inherent trade-off
between staleness and unavailability. More precisely, a client observes a remote update only if it
is stored in some number K ≥ 1 of DCs [30]; the higher the value of K, the more likely that a
K-stable version is in both DCs, but the higher the staleness.

Protocols with decoupled, bounded metadata (Section 4) Thanks to funnelling communi-
cation through DCs and to “reading in the past,” SwiftCloud leverages decoupled metadata [25]
separating tracking causality, which uses small vectors assigned in the background by DCs, from
unique identification, based on client-assigned scalar timestamps. Consequently, the metadata
is small and bounded in size. Furthermore, a DC can prune its log independently of clients,
replacing it with a summary of delivered updates.
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Figure 1: System components (Application processes, Clients, Data Centres), and their inter-
faces.

We implement SwiftCloud and demonstrate experimentally that our design reaches its ob-
jective, at a modest staleness cost. We evaluate SwiftCloud in Amazon EC2, against a port of
WaltSocial [39] and against YCSB [16]. When data is cached, response time is two orders of
magnitude lower than for server-based protocols with similar availability guarantees. With three
DCs (servers), the system can accommodate thousands of client replicas. Metadata size does not
depend on the number of clients, the number of failures, or the size of the database, and increases
only slightly with the number of DCs: on average, 15 bytes of metadata overhead per update,
compared to kilobytes for previous algorithms with similar safety guarantees. Throughput is
comparable to server-side replication, and improved for high locality workloads. When a DC
fails, its clients switch to a new DC in under 1000 ms, and remain consistent. Under normal
conditions, 2-stability causes fewer than 1% stale reads.

The paper is organised as follows. In Section 2, we state the problem by motivating the
system model and the requirements of client-side database access. In Section 3, we present the
design principles of SwiftCloud, and its concrete protocols in Section 4. In Section 5 we present
our experimental results, followed by discussion of related work in Section 6.

2 Problem overview

We consider support for a variety of client-side applications, sharing a database of objects that
clients can read and update. We aim to scale to thousands of clients, spanning the whole internet,
and to a database of arbitrary size.

Figure 1 illustrates our system model. A cloud infrastructure connects a small set (say,
tens) of geo-replicated data centres, and a large set (thousands) of clients. A DC has abundant
computational, storage and network resources. Similarly to Sovran et al. [39], we abstract a DC
as a powerful sequential process that hosts a full replica of the database.1 DCs communicate
in a peer-to-peer way. A DC may fail (e.g., due to disaster, power outage, WAN partition or
misconfiguration [5, 24]) and recover with its persistent memory intact.

Clients do not communicate directly, but only via DCs. Normally, a client connects to a
single DC; in case of failure or roaming, to zero or more. A client may fail and recover (e.g.,
disconnection while travelling) or fail permanently (e.g., destroyed phone), both without prior

1We refer to prior work for the somewhat orthogonal issues of parallelism and fault-tolerance within a DC
[4, 19, 27, 28].

Inria



Write Fast, Read in the Past: Causal Consistency for Client-side Applications 5

warning. We consider only non-byzantine failures.2

Client-side apps need to respond quickly and at all times, i.e., they require high availability
and responsiveness. This can be achieved by replicating data locally, and by synchronising
updates in the background. However, a client has limited resources; therefore, it hosts a cache
that contains only the small subset of the database of current interest to the local app. It should
not have to receive messages relative to objects that it does not currently replicate [36]. Finally,
control messages and piggy-backed metadata should have small and bounded size.

Since a client replica is only partial, there cannot be a guarantee of complete availability.
The best we can expect is partial availability, whereby an operation returns without remote
communication if the requested data is cached; and after retrieving the data from a remote node
(DC) if not. If the data is not there and the network is down, the operation may be unavailable,
i.e., it either blocks or returns an error.

2.1 Consistency with convergence

Application programmers and users wish to observe a consistent view of the global database.
However, with availability as a requirement, consistency options are limited [21, 29].

Causal consistency The strongest available and convergent model is causal consistency [2, 29].

Definition 1 (Causal order, causal consistency) Let an execution E be a set of sequences
(one per application process) of operation invocations with their return values. Operations a and
b are potentially causally-related in E, noted a→ b and called causal order, if:

1. An application process invoked b after it invoked a; or
2. Read b observed update a on the same object; or
3. There exists an operation c ∈ E such that a→ c→ b.

An execution E is causally consistent if every read operation in E observes all the updates that
causally precede the read, applied in some linear extension of causal order.

Informally, under causal consistency, every process observes a monotonically non-decreasing
set of updates that includes its own updates, in an order that respects the causality between
operations.3 The following well-known example illustrates [27]. In a social network, Bob sets
permissions to disallow his boss Alice from viewing his photos. Some time later, Bob posts
a questionable photo of himself. Without causal consistency, Alice may view the bad photo,
delivered before the new permissions. Under causal consistency, the change of permission is
guaranteed to be delivered before the post, and Alice cannot view the photo.

More generally, if an application process reads x, and later reads y, and if the state of x
causally-depends on some update u to y, then the state of y that it reads will include update
u. When the application requests y, we say there is a causal gap if the local replica has not
yet received u. A consistent system must detect such a gap, and wait until u is delivered before
returning y, or avoid it in the first place. If not, inconsistent reads expose both programmers
and users to anomalies caused by gaps [27, 28].

We extend causal consistency with multi-operation causal transactions. All the reads of such
a transaction come from a same database snapshot, and either all its updates are visible as a

2Possible scalable approaches for Byzantine clients include admission control, and the Fork Join Causal Con-
sistency protocol [30] to protect metadata, at the DC perimeter.

3This subsumes the well-known session guarantees [13].
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group, or none is [27, 28]. The snapshot is causally consistent, and the transaction’s updates are
considered to causally depend on all of the transaction’s reads.

Convergence Applications require convergence, which consists of liveness and safety properties:
(i) At-least-once delivery : an update that is delivered (i.e., is visible by the app) at some node,
is delivered to all interested nodes4 after a finite number of message exchanges; (ii) Confluence:
nodes that delivered the same set of updates read the same value.

Causal consistency does not guarantee confluence, as two replicas might receive the same
updates in different orders. For confluence, we rely on CRDTs, high-level data types with rich
confluent semantics [13, 38]. An update on a high-level object is not just an assignment, but is a
method associated with the object’s type. For instance, a Set object supports add(element) and
remove(element); a Counter supports increment() and decrement().

CRDTs include primitive last-writer-wins register (LWW) and multi-value register (MVR)
[18, 23], but also higher level types such as Sets, Lists, Maps, Graphs, Counters, etc. [1, 37–
39]. Registers are simple to implement [19, 27, 28], but cumbersome to use. For instance, the
implementation of LWW needs to store only the “last” update and has idempotent updates,
but looses some concurrent assignments. Higher level types, such as Counter or Set, do not lose
updates and are easier to use, but their implementation is more demanding. The implementation
of high-level objects is eased by adequate support from the system. For instance, an object’s
value may be defined not just by the last update, but also depend on earlier updates; causal
consistency is essential, ensuring that they are not lost nor delivered out of order. Safety also
demands at-most-once delivery, as high-level updates are often not idempotent (consider for
instance increment()).

Although each of these requirements may seem familiar or simple in isolation, the combination
with scalability to high numbers of nodes and database size is a new challenge.

2.2 Metadata design

Metadata serves to identify updates and to ensure correct delivery. Metadata is piggy-backed on
update messages, increasing the cost of communication.

One common metadata design assigns each update a timestamp as soon as it is generated
on some originating node. The causality data structures tend to grow “fat.” For instance,
dependency lists [27] grow with the number of updates [19, 28], whereas version vectors [9, 30]
grow with the number of clients. (Indeed, our experiments hereafter show that their size becomes
unreasonable). We call this the Client-Assigned, Safe but Fat approach.

An alternative delegates timestamping to a small number of DC servers [4, 19, 28]. This
enables the use of small vectors, at the cost of losing some parallelism. However, this is not
fault tolerant if the client does not reside in a DC failure domain. For instance, it may violate
at-most-once delivery. Consider a client transmitting update u to be timestamped by DC 1. If it
does not receive an acknowledgement, it retries, say with DC 2 (failover). This may result in u
receiving two distinct timestamps, and being delivered twice. Duplicate delivery violates safety
for many confluent types, or otherwise complicates their implementation [3, 13, 28]. We call this
the Server-Assigned, Lean but Unsafe approach.

Clearly, neither “fat” nor “unsafe” is satisfactory.

4 Interested nodes are those that replicate or cache the updated object.

Inria
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2.3 Causal consistency with partial replication is hard

Since a partial replica receives only a subset of the updates, and hence of metadata, it could miss
some causal dependencies [9]. Consider the following example: Alice posts a photo on her wall
in a social network application (update a). Bob sees the photo and mentions in a message to
Charles (update b), who in turn mentions it to David (update c). When David looks at Alice’s
wall, he expects to observe update a and view the photo. However, if David’s machine does
not cache Charles’ inbox, it cannot observe the causal chain a → b → c and might incorrectly
deliver c without a. Metadata design should protect from such causal gaps, caused by transitive
dependency over absent objects.

Failures complicate the picture even more. Suppose David sees Alice’s photo, and posts a
comment to Alice’s wall (update d). Now a failure occurs, and David’s machine fails over to a
new DC. Unfortunately, the new DC has not yet received Bob’s update b, on which comment
d causally depends. Therefore, it cannot deliver the comment, i.e., fulfill convergence, without
violating causal consistency. David cannot read new objects from the DC for the same reason.5

Finally, a DC logs an individual update for only a limited amount of time, but clients may
be unavailable for unlimited periods. Suppose that David’s comment d is accepted by the DC,
but David’s machine disconnects before receiving the acknowledgement. Much later, after d has
been executed and purged away, David’s machine comes back, only to retry d. This could violate
at-most-once delivery; some previous systems avoid this with fat version vectors [9, 30] or depend
on client availability [25].

3 The SwiftCloud approach

We now describe an abstract design that addresses the above challenges, first in the failure-free
case, and next, how we support DC failure. Our design applies the principles of consistency
algorithms for full replication systems to build a cloud-based support for partial client replicas.
Later, in Section 4, we present a concrete protocol implementing our design.

3.1 Causal consistency at full DC replicas

Ensuring causal consistency at fully-replicated DCs is a well-known problem [2, 19, 27, 28]. Our
design is log-based, i.e., SwiftCloud stores updates in a log and transmits them incrementally;
it includes optimisations, where the full log is occasionally replaced by the state of an object,
called checkpoint [9, 31]. We discuss checkpoints only where relevant.

A database version is any subset of updates, noted U , ordered by causality. A version maps
object identifiers to object state, by applying the relevant subsequence of the log; the value of
an object is exposed via the read API.

We say that a version U has a causal gap, or is inconsistent if it is not causally-closed, i.e.,
if ∃u, u′ : u → u′ ∧ u 6∈ U ∧ u′ ∈ U . As we illustrate shortly, reading from an inconsistent
version should be avoided, because, otherwise, subsequent accesses might violate causality. On
the other hand, waiting for the gap to be filled would increase latency and decrease availability.
To side-step this conundrum, we adopt the approach of “reading in the past” [2, 27]. Thus, a
DC exposes a gapless but possibly delayed state, noted V .

To illustrate, consider the example of Figure 2(a). Objects x and y are of type Set. DC 1

is in state U1 that includes version V1 ⊆ U1, and DC 2 in a later state V2. Versions V1 with

5Note that David can still perform updates, but they cannot be delivered, thus the system does not converge.
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x.add(1) x.add(3) 

V1 V2 

y.add(2) y.add(1) 

U1 

(a) Initial configuration

x.add(1) x.add(3) 

V1 V2 

y.add(2) y.add(1) 

x.add(4) 

UC 

read x 
{1,3} 

(b) Continuation from 2(a) to risky configuration

x.add(1) 
x.add(3) 

V1 V2 

y.add(2) y.add(1) 

x.add(4) 
read x 

{1} 

UC 

(c) Read-in-the-past: continuation from 2(a) to conservative configuration

Figure 2: Example evolution of configurations for two DCs, and a client. x and y are Sets; box
= update; arrow = causal dependence (an optional text indicates the source of dependency);
dashed box = named database version/state.

value [x 7→ {1}, y 7→ {1}] and V2 with value [x 7→ {1, 3}, y 7→ {1, 2}] are both gapless. However,
version U1, with value [x 7→ {1, 3}, y 7→ {1}] has a gap, missing update y.add(2). When a client
requests to read x at DC 1 in state U1, the DC could return the most recent version, x : {1, 3}.
However, if the application later requests y, to return a safe value of y requires to wait for the
missing update from DC 2. By “reading in the past” instead, the same replica exposes the older
but gapless version V1, reading x : {1}. Then, the second read will be satisfied immediately with
y : {1}. Once the missing update is received from DC 2, DC 1 may advance from version V1 to
V2.

A gapless algorithm maintains a causally-consistent, monotonically non-decreasing progres-
sion of replica states [2]. Given an update u, let us note u.deps its set of causal predecessors,
called its dependency set. If a full replica, in some consistent state V , receives u, and its depen-
dencies are satisfied, i.e., u.deps ⊆ V , then it applies u. The new state is V ′ = V ⊕ {u}, where
we note by ⊕ the log merge operator that unions the two logs, respecting causality (the operator
filters out duplicates, as we discuss in Section 4.1). State V ′ is consistent, and monotonicity is
respected, since V ⊆ V ′.

If the dependencies are not met, the replica buffers u until the causal gap is filled.

Inria
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3.2 Causal consistency at partial client replicas

As a client replica contains only part of the database and its metadata, this complicates consis-
tency [9]. To relieve clients of this complexity, we move most of the burden of managing gapless
versions to the DC-side full replica.

At any point in time, a client is interested in a subset of the objects in the database, called
its interest set. Its initial state consists of the projection of some DC’s state onto its interest set.
This is a causally-consistent state, as shown in the previous section. Client state can change,
either because of an update generated by the client itself, called an internal update, or because
of one received from a DC, called external. An internal update obviously maintains causal
consistency. If the same DC sends external updates with no gaps, then the client state remains
causally consistent.

More formally, let i ∈ DC denote DC identifiers and m ∈ C client identifiers with DC∩C = ∅.6

Consider some recent DC state, which we will call the base version of the client, noted VDC .
The interest set of client C is noted O ⊆ x, y, . . .. The client state, noted VC , is restricted to
these objects. It consists of two parts. One is the projection of base version VDC onto its interest
set, noted VDC |O. The other is the log of internal updates, noted UC . The client state is their
merge VC = VDC |O⊕UC |O. On cache miss, the client adds the missing object to its interest set,
and fetches the object from base version VDC , thereby extending the projection.

Base version VDC is a monotonically non-decreasing causal version (it might be slightly behind
the actual current state of the DC due to propagation delays). By induction, internal updates can
causally depend only on internal updates, or on updates taken from the base version. Therefore,
a hypothetical full version VDC ⊕ UC would be causally consistent. Its projection is equivalent
to the client state: (VDC ⊕ UC)|O = VDC |O ⊕ UC |O = VC .

This approach ensures partial availability. If a version is in the cache, it is guaranteed causally
consistent, although possibly slightly stale. If it misses in the cache, the DC returns a consistent
version immediately. Furthermore, the client replica can write fast, because it commits updates
without waiting, and transfers them to its DC in the background.

Convergence is ensured, because the client’s base version and log are synchronised with the
DC in the background.

3.3 Failover and causal dependencies

The approach described so far assumes that a client connects to a single DC. However, a client
can switch to a new DC at any time, in particular in response to a failure. Although each DC’s
state is consistent, an update that is delivered to one is not necessarily delivered in the other
(because geo-replication is asynchronous, to ensure availability and performance at the DC level),
which could potentially create a causal gap in the client.

To illustrate the problem, return to the example of Figure 2(a). Consider two DCs: DC 1

is in (consistent) state V1, and DC 2 in (consistent) state V2; DC 1 does not include two recent
updates of V2. Client C, connected to DC 2, replicates object x only; its state is V2|{x}. Suppose
that the client reads the Set x : {1, 3}, and performs update u = add(4), transitioning to the
configuration shown in Figure 2(b).

This configuration is risky, because if the client now fails over to DC 1, and the two DCs
cannot communicate, the system is not live:

6Where appropiate, we use simply DCand Cto refer to some DC and client, respectively.
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(1) Reads are not available: DC 1 cannot satisfy a request for y, since the version read by the
client is more recent than the DC 1 version, V2 6⊆ V1.

(2) Updates cannot be delivered (divergence): DC 1 cannot deliver u, due to a missing dependency:
u.deps 6⊆ V1.

Therefore, DC 1 must reject the client (i.e., withhold its requests) to avoid creating the gap in
state V1 ⊕ UC .7

3.3.1 Conservative read: possibly stale, but safe

SwiftCloud provides a solution to this problem. To avoid such gaps that cannot be satisfied, the
insight is to depend only on K-stable updates that are likely to be present in the failover DC,
similarly to Mahajan et al. [30].

A version V is K-stable if every one of its updates is replicated in at least K DCs, i.e.,
|{i ∈ DC | V ⊆ Vi}| ≥ K, where K ≥ 1 is a threshold configured w.r.t. expected failure model,
and DC is a set of all data centers. To this effect, our system maintains a consistent K-stable
version V Ki ⊆ Vi, which contains the updates for which DC i has received acknowledgements
from at least K − 1 distinct other DCs.

A client’s base version must be K-stable, i.e., VC = V KDC |O ⊕ UC |O, to support failover. In
this way, the client depends, either on external updates that are likely to be found in any DC
(V KDC ), or internal ones, which the client can always transfer to the new DC (UC).

To illustrate, let us return to Figure 2(a), and consider the conservative progression to Fig-
ure 2(c), assuming K = 2. The client’s read of x returns the 2-stable version {1}, avoiding the
dangerous dependency via an update on y. If DC 2 is unavailable, the client can fail over to DC 1,
reading y and propagating its update remain both live.

By the same arguments as in Section 3.2, a DC version V KDC is causally consistent and
monotonically non-decreasing, and hence the client’s version as well. Note that a client observes
its internal updates immediately, even if not K-stable.

Parameter K can be adjusted dynamically without impacting correctness. Decreasing it has
immediate effect. Increasing K has effect only for future updates, to preserve montonicity.

3.3.2 Discussion

The source of the above problem is an indirect causal dependency on an update to the object
that the client replica does not replicate (y.add(2) in our example). As this is an inherent
issue, we conjecture a general impossibility result, stating that genuine partial replication, causal
consistency, partial availability and timely at-least-once delivery (convergence) are incompatible.
Accordingly, the requirements must be relaxed.

Note that in many previous systems, this impossibility translates to a trade-off between
consistency and availability on the one hand, and performance on the other [17, 27, 39] By
“reading in the past,” we displace this to a trade-off between freshness and availability, controlled
by adjusting K. A higher K increases availability, but updates take longer to be delivered;8 in
the limit, K = N ensures complete availability, but no client can deliver a new update when some
DC is unavailable. A lower K improves freshness, but increases the probability that a client will
not be able to fail over, and that it will block until its original DC recovers. In the limit, K = 1

7The DC may accept to store client’s updates to improve durability, but it cannot deliver them or offer cache
updates to the client.

8The increased number of concurrent updates that this causes is not a big problem, thanks to confluent types.
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is identical to the basic protocol from Section 3.2, and is similar to blocking session-guarantee
protocols [40].

K = 2 is a good compromise for deployments with three or more DCs, as it covers common
scenarios of a DC failure or disconnection [17, 24]. Our experimental evaluation shows that it
incurs a negligible staleness.

Network partitions Client failover between DCs is safe and generally live, except when the
original set of K DCs were partitioned away from both other DCs and the client, shortly after
they delivered a version to the client. In this case, the client blocks. To side-step this unavoidable
possibility, we provide an unsafe API to read inconsistent data.

When a set of fewer than K DCs is partitioned from other DCs, the clients that connect to
them do not deliver their mutual updates until the partition heals. To improve liveness in this
scenario, SwiftCloud supports two heuristics: (i) a partitioned DC announces its “isolated”
status, automatically recommending clients to use another DC, and (ii) clients who cannot
reach another DC that satisfies their dependencies can use the isolated DCs with K temporarily
lowered, risking unavailability if another DC fails.

Precision vs. missing dependencies. The probability of a client blocked due to an unsatisfied
indirect causal dependency depends on many factors, such as workload- and deployment-specific
ones. Representation of dependencies also contributes. SwiftCloud uses coarse-grained represen-
tation of dependencies, at the granularity of the complete base version used by the client. This
may cause a spurious missing dependency, when a DC rejects a client because it misses some
update that is not an actual dependence. Finer-grained dependency representation, such as in
causality graphs [27], or resorting to application-provided explicit dependencies under a weaker
variant of causal consistency [6], avoid some spurious dependencies at the expense of fatter meta-
data. However, the missing dependency issue remains under any dependency precision. Thus,
our approach is to fundamentally minimize the chances of any missing dependency, both genuine
and spurious.

4 Implementation

We now describe a metadata and concrete protocols implementing the abstract design.

4.1 Timestamps, vectors and log merge

The SwiftCloud approach requires metadata: (1) to uniquely identify an update; (2) to encode
its causal dependencies; (3) to identify and compare versions; (4) and to identify all the updates
of a transaction. We now describe a metadata design that fulfils the requirements and has a low
cost. It combines the strengths of the two approaches outlined in Section 2.3, and is both lean
and safe.

A timestamp is a pair (j, k) ∈ (DC ∪ C) × N, where j identifies the node that assigned the
timestamp (either a DC or a client) and k is a sequence number. Similarly to the solution
of Ladin et al. [25], the metadata assigned to some update u combines both: (i) a single
client-assigned timestamp u.tC that uniquely identifies the update, and (ii) a set of zero or more
DC-assigned timestamps u.TDC . Before being delivered to a DC, the update has only a client-
assigned timestamp, but no DC timestamp; after delivery, it has both; in case of DC failover,
it my have several DC timestamps. Nodes can refer to an update via any of its timestamps in
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order to tolerate failures. The updates in a transaction all have the same timestamp(s), to ensure
all-or-nothing delivery [39].

We represent a version or a dependency as a version vector. A vector is a partial map from
node ID to integer, e.g., VV = [DC 1 7→ 1,DC 2 7→ 2], which we interpret as a set of timestamps.
For example, when VV is used as a dependency for some update u, it means that u causally
depends on {(DC 1, 1), (DC 2, 1), (DC 2, 2)}. In SwiftCloud protocols, every vector has at most
one client entry, and multiple DC entries; thus, its size is bounded by the number of DCs, limiting
network overhead. In contrast to a dependence graph, a vector compactly represents transitive
dependencies and can be evaluated locally by any node.

Formally, the timestamps represented by a vector VV are given by a function T :

T (VV ) = {(j, k) ∈ dom(VV )× N | k ≤ VV (j)}

Similarly, the version decoding function V of vector VV on a state U selects every update in U
that matches the vector (V is defined for states U that cover all timestamps of VV ):

V(VV , U) = {u ∈ U | (u.TDC ∪ {u.tC}) ∩ T (VV ) 6= ∅}

For the purpose of the decoding function V, a given update can be flexibly referred through
any of its timestamps. Moreover, V is stable with growing state U . This is useful to identify
a version on a large state that undergoes concurrent log appends; formally, ∀VV , U, U ′ : U ⊂
U ′ ∧ T (VV ) ⊆

⋃
u∈U

(u.TDC ∪ {u.tC}) =⇒ V(VV , U) = V(VV , U ′).

The log merge operator U1 ⊕ U2, which eliminates duplicates, is implemented using client
timestamps. Two updates u1 ∈ U1, u2 ∈ U2 are identical if u1.tC = u2.tC . The merge operator
merges their DC timestamps into u ∈ U1 ⊕ U2, such that u.TDC = u1.TDC ∪ u2.TDC .

4.2 Protocols

We now describe the protocols of SwiftCloud by following the lifetime of an update, and with
reference to the names in Figure 1.

State A DC replica maintains its state UDC in durable storage. The state respects causality
and atomicity for each individual object, but due to internal concurrency, this may not be true
across objects. Therefore, the DC also has a vector VVDC that identifies a safe, monotonically
non-decreasing causal version in the local state, which we note VDC = V(VVDC , UDC ). Initially,
UDC contains no updates, and vector VVDC is zeroed.

A client replica stores the commit log of its own updates UC , and the projection of the
base version from the DC, restricted to its interest set O, VDC |O, as described previously in
Section 3.2. It also stores a copy of vector VVDC that describes the base version.

Client-side execution When the application starts a transaction τ at client C, the client
initialises it with an empty buffer of updates τ.U = ∅ and a snapshot vector of the current base
version τ.depsVV = VVDC ; the DC can update the client’s base version concurrently with the
transaction execution. A read in transaction τ is answered from the version identified by the
snapshot vector, merged with recent internal updates, τ.V = V(τ.depsVV , VDC |O)⊕UC |O⊕τ.U .
If the requested object is not in the client’s interest set, x 6∈ O, the client extends its interest set,
and returns the value once the DC updates the base version projection.

When the application issues internal update u, it is appended to the transaction buffer τ.U ←
τ.U ⊕ {u}, and included in any later read. To simplify the notation, we assume hereafter that
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a transaction performs at most one update.9 The transaction commits locally at the client and
never fails. If the transaction made update u ∈ τ.U , the client replica commits it locally as
follows: (1) Assign it client timestamp u.tC = (C, k), where k counts the number of updates
at the client; (2) assign it a dependency vector initialised with the transaction snapshot vector
u.depsVV = τ.depsVV ; (3) append it to the commit log of local updates on stable storage
UC ← UC ⊕ {u}. This terminates the transaction; the client can start a new one, which will
observe the committed updates.

Transfer protocol: Client to DC The transfer protocol transmits committed updates from
a client to its current DC, in the background. It repeatedly picks the first unacknowledged
committed update u from the log. If any of u’s internal dependencies has recently been assigned
a DC timestamp, it merges this timestamp into the dependency vector. Then, the client sends
a copy of u to its current DC. The client expects to receive an acknowledgement from the DC,
containing the timestamp(s) T that the DC assigned to update u. If so, the client records the
timestamps in the original update record u.TDC ← T . In the failure-free case, T is a singleton.

The client may now transfer the next update in the log.

A transfer request may fail for three reasons:

(a) Timeout: the DC is suspected unavailable; the client connects to another DC (failover) and
repeats the protocol.

(b) The DC reports a missing internal dependency, i.e., it has not received some update of the
client, as a result of a prior failover. The client recovers by marking as unacknowledged all
internal updates starting from the oldest missing dependency, and restarting the transfer
protocol from that point.

(c) The DC reports a missing external dependency ; this is also an effect of failover. In this
case, the client tries yet another DC. The approach from Section 3.3.1 avoids this failing
indefinitely.

Upon receiving update u, the DC verifies if its dependencies are satisfied, i.e., if
T (u.depsVV ) ⊆ T (VVDC ). (If this check fails, it reports an error to the client, indicating either
case (b) or (c)). If the DC has not received this update previously, as determined by its client
timestamp, i.e., ∀u′ ∈ UDC : u′.tC 6= u.tC , the DC does the following: (1) Assign it a DC times-
tamp u.TDC ← {(DC ,VVDC (DC ) + 1))}, (2) store it in its durable state UDC ⊕ {u}, (3) make
the update visible in the DC version VDC , by incorporating its timestamp(s) into VVDC . This
last step makes u available to the geo-replication and notification protocols, described hereafter.
If the update has been received before, the DC looks up its previously-assigned DC timestamps.
In either case, the DC acknowledges the transfer to the client with the DC timestamp(s). Note
that some of these steps can be parallelised between transfer requests received from different
client replicas, e.g., using batched timestamp assignment.

Geo-replication protocol: DC to DC The geo-replication protocol relies on a uniform re-
liable broadcast across DCs. An update enters the geo-replication protocol when a DC accepts
a fresh update during the transfer protocol. The accepting DC broadcasts it to all other DCs.
The broadcast implementation stores an update in a replication log until every DC receives it. A
DC that receives a broadcast message containing u does the following: (1) If the dependencies
of u are not met, i.e., if T (u.depsVV ) 6⊆ T (VVDC ), buffer it until they are; and (2) incorporate
u into durable state UDC ⊕ {u} (if u is not fresh, the duplicate-resilient log merge safely unions
all timestamps), and incorporate its timestamp(s) into the DC version vector VVDC . This last

9This can be easily extended to multiple updates, by assigning the same timestamp to all the updates of the
same transaction, ensuring the all-or-nothing property [39].
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step makes it available to the notification protocol. The K-stable version V KDC is maintained
similarly.

Notification protocol: DC to Client A DC maintains a best-effort notification session, over
a FIFO channel, to each of its connected clients. The soft state of a session includes a copy of
the client’s interest set O and the last known base version vector used by the client, VV ′

DC . The
DC accepts a new session only if its own state is consistent with the base version provided by the
client, i.e., if T (VV ′

DC ) ⊆ T (VVDC ). Otherwise, the client is redirected to another DC, since
the DC would cause a causal gap with the client’s state (the solution from Section 3.3.1 avoids
repeated rejections).

The DC sends over each channel a causal stream of update notifications.10 Notifications
are batched according to either time or to rate [9]. A notification packet consists of a new
base version vector VVDC , and a log of all the updates Uδ to the objects of the interest set,
between the client’s previous base vector VV ′

DC and the new one. Formally, Uδ = {u ∈ UDC |O |
u.TDC ∩ (T (VVDC ) \ T (VV ′

DC )) 6= ∅}. The client applies the newly-received updates to its local
state described by the old base version, VDC |O ← VDC |O ⊕ Uδ, and assumes the new vector
VVDC . If any of received updates is a duplicate w.r.t. to the old version or to a local update,
the log merge operator handles it safely. Note that transaction atomicity is preserved, since all
updates of a transaction share a common timestamp, thus either all fit in a batch Uδ or none
does.

When the client detects a broken channel, it reinitiates the session, possibly on a new DC.

The interest set can change dynamically. When an object is evicted from the cache, the
notifications are lazily unsubscribed to save resources. When it is extended with object x, the
DC responds with the current version of x, which includes all updates to x up to the base version
vector. To avoid races, a notification includes a hash of the interest set, which the client checks.

4.3 Object checkpoints and log pruning

Update logs contribute to substantial storage and, to smaller extent, network costs. To avoid
unbounded growth, a pruning protocol periodically replaces the prefix of a log by a checkpoint.
In the common case, a checkpoint is more compact than the corresponding log of updates; for
instance, a log containing one thousand increments to a Counter object, each with its timestamps,
can be replaced by a checkpoint containing just the number 1000 paired with a version vector.

4.3.1 Log pruning in the DC

The log at a DC provides (a) protection from duplicated update delivery, as abstracted by the ⊕
operator, and (b) the capability to compute different versions, for application processes reading
at different causal times. A log entry for update u may be replaced with a checkpoint, once all
of its duplicates have been filtered out, and once u has been delivered to all interested application
processes.

Precise evaluation of this condition would require access to the client replica states. In
practice, we need to prune aggressively, but without violating correctness. In order to reduce
the risk of pruning a version not yet delivered to an interested application (which could force
it to restart an ongoing transaction), we prune only a delayed version VV ∆

DC , where ∆ is a
real-time delay [27, 28]. If this heuristic fails, the consequences are not fatal: an ongoing client

10Alternatively, the client can ask for invalidations instead, trading responsiveness for lower bandwidth utiliza-
tion and higher DC throughput.
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YCSB [16] SocialApp [39]

Type of objects LWW Map Set, Counter, Register

Object payload 10 × 100 bytes variable

Read transactions
read fields read wall†(80%)

(workload A: 50% / B: 95%) see friends (8%)

Update transactions
update field message (5%)

(workload A: 50% / B:5%) post status (5%)
add friend (2%)

Objects / transaction 1 (non-transactional) 2–5

Database size 50,000 objects
50,000 users

(400,000 objects)

Object popularity uniform / Zipfian uniform

Session locality 40% (low) / 80% (high)
† Read wall is an update if page view statistics are enabled.

Table 1: Characteristics of applications/workloads.

transaction may need to restart and repeat prior reads or return inconsistent data if desired, but
the committed updates are never aborted.

To avoid duplicates despite log pruning, we extend DC metadata as follows. DC i maintains
an at-most-once guard Gi : C → N, which records the sequence number of each client’s last
pruned update. The guard is local to and shared at a DC. Whenever the DC receives a transfer
request or a geo-replication message for update u with client timestamp (C, k) and cannot find
it in its log, it checks the at-most-once guard Gi(C) entry. If the DC recognises that the update
is a duplicate of a pruned update (Gi(C) ≥ k), it ignores the update, except that it advances
version vector to include all of u’s DC timestamps; for a transfer request, the DC replies with a
vector VV i, which is an overapproximation of the (discarded) information about the exact set
of u’s DC timestamps.

The notification protocol also uses checkpoints. On a client cache miss, instead of a complete
log, the DC sends an equivalent checkpoint of the object, together with the client’s guard entry,
so that the client can merge it with its log safely.

4.3.2 Pruning the client’s log

Managing the log at a client is simpler. A client logs its own updates UC , which may include
updates to object that is currently out of its interest set. This enables the client to read its own
updates, and to propagate them lazily to a DC when connected and convenient. An update u
can be discarded as soon as it appears in the K-stable base version V KDC , i.e., when the client
becomes dependent on the presence of u at a DC. The client discards the corresponding updates:
UC ← UC \ V(VVK

i , UC).

5 Evaluation

We implement SwiftCloud and evaluate it experimentally, in comparison to alternatives. We
show that SwiftCloud provides: (i) fast response, under 1 ms for both reads and writes to
cached objects (Section 5.3); (ii) while supporting thousands of clients, throughput that scales
with the number of DCs and small metadata, sized linear in the number of DCs (Section 5.4);
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(iii) fault-tolerance w.r.t. client churn (Section 5.5) and DC outages (Section 5.6); and (iv) low
staleness, under 1% of stale reads under common conditions (Section 5.7).

5.1 Implementation and applications

SwiftCloud and the benchmark applications are implemented in Java.11 SwiftCloud uses an ex-
tendable library of log-based CRDT types [38], in-memory storage,12 Kryo for data marshalling,
and a custom RPC implementation. A client cache has a fixed size and uses an LRU eviction
policy. More elaborate approaches, such as object prefetching [9], are feasible.

Our client API resembles both production object stores, such as Riak 2.0 or Redis [1, 32],
and prototype causal transactional stores, such as COPS or Eiger [27, 28]:13

begin transaction() read(object) : value
commit transaction() update(object, method(args . . . ))

The actual API also includes caching options omitted here.

Along the lines of previous studies of causally-consistent systems [4, 6, 28, 39], we use two
different benchmarks, YCSB and SocialApp, summarised in Table 1.

YCSB [16] serves as a kind of micro-benchmark, with simple requirements, measuring baseline
costs and specific system properties in isolation. It has a simple key-field-value object model,
which we implement as a LWW Map type, using a default payload of ten fields of 100 bytes
each. YCSB issues single-object reads and writes. We use two of the standard YCSB workloads:
update-heavy Workload A, and read-dominated Workload B. The object access pattern can be
set to either uniform or Zipfian. YCSB does not rely on transactional semantics or high-level
data types.

SocialApp is a social network application modelled after WaltSocial [39].14 It employs high-
level data types such as Sets, for friends and posts, LWW Register for profile information, Counter
for counting profile visits, and object references. Many SocialApp objects grow in size over time
(e.g., sets of posts). We are not concerned about this growth; a recent work of Briquemont [11]
demonstrates how to implement object sharding in a SwiftCloud-like system. SocialApp accesses
multiple objects in a causal transaction to ensure that operations such as reading a wall page
and profile information behave consistently. Percentage in parentheses indicate the frequency
of each operation in the workload. The SocialApp workload is read-dominated, but note that
visiting a wall actually increments the wall visit counter when statistics are enabled, in metadata
experiments. The user popularity distribution is uniform.

We use a 50,000-user database for both applications, except for smaller 10,000 users database
for metadata experiments, to increase the stability of measurements.

We are not aware of any realistic benchmark for large-scale client-side apps that would define
a workload with thousands of long client sessions. We evaluate the system with short client
sessions issuing more frequent operations than we expect in realistic workloads. The system
behaviour under such a condensed workload is our proxy for the behaviour with more clients
running slower sessions of longer duration.

In order to model the locality behaviour of a client, both YCSB and SocialApp are augmented
with a facility to control access locality, mimicking social network access patterns [10]. Within a

11 https://github.com/SyncFree/SwiftCloud
12Our prototype can use BerkeleyDB for durable storage, but it was turned off in the present experiments.
13Unlike COPS or Eiger, we consider interactive transactions, i.e., accessed objects do not need to be predefined.
14SocialApp does not implement WaltSocial’s user registration operation, as it would require additional support

for strong consistency.
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client session, a workload generator draws uniformly from a pool of session-specific objects with
either 40% (low locality) or 80% (high locality) probability. For SocialApp, the pool contains
objects of user’s friends. Objects not drawn from this local pool are drawn from the global
distribution (uniform or Zipfian) described above. The local pool can fit in the client’s cache.

5.2 Experimental setup

We run three DCs in geographically distributed Amazon EC2 availability zones (Europe, Virginia,
and Oregon), and a pool of distributed clients. Round-Trip Times (RTTs) between nodes are as
follows:

Oregon DC Virginia DC Europe DC

nearby clients 60–80 ms 60–80 ms 60–80 ms

Europe DC 177 ms 80 ms

Virginia DC 60 ms

Each DC runs on a single m3.m EC2 instance, cheap virtual hardware, equivalent to a single
core 64-bit 2.0 GHz Intel Xeon processor (2 ECUs) with 3.75 GB of RAM, and OpenJDK7 on
Linux 3.2. Objects are pruned at random intervals between 60–120 s, to avoid bursts of pruning
activity. We deploy 500–2,500 clients on a separate pool of 90 m3.m EC2 instances. Clients load
DCs uniformly and use the closest DC by default, with a client-DC RTT ranging in 60–80 ms.

For comparison, we provide three protocol modes: (i) SwiftCloud mode (default) with client
cache replicas of 256 objects, refreshed with notifications at a rate ≤1 s by default; (ii) Safe But
Fat metadata mode with cache, but with client-assigned metadata only (modelled after PRACTI,
or Depot without cryptography [9, 30]), (iii) server-side replication mode without client caches;
in this mode, a read incurs one RTTs to a DC, whereas an update incurs two RTTs to a
DC, modelling the cost of a synchronous write to a quorum of servers to ensure fault-tolerance
comparable to SwiftCloud.

5.3 Response time and throughput

We run several experiments to compare SwiftCloud’s client-side caching, with reference to the
locality potential and server-side geo-replication without caching. For each workload we evaluate
the system stimulated with different rates of aggregated incoming transactions, until it becomes
saturated. We use a number of clients that is throughput-optimised for each pair of workload
and protocol mode. We report aggregated statistics for all clients.

Figure 3 shows response times for YCSB, comparing server-only (left side) with client replica-
tion (right side), under low (top) and high locality (bottom), when the system is not overloaded.
Recall that in server-only replication, a read incurs a RTT to the DC, whereas an update in-
curs 2 RTTs. We expect SwiftCloud to provide much faster response, at least for cached data.
Indeed, the figure shows that a significant fraction of operations respond immediately in Swift-
Cloud mode, and this fraction tracks the locality of the workload (marked “locality potential”
on the figure), within a ±7.5 percentage-point margin attributable to caching policy artefacts.15

The remaining operations require one round-trip to the DC, indicated as 1 RTT. As our mea-
surements for SocialApp show the same message, we do not report them here. These results
demonstrate that the consistency guarantees and the rich programming interface of SwiftCloud
do not affect responsiveness of read and update of cached data.

15A detailed analysis reveals the sources of this error margin. The default Zipfian object access distribution of
YCSB increases the fraction of local accesses due to added “global” locality (up to 82,% local accesses for target
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Figure 3: Response time for YCSB operations (workload A, Zipfian object popularity) under
different system and workload locality configurations, aggregated for all clients.
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Figure 5: Throughput vs. response time for different system configurations running variants of
YCSB.

In the next study, we saturate the system to determine its maximum aggregated throughput.
Figure 4 compares SwiftCloud with server-side replication for all workloads.

Client-side replication is a mixed blessing: client replicas absorb read requests that would
otherwise reach the DC, but on the other hand require additional work at the DC to maintain
client replicas. The cost of client replicas pays off for read-dominated high locality workloads.
SwiftCloud consistently delivers higher throughput for high locality workloads, by 7 % up to
128 %, and for read-heavy workloads in particular. In constrast, low locality workloads show no
clear trend; depending on the workload, throughput either increases by up to 38 %, or decreases
by to up 11 %.

Our next experiment studies how response times vary with server load and with the staleness
settings. The results show that, as expected, cached objects respond immediately and are always
available, but the responsiveness of cache misses depends on server load. For this study, Figure 5
plots throughput vs. response time, for YCSB A (left side) and B (right side), both for the Zipfian
(top) and uniform (bottom) distributions. Each point represents the aggregated throughput and
latency for a given transaction incoming rate, which we increase until reaching the saturation
point. The curves report two percentiles of response time: the lower (70th percentile) line
represents the response time for requests that hit in the cache (the session locality level is 80%),
whereas the higher (95th percentile) line represents misses, i.e., requests served by a DC.

As expected, the lower (cached) percentile consistently outperforms the server-side baseline,
for all workloads and transaction rates. A separate analysis, not reported in detail here, reveals
that a saturated DC slows down its rate of notifications, increasing staleness, but this does not
impact response time, as desired. In contrast, the higher percentile follows the trend of server-side
replication response time, increasing remote access time.

80% of workload session locality). On the other hand, low locality workload decreases amount of local accesses,
due to magnified imperfections of LRU cache eviction algorithm (down to 34,% local accesses for target 40%).
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Varying the target notification rate (not plotted) between 500 ms and 1000 ms, reveals the
same trend: response time is not affected by the increased staleness. At a lower refresh rate,
notification batches are less frequent but larger. This increases throughput for the update-heavy
YCSB A (up to tens of percent points), but has no effect on the throughput of read-heavy
YCSB B. We expect the impact of refresh rate to be amplified for workloads with smaller rate
of notification updates.

5.4 Scalability

Next, we measure how well SwiftCloud scales with increasing numbers of DC and of client
replicas. Of course, performance is expected to increase with more DCs, but most importantly,
the size of metadata should be small, should not depend on the number of clients, and should
increase linearly with the number of DCs. Our results confirm these expectations.

In this experiment, we run SwiftCloud with a variable number of client (500–2500) and
server (1–3) replicas. We report only on the uniform object distribution, because under the
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Zipfian distribution different numbers of clients skew the load differently, making any comparison
meaningless. To control staleness, we run SwiftCloud with two different notification rates (every
1 s and every 10 s).

Figure 6 shows the maximum system throughput on the Y axis, increasing the number of
replicas along the X axis. The thin lines are for a single DC, the bold ones for three DCs. Solid
lines represent the fast notification rate, dashed lines the slow one. The figure shows, left to
right, YCSB Workload A, YCSB Workload B, and SocialApp.

The capacity of a single DC in our hardware configuration peaks at 2,000 active client replicas
for YCSB, and 2,500 for SocialApp. Beyond that, the DC drops sessions.

The wisdom of server-side replication applies in a new way to SwiftCloud: additional DC
replicas increase the system capacity for operations that can be performed at only one replica.
These traditionally include only read operations, but in the case of SwiftCloud, also sending
notification messages (maintaining active clients). Whereas a single SwiftCloud DC supports at
most 2,000 clients. With three DCs SwiftCloud supports at least 2,500 clients for all workloads.
Unfortunately, as we ran out of resources for client machines at this point, we cannot report an
upper bound.

For some fixed number of DCs, adding client replicas increases the aggregated system through-
put, until a point of approximately 300–500 clients per DC, where the cost of maintaining client
replicas up to date saturates the DCs, and further clients do not absorb enough reads to over-
come that cost. Note that the lower refresh rate can control the load at a DC, and reduces it
by 5 to 15%.

In the same experiment, Figure 7 presents the distribution of metadata size in notification
messages. (Notifications are the most common and the most costly messages sent over the
network.) We plot the size of metadata (in bytes) on the Y axis, varying the number of clients
along the X axis. Left to right, the same workloads as in the previous figure. Thin lines are for one
DC, thick lines for three DCs. A solid line represents SwiftCloud “Lean and Safe” metadata, and
dotted lines the classical “Safe But Fat” approach. Note that our Safe-but-Fat implementation
includes the optimisation of sending modified entries of vector rather than the full vector, as in
Depot or PRACTI [9, 30]. Vertical bars represent standard error across clients. As notifications
are batched, we normalise metadata size to a message carrying exactly 10 updates, corresponding
to under approx. 1 KB of data.

This plot confirms that the SwiftCloud metadata is small and constant, at 100–150 bytes/
notification (10–15 bytes per update); data plus metadata together fit inside a single standard
network packet.16 It is independent both from the number of client replicas and from the work-
load, as well as from the number of objects in the database, as an additional experiment (not
plotted) validates. Increasing the number of DC replicas from one to three causes a negligible
increase in metadata size, of under 10 bytes. We attribute some variability to the data encoding
and inaccuracies of measurements, including the normalisation process.

In contrast, the classical Safe-but-Fat metadata grows linearly with the number of clients
and exhibits higher variability. Its size reaches approx. 1 KB for 1,000 clients in all workloads,
and 10 KB for 2,500 clients. Clearly, metadata that is up to 10× larger than the actual data
represents a substantial overhead.

16The size of metadata does not exceed 100–150 bytes per notification with 10 updates, which matches our back
of the envelope computations: 2–4 entries in a vector, plus 10 pairs of timestamps (one for each update) yields
approximately 24 timestamps in total, with potential duplicates encoded more efficiently.
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Figure 8: Storage occupation at one DC in reaction to client churn, for SwiftCloud and Lean-
but-Unsafe alternative.

5.5 Tolerating client churn

We now turn to fault tolerance. In the next experiment, we evaluate SwiftCloud under client
churn, by periodically disconnecting client replicas and replacing them with a new set of clients.
At any point in time, there are 500 active clients and a variable number of disconnected clients,
up to 5000. Figure 8 illustrates the storage occupation of a DC for representative workloads,
which is also a proxy for the size of object checkpoints transferred. We compare SwiftCloud’s
log compaction to a protocol without at-most-once delivery guarantees (Lean But Unsafe).

SwiftCloud storage size is approximately constant thanks to the aggressive log compaction.
This is safe thanks to the at-most-once guard table per DC. Although the size of the guard
(bottom curve) grows with the number of clients, it requires orders of magnitude less storage
than the actual database itself.

A protocol without at-most-once delivery guarantees uses Lean-but-Unsafe metadata, with-
out SwiftCloud’s at-most-once guard. This requires more complexity in each object’s imple-
mentation, to protect itself from duplicates. This increases the size of objects, impacting both
storage and network costs. As is visible in the figure, the cost depends on the object type: none
for YCSB’s LWW-Map, which is naturally idempotent, vs. linear in the number of clients for
SocialApp’s Counter objects.

We conclude that the cost of maintaining SwiftCloud’s at-most-once guard is negligible, and
easily amortised by its stable behaviour and possible savings.

5.6 Tolerating DC failures

The next experiment studies the behaviour of SwiftCloud when a DC disconnects. The scatter-
plot in Figure 9 shows the response time of a SocialApp client application as the client switches
between DCs. The client runs on a private machine outside of EC2. Each dot represents the
response time of an individual transaction. Starting with a cold cache, response times quickly
drops to near zero for transactions hitting in the cache, and to around 110 ms for misses. Some
33 s into the experiment, the current DC disconnects, and the client is diverted to another DC in
a different continent. Thanks to K-stability the failover succeeds, and the client continues with
the new DC. Response time for cache misses reflects the higher RTT to the new DC. At 64 s,
the client switches back the initial DC, and performance smoothly recovers.

Recall that a server-side geo-replication system with similar fault-tolerance incurs high re-
sponse time (cf. Section 5.3, or Reference 17) and does not ensure at-most-once delivery.
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5.7 Staleness cost

The price to pay for our read-in-the-past approach is an increase in staleness. We consider a
read stale if there exists, at the client’s current DC, a non-K-stable version that is more recent
than the one returned. A transaction is stale if any of its reads is stale. In the experiments
so far, we observed a negligible number of stale reads and transactions, below 1 %. In another
experiment, we artificially increase the probability of staleness by various means, e.g., using
a smaller database, and setting cache size to zero. We run the SocialApp benchmark with
1000 clients in Europe connected to the Ireland DC and replicated in the Oregon DC.

Figure 10 shows that stale reads and stale transactions remain under 1% and 2.5% respec-
tively. This shows that even under high contention, accessing a slightly stale snapshot has very
little impact on the data read by transactions.

6 Related work

6.1 Related results on consistency and availability

Mahajan et al. [29] prove that no stronger consistency model than causal consistency is available
and convergent, under full replication. We conjecture that these properties are not simulta-
neously achievable under partial replication, and we show how to weaken one of the liveness
properties. Bailis et al. [7] also study variants of weak consistency models, and formulate a sim-
ilar impossibility for a client switching server replicas. However, they do not take into account
the capabilities of a client replica, as we do.

Some operations or objects of application may require stronger consistency, which requires
synchronous protocols [21]. For instance, we observe that our social network application port
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would benefit from strongly consistent support for user registration or a password change. Prior
work demonstrates that combining strong and weak consistency is possible [26, 39]. In partic-
ular, Balegas et al. [8] implemented protocols that enforce strong consistency invariants as a
middleware layer on top of SwiftCloud.

6.2 Comparison with other systems

Several systems support consistent, available and convergent data access, at different scales.
For the most related causally-consistent systems, we compare their metadata in Table 2. The
columns indicate: (i) the extent of support for partial replication; (ii) which nodes assign
timestamps; (iii) the worst-case size of causality metadata; (iv) the scope of validity of metadata
representing a database version (is it valid only in a local replica or anywhere); (v) whether it
ensures at-most-once delivery; (vi) whether it supports general confluent types (CRDTs).

6.2.1 Replicated databases for client-side apps

PRACTI [9] is a seminal work on causal consistency under partial replication. PRACTI uses Safe-
but-Fat client-assigned metadata and a flexible log-exchange protocol that supports arbitrary
communication topologies and modes. While PRACTI is very general, it is not viable for large-
scale client-side replication deployment: (i) Its fat metadata approach (version vectors sized
as the number of clients) is prohibitively expensive (see Figure 7), and (ii) any replica can
make another unavailable, because of the indirect dependence issue discussed in Section 3.3.2.
Our cloud-backed support of client-side replication addresses these issues at the cost of lower
flexibility in communication topology. We are investigating support for a limited form of peer-
to-peer communication that would not cause these issues, e.g., between devices of a same user
or a local group of collaborators.

Our high availability techniques are similar to Depot [30], a causally-consistent storage for the
client-side, built on top of untrusted cloud replicas. Depot tolerates Byzantine cloud behaviour
using cryptographic metadata signatures, in order to detect misbehaviour, and fat metadata,
in order to support direct client-to-client communication. Conservatively, Depot either exposes
updates signed by K different servers or forces clients to receive all transitive causal dependencies
of their reads. This is at odds with genuine partial replication. Under no failures, a client receives
metadata of every update; under failures, it may also receive their body. In contrast, SwiftCloud
relies on DCs to compute K-stable consistent versions with lean metadata. In the event of an
extensive failure involving K DCs, SwiftCloud provides the flexibility to decrease K dynamically
or to weaken consistency.

Both PRACTI and Depot systems use Safe-but-Fat metadata, as indicated in Table 2. They
support only LWW registers, but their rich metadata could conceivably accommodate high-level
CRDTs too.

Lazy Replication (LR) protocols [25] support multiple consistency modes for client-side apps
executing operations on server replicas. Under causal consistency, LR provides high availability
with asynchronous read and write requests to multiple servers. As suggested by Ladin et al. [25],
LR could also read stable updates for availability on failover, but that would force its clients to
execute updates synchronously. The implementation of LR uses safe and lean metadata similar
to SwiftCloud, involving client- and server-assigned timestamps together with vector summaries.
A log compaction protocol relies on availability of client replicas and loosely-synchronised clocks
for progress.
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SwiftCloud structures the database into smaller CRDT objects, which allows it to provide
partial client replicas, whereas LR considers only global operations. We show that client replicas
can offer higher responsiveness on cached objects, instead of directing all operations to the server
side as in LR, and that local updates can be combined with K-stable updates into a consistent
view, avoiding slow and unavailable synchronous updates of LR. The log compaction technique
of LR is complementary to ours, and optimises for the average case. SwiftCloud’s aggressive
pruning relies on at-most-once guard table, optimising for failure scenarios.

Recent web and mobile application frameworks, such as TouchDevelop [12], Google Drive
Realtime API [14], or Mobius [15] support replication for in-browser or mobile applications.
These systems are designed for small objects [14], database that fits on a mobile device [12],
or a database of independent objects [15]. It is unknown if/how they support multiple DCs
and fault tolerance, whereas SwiftCloud supports consistency, a large database, and fault toler-
ance. TouchDevelop provides a form of object composition, and offers integration with strong
consistency [12]. We are looking into ways of adapting similar mechanisms.

6.2.2 Server-side geo-replicated databases

A number of geo-replicated systems offer available causally consistent data access, or stronger,
inside a DC with excellent scale-out by sharding [4, 6, 19, 20, 27, 28, 34, 39].

Table 2 shows that server-side systems use variety of types of metadata, mostly Lean-but-
Unsafe metadata. COPS [27] assigns metadata directly at database clients, and uses explicit
dependencies (a graph). Follow-up work shows that this approach is costly, and assigns metadata
at object/shard replicas instead [19, 28, 33, 35], or on a designated node in the DC [4, 39]. The
location of assignment directly impacts the size of causality metadata. In most systems, it varies
with the number of reads, with the number of dependencies, and with the stability conditions
in the system. When fewer nodes assign metadata, it tends to be smaller (as in SwiftCloud),
but this may limit throughput. Recent work of Du et al. [20] make use of full stability, a special
case of K-stability, to remove the need for dependency metadata in messages, thereby improving
throughput.

Server-side designs do not easily extend beyond the scope and the failure domain of a DC,
because (i) their protocols do not tolerate external client failures and DC outages, either blocking
or violating safety (due to inadequate metadata, and the causal dependence issue); (ii) as they
assume that data is updated by overwriting, implementing high-level confluent data types that
work on the client-side is complex and costly (see Figure 8); (iii) their metadata can grow with
database size.

SwiftCloud’s support for server-side sharding is limited compared to the most scalable geo-
replicated designs. Reconciling client-side replication with a more decentralised sharding support,
and small metadata size, is future work. We believe this is possible to achieve by, once again,
trading data freshness for performance, i.e., by managing a slightly stale consistent version at a
high throughput, with small metadata [20].

7 Conclusion

We presented the design of SwiftCloud, the first object database that offers client-side apps a
local access to partial replica with the guarantees of geo-replicated systems.

Our experiments show that the design of SwiftCloud is able to provide immediate and con-
sistent response for reads and updates on local objects, and to maintain the throughput of a
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server-side geo-replication, or better. SwiftCloud’s metadata allows it to scale safely to thou-
sands of clients with 3 DCs, with small size objects, and metadata at the level of 15 bytes per
update, independent of the number of connected and disconnected clients. Our fault-tolerant
protocols handle failures nearly transparently, at a low staleness cost.

SwiftCloud’s design leverages a common principle that helps to achieve several goals: client
buffering and controlled staleness can absorb the cost of scalability, availability, and consistency.

Several aspects remain open for improvement and investigation. Our DC implementation
is not sharded — we wish to combine modern sharded DC protocols with SwiftCloud, ideally
without increasing the size of metadata. Practical applications require security mechanisms; we
expect to adapt Depot’s support for Byzantine clients, and additional access control and privacy
mechanisms at the object level. We are also looking to better integration with programming
models, in particular in terms of support for mixed weak and strong consistency, and for object
composition [22].
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