
HAL Id: hal-01158585
https://hal.inria.fr/hal-01158585

Submitted on 11 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Modeling and Simulation of Exascale
Computing Platforms

Luka Stanisic

To cite this version:
Luka Stanisic. Towards Modeling and Simulation of Exascale Computing Platforms. Distributed,
Parallel, and Cluster Computing [cs.DC]. 2012. <hal-01158585>

https://hal.inria.fr/hal-01158585
https://hal.archives-ouvertes.fr

Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique

option<Parallel, Distributed and Embedded Systems>

Towards Modeling and Simulation
of Exascale Computing Platforms

Luka Stanisic
<22.06.2012>

Research project performed at <LIG laboratory>

Under the supervision of:
<Arnaud Legrand, CNRS researcher>

<Jean-François Méhaut, Professor Polytech’Grenoble>

Defended before a jury composed of:
[Prof] <Martin Heusse>

[Prof] <Florence Maraninchi>
[Prof] <Nadia Brauner>
[Prof] <Vincent Danjean>

Abstract

Future super-computer platforms will be facing big challenges due to
the enormous power consumption. One possible solution to this problem
would be to develop HPC systems from today’s energy-efficient hardware
solutions used in embedded and mobile devices like ARM. However, ARM
chips have never been used in HPC programing before, leading to a number
of significant challenges. Therefore, we experimented with ARM proces-
sors and compared their performance with the architectures that are known
better, in this case last generations of Intel processors. Due to the memory
bottleneck of most scientific applications, understanding the performance
of CPU caches in this context is crucial, thus this research was investigat-
ing the processor performance depending on memory hierarchy. We present
not only differences and complexity of these two architectures, but also how
changing seemingly innocuous aspects of an experimental setup can cause
completely distinctive behavior. Additionally, we demonstrate very clean
and systematic methodology, which aid us in achieving good performance
estimations.

Résumé

L’économie d’énergie est en passe de devenir un des principaux dé-
fits pour le renouvellement des super calculateurs. Les futurs système HPC
pourrait trouver solution en se développant à partir de composants effica-
cent et basse consommation ARM aujourd’hui présent dans les systèmes
embarqués ou mobile. Cependant, ces composants n’ont encore jamais été
utilisé en programation HPC. C’est pourquoi, on se proposent ici d’évaluer
expérimentalement des processeurs ARM et de comparer leur performance
avec des architectures largement déployées telles que les dernière généra-
tion de processeur Intel. En raison de l’importance des performances mé-
moire pour les applications scientifiques, comprendre la performance des
mémoires cache au sein des CPUs est crucial. Notre étude portera donc
sur la performance processeur par rapport à la hierarchie mémoire. Nous
présentons non seulement les différences et la complexité de ces architec-
tures, mais aussi comment le changement d’un aspect innofencif en ap-
parence peut causer des comportement totalement distincts. En outre, nous
montrons une méthodologie simple et systématique permettant de réaliser
de bonnes estimations de performances.

i

Acknowledgements

First and foremost, I want to thank my supervisor Arnaud Legrand for his support,
guidance and encouragement. Also express my gratitude to Brice Videau and Jean-
François Méhaut for their valuable advises. Last, but certainly not least, I would like
to thank all other members of MESCAL, MOAIS and NANOSIM teams for the won-
derful atmosphere and pleasant company.

ii

Contents

Abstract i

Résumé i

Acknowledgements ii

1 Introduction 1

2 Related Work 3
2.1 CPU Caches on ARM and Intel Architectures 3
2.2 Performance Prediction on HPC . 5
2.3 Methodology . 10

3 Towards Systematic Performance Evaluation of Cache Hierarchies 11

4 Experimental Results: Taxonomy of Unexpected Behaviors 15
4.1 Influence of Stride Parameter . 15
4.2 Noticable Behavior Change with Large Buffer Size 20
4.3 Influence of Allocation Strategy . 23
4.4 Influence of Code Optimizations . 25
4.5 Influence of Compiler Optimization Option 31
4.6 Influence of OS Scheduling Policy . 33

5 Conclusion and Future Work 35

Appendix 38
Sample of a Shortened Output File . 38

Bibliography 41

iii

1
Introduction

There is an ever-growing need for computing power in scientific applications (weather
forecast, molecular modeling, simulation for engineering/finance/biology etc.). One CPU
being insufficient for such high requirements, supercomputers were introduced. These
machines typically comprise thousands of CPUs interconnected through high-speed net-
works and equipped with accelerators like GPUs. Today’s fastest supercomputer is “K
computer” in Japan with 88,128 2.0 GHz 8-core processors and it is reaching peak
performance of around 10 petaflops (1016 floating-point operations per second). If the
previous trends continue, it is expected that 1 exaflops (1018 floating-point operations
per second) will be reached in 2020. Nevertheless, with the technology we currently
have at our disposal, it will not be an easy task.

In the last decades, computing power of individual CPUs mainly improved thanks
to the frequency increase, miniaturization, and hardware optimizations (cache hierarchy
and aggressive cache policies, out-of-order execution, branch prediction, speculative
execution, etc.). Frequency increase and hardware optimizations are now facing hard
limits and incur unacceptable power consumption. It is proved that power consumption
grows more than quadratically with the growth of frequency. Additionally, speculative
execution performs many useless operations and although they seem free in terms of
scheduling on the CPU resources, in terms of power utilization they waste a lot of en-
ergy. Supercomputers and data centers typically consume as much electricity as a small
city and the price for powering them for a few years is the same as the initial price of the
hardware that it is composed of. To achieve exascale, the power efficiency of individual
CPUs will have to be reduced by a factor of 30.

Two main approaches are envisioned. The first one attempts to improve the power
consumption of current high-performance hardware. The second approach is to build
on existing low-power CPUs commonly used in embedded systems and try to improve
their performance. My internship was done in the context of the second approach as a
part of European Mont-Blanc project 1. Montblanc project aims in developing scalable
and power efficient HPC(High Performance Computing) platform based on low-power

1. Mont-Blanc project: www.montblanc-project.eu

1

ARM technology. ARM (Advanced RISC Machine and, before that, the Acorn RISC
Machine) processors are particularly designed for portable devices as they have very low
electric power consumption. Nowadays, these CPUs are running on almost all mobile
phones and personal digital assistants.

However, such CPUs have very different characteristics and behavior from the ones
typically used in HPC. It is based on a fact that such processors are much simpler than
classical Intel CPUs regarding hardware optimizations. Furthermore, they have much
smaller CPU caches with very little memory hierarchy. Keeping in mind that mem-
ory accesses are the bottleneck of most scientific application, understanding the perfor-
mance of caches in this context is thus crucial.

The primary goal of this internship was to investigate behavior of the caches on
ARM processors and compare it with the architectures that are known better, in this
case last generations of Intel processors.

These systems are particularly complex and require systematic analysis. Apart from
getting the actual results, we wanted to do the experiments in a clean, coherent, well-
organized and reproducible way. Related work in this area is not very well documented.
Since the code is not available and many important information about the system con-
figuration are not stated, it is often impossible to reproduce the experiments.

The secondary goal of this internship was thus to use a systematic and sound exper-
imentation methodology that would allow to comprehend and control the impact of all
parameters of the system and to reproduce the experiments.

The rest of this document is organized as follows: Chapter 2 reviews related work.
Chapter 3 explains our experimental methodology. Chapter 4 shows and discusses
experimental results. Finally, Chapter 5 concludes with a summary of results and future
research directions.

2

2
Related Work

In this chapter we will first present differences between ARM and Intel microar-
chitectures, with the emphasis on CPU caches. Then, possible performance prediction
methods will be introduced, along with their advantages and drawback. Finally, we will
review the state of the art regarding methodology, which served us as a reference to-
wards developing our own workflow that will be discussed later in the Chapter 3.

2.1 CPU Caches on ARM and Intel Architectures
Even though they had the same starting point, the evolution of CPU speed and mem-

ory speed took a different pace. Today, memory is in order of magnitude (sometimes
even worse) slower, thus it is usually the bottleneck of the most applications. Com-
puter manufacturers tried to deal with this problem by developing memory hierarchy,
more precisely CPU caches. Multiple level of CPU caches (most commonly referred
as L1, L2, L3 caches) are basically small, faster memories that are closer to CPU. L1,
the smallest but fastest cache, usually belongs to a single processor core (it is private).
L2, which is further from CPU thus bigger and slower, can be either private or shared
between cores depending on the specifics of the architecture. L3, present only in latest
processors, is respectively even bigger and slower than its predecessors and most com-
monly it is shared. All these levels of caches have in common that they try to exploit
the temporal and spatial locality of the data. Temporal locality is the characteristics that
data, that is accessed now, is very likely to be accessed again in near future. Spatial
locality is the characteristics that data, that is adjacent in memory to the data that is ac-
cessed now, is very likely to be accessed in near future. By storing the most frequently
accessed data, caches decrease the average memory access time of the program. Caches
on two processors microarchitectures differ from each other mainly by the number of
cache levels and their size, but also by the internal organization (set-associativity, cache
line size, etc.).

Since they were designed for distinct purposes, there are numerous differences be-
tween ARM and Intel architectures. For instance, ARM Cortex A9, used in this intern-

3

ship, have only dual-core 1GHz CPUs comparing to the 4 cores (8 with hyperthreading)
Intel i7 Sandy Bridge CPUs running on frequencies of 3.4 GHz.

Another rather obvious distinction is the memory hierarchy which can be clearly
seen in Figure 2.1 ARM has two levels of caches where L1 cache is a 32KB Instruction
and 32KB Data 4-way associative cache with 64 byte line size and shared L2 cache is a
512KB 4-way associative cache with 64 byte line size. Intel has three levels of caches
where L1 cache is a 32KB Instruction and 32KB Data 8-way associative cache with 64
byte line size, private L2 cache is a 256KB 8-way associative cache with 64 byte line
size and shared L3 cache is 8MB 16-way associative. Higher processor speed and bigger
cache size provide much better performance to the Intel CPUs, but for the significant
price in terms of energy.

Figure 2.1: ARM and Intel microarchitectures.

Additionally, there are other differences that cannot be seen from only looking into
the processors specifications. ARM belongs to RISC (Reduced Instruction Set Comput-
ing) families of processors, thus it has much simpler instruction set. In contrast, Intel’s
CISC (Complex Instruction Set Computing) x86 supports extremely large and com-
plicated instruction set (for reverse-compatibility reason). Significant die space (and
energy) of x86 is spent on translation system, whose role is to transfer all these instruc-
tions into elementary microcode. Furthermore, ARM CPUs have much shorter pipeline,
which means that in cases of branch misprediction, they will have to flush less. Hence,
the overall power consumption per instruction is much lower. Also, Intel processors
have much more complicated and aggressive optimization techniques (speculative exe-
cution, branch prediction, simultaneous multithreading etc.) than ARM, although these
difference are beginning to fade.

4

Despite the fact that they had opposite starting points, ARM insisting on power
efficiency and Intel on performance, these two architectures are evolving towards each
other. HPC is just one of the examples how they are crossing into each others territory.
Recent ARM processors started introducing advanced hardware optimizations, while
new generations of Intel processors tend to lower the number of pipeline stages and try
to lower the power consumption. Nevertheless, as shown before, there are still severe
distinctions between these two architectures and accordingly their performances differ.

2.2 Performance Prediction on HPC
This work in general is a step towards predicting performance on HPC platforms,

evaluating the time an HPC code would take to execute on hypothetical machines (clus-
ters). There are several known methods to performs this and we will briefly review their
advantages and drawbacks:

2.2.1 Instruction Level Approaches
Simulation

Simulations, especially cycle-accurate simulations, have been heavily used in past.
They are relatively easy to build and allegedly they provide very precise results. Nev-
ertheless, their problem is that they take up to 1 million times[4] more than the origi-
nal runtime of the application. For that reason, cycle-accurate simulators are typically
used only to measure few seconds of the program execution. This arises the accuracy
question of such predictions, since they are based on only isolated part of the whole
application[10]. Additionally, these simulators are often proprietary and uniquely de-
signed for particular architectures which limits their usage even more.

Emulation

Emulation is another approach, very similar to simulation. In this case, there is a pro-
gram that creates an extra layer between an existing computer platform (host platform)
and the platform to be reproduced (target platform). Then, the host machine is running
through this layer the desired code, planned to be executed on the target platform. The
measured performance of host machine represent a good estimation of the possible tar-
get behavior. Although emulation is often faster and scales better, it still holds the same
limitations and weaknesses as the simulation.

5

2.2.2 Macroscopic Approach
There is alternative technique, that was the starting point of this research. In this

“macroscopic” approach, one is trying to characterize the code as a whole with numbers
that can later be related to platform characteristics to evaluate performances. This idea
was for example used in the PMAC framework[8] depicted in Figure 2.2. Framework
for performance modeling and prediction is faster than cycle-accurate simulation and
more informative than simple benchmarking of the application. The idea behind it is
very intuitive and well structured.

Figure 2.2: Components of PMAC Framework.

First a model of a single processor is built by relating application signature to the
machine capacities. Having in mind that memory is the bottleneck of most applications
(as explained in the previous chapter), this model is mainly based on the memory hier-
archy of the measured machine.

Essentially, the application code is divided into blocks, which represent the repet-
itive parts of the program. One can calculate overall run-time of the application by
multiplying the execution time of each block with the number of times it is executed
and finally doing summation of all these multiples. The execution time of each block is
estimated based on the characteristics of the whole block (number of memory accesses,
floating point instructions, cache misses etc.). The example of block characterization[8]
is displayed on Figure 2.3.

After that, these block measurements are combined with the machine characteris-
tics to estimate behavior of the single processor. One of the obvious weaknesses of the

6

Figure 2.3: Sample of block signature.

authors work is that although they plead for this alternative approach, the code character-
ization is done using cache simulations. These simulations have the same shortcomings
as any other simulations.

Second, the same principle is used for modeling communication: Performance ca-
pabilities of the network cards and network in overall, are combined with the number,
order and types of network operations of the code.

At the end these two models are merged into the final performance prediction of the
application on the specified machines.

In this internship, we were mostly interested in single core performance depending
on memory hierarchy. In terms of related work, it would be machine profiling of the
single processor (the top-left box of the Figure). To characterize the processors, authors
propose to use simple “for loop” kernel and measure the overall time it takes to exe-
cute it. This simple kernel is the root of the memory benchmark MAPS (and the later,
upgraded version MultiMAPS) that were derived from STREAM[5] benchmark.

Pseudocode of the kernel look as following:

MultiMAPS(size , stride , nloops)

allocate buffer size ;

time1;

for(i=1: nloops)

access elements in buffer by stride ;

time2;

bandwidth=accesses/time;

deallocate buffer;

7

Essentially, this algorithm measures the time to execute nested for loops in which it
makes memory accesses to an array. Finally, it computes the memory bandwidth as the
total number of accesses divided by the time it took to execute all of them. There are
two key dimensions from which access pattern depends:

1) Memory size of the array.
2) Stride of access (by which step the array will be traversed).

In fact, these two parameters should represent the temporal and spatial locality char-
acteristics of the memory.

One of the typical results provided by MultiMAPS can be seen in Figure 2.4.

Figure 2.4: Sample MultiMAPS output for Opteron.

This figure shows the results only for strides 2, 4 and 8 on Opteron machine (2.8GHz
with 2 level of caches where L1 cache is a 64KB 2-way associative cache and L2 cache
is a 1MB 16-way associative cache). Plateaus in Figure 2.4 are directly correspond to
the size of L1 cache, L2 cache and main memory, respectively. One can also notice that
the strides have no impact while all the accesses are done inside L1 cache, but that they
play important role when the array size increases, lowering the bandwidth almost by the
factor of 2.

The results of this work seemed very comprehensive and useful. Nevertheless, when
we tried to reproduce them, we encountered numerous difficulties.

8

The plot on Figure 2.4 presents only the average values of several runs. Data ag-
gregation and statistics are done on the fly for practical and intrusiveness reasons. As
we will show later in our experiments, it’s dangerous to reason solely on aggregated
data. Furthermore, although the previous example looks very simple, these are complex
systems with potentially a lot of parameters that may influence the final measurement.
By looking at their code, one could not skip the impression that many configuration
parameters are tailored for a specific platform the experiments were run on.

In fact, our first results were more like the one shown in Figure 2.5, with a lot of noise
which resembles very little to the one we expected, something similar to Figure 2.4.
Although only 3 repetitions have been performed for this experiment, there is already
sufficient variability for each of the strides(1,2,4). One of the reasons for this unstable
behavior might lie in the fact that the machine the measurements are performed is rather
old, but it still does not explain the average value curves for different strides constantly
crossing each others paths.

That is why we needed to do measurements in a very clean, coherent and systematic
way. For this kind of experiments, with a lot of hidden details and unknown parameters
impact, methodology plays a crucial role on the road to understand the final results.

Figure 2.5: Sample of our first experiments on old Intel machine: a lot of noise, with
average values of strides crossing each others trajectory; 3 repetitions; buffer size

1KB-32KB; strides 1,2,4.

9

2.3 Methodology
PMAC MultiMAPS benchmark is extremely complex, with the code that was not

very well documented and many system configuration details missing. Additionally,
many parameters were obviously tuned for specific architectures and applications used
in their experiments, without any explanation. It is impossible to get a good perfor-
mances out of the box in HPC systems. This context leads to reproducibility issues and
control of the experiments.

Another fundamental problem is that this benchmark was built on a set of assump-
tions, a model. Authors make some first order measurements, measuring the elapsed
time, in a very specific way and then derive values as a second order measurements,
bandwidths. PMaC work is rather old, at least compared to the speed at which com-
puter architectures evolve, and originally not suited for NUMA, multicore architectures.
Models and assumptions behind their experiments may not be valid anymore on new
machines.

These are the reasons why we wanted to start all over again from scratch. We wanted
to be sure that everything is checked and not rely on some code based on tacit assump-
tions we do not completely understand. We planned to be exhaustive and not to miss
any influential parameters. As it can be seen in[7], often if we do not pay attention to all
details, measurement bias can lead as to incorrect conclusions.

Phd. thesis from Christine Jacqmot[2] served us as a sample of how the methodology
of a complex systems experimentation should be done. Although that thesis focuses on
another topic (distributed systems), the fundamental ideas behind its methodology ap-
proach is very well structured. We also followed the instructions from recognized books
in the area of performance evaluation[6][3] to make sure we have the valid experiment
design, execution workflow and finally analysis.

10

3
Towards Systematic Performance
Evaluation of Cache Hierarchies

We started from the simplest example from[9]: the memory intensive kernel de-
scribed above. In the beginning we focused solely on direct Kernel parameters CY-
CLES, STRIDE and SIZE. Even with only these parameters in mind our results were far
from what we expected. In order to assure reproducibility and gain better performance
we were forced to add other influential characteristics. Nevertheless, all the additional
specifications were always fixed during one measurement, i.e. for a single experiment,
only the SIZE and STRIDE were changing values, all other criteria were constants. We
ended up with 5 additional groups of features, but due to the lack of space, we will
present only a short summary for each of these groups:

1) Kernel:

SIZE and STRIDE were the original parameters form PMaC and as already de-
scribed, they were intended to dictate the behavior of this simple kernel. CYCLES is
the number of loops it will be performed. For a small number, the results could be im-
precise since syscall that is measuring time on processors, although it takes only around
60 nanoseconds, can still introduce some bias. In contrast, taking very large number
for the CYCLES would cause experiments to last very long time, with practically no
benefit comparing to the balanced intermediate option. Nevertheless, all the “medium”,
well suited values (that can be different for different range of SIZE), produce the sim-
ilar results. From now on, we will assume that the value of CYCLES was always well
adjusted to the experiment setup.

2) Memory allocation:

Before executing the kernel, memory chunk (from now referred as buffer) needs to
be reserved and filled with random values. Several memory allocation techniques were
examined. Also, we tried different types of variables from which the buffer is made of.

11

These are int (32 bits), long long int (64 bits) along with vectorized instructions m128i
(128 bits) and only for Intel Sandy Bridge m256i (256 bits). This is very important
because these types occupy different size in memory, thus the final results may severely
differ.

3) Compilation:

For the compilation on both ARM and Intel we used gcc compiler. We tried all op-
timization flags, but mostly focused on -O2 and -O3 as they we generating best and
sometimes distinct results. Since our kernel is practically one for loop, we tried to man-
ually unroll it and see if that influences the performance.

4) Operating system:

Experiments on Intel were performed on UNIX (debian distribution) operating sys-
tems, while on ARM it was UNIX-like OS called Linaro 1. It is important to state that
our measurement kernel is single-threaded, so the differences between number of cores
on different architectures play no role. Nevertheless, we ensured that the whole execu-
tion was pinned to one core (although OS would do it himself in most cases). We also
tried different scheduling priorities and CPU frequency governments, as we suspected,
based on previous experience and literature, that this may have an impact on final re-
sults. Finally, we made it certain that we are alone on the machine, in order to be sure
that our results are not product of some external process.

5) Architecture:

As described in chapter 2.1, there are severe differences between ARM and Intel
processors. Therefore, it is not surprising that the behavior on them even with the same
input parameters are very distinctive. Apart from the already mentioned microarchitec-
tures, we have conducted experiments on other machines as well:

For ARM: NVIDIA Tegra 3, quad-core ARM Cortex A9 1.4GHz, 4 cores with two
levels of caches from Tibidabo cluster in Barcelona.

For Intel: Intel Core microarchitecture, Xeon Processor LV 5148 CPU 2.33GHz, 2
cores with two levels of caches and Intel, Nehalem microarchitecture, Xeon Processor
E5520 CPU 2.26GHz, 4 cores (8 with hyperthreading) with three levels of caches both
from GRID5000 2

Although these microarchitectures had their own characteristics (especially “Ne-
halem“), in general the differences between them and their relatives where much smaller
than the differences between families of processors. Additionally, we observed some
very unique behavior for individual microprocessors, for specific experiment setups.
Since internal details of the microprocessors are not publicly available, it is impossible

1. Linaro: www.linaro.org
2. Grid5000: www.grid5000.fr

12

to fully understand these anomalies and we had to settle with only our observations and
assumptions on what were the causes. Again due to the lack of space, in this report we
will only demonstrate the results from “Snowball“ and “Sandy Bridge“ as we strongly
believe that they are good representatives and sufficient to illustrate the goal of this
internship.

6) Design of experiments:

This is completely independent, i.e. outside the main code. It is performed at the
beginning and later linked to the data analysis. The important point in the experiment
design is sequence order of the chosen SIZE. Sequence order may have an influence
(warm up, prefetch) and one can be protected from this with various techniques: reboot
all system before measurement, wait a long time between measurements, randomize to
get rid of bias etc.. We chose randomization, since it is the fastest and we expected it to
be sufficient for our case. We were also checking the influence of this choice carefully
during our experimentation period. Furthermore, we made enough repetitions in order
to be certain in our results. On contrary, in related work authors mostly did only few
repetitions of their experiments, which maybe disabled them from seeing some anoma-
lies. Although these techniques may seem obvious and negligible, we claim that they
aided us in finding some intriguing phenomenon during our experimentation period.

One of the key points in our methodology was to ensure reproducibility, to be certain
that our results truly demonstrate general behavior of the processor. In order to do so,
we were logging the SVN version of source code. Additionally, we were recompiling
the code for each single experiment.

Information about all these parameters is captured while traversing throw our work-
flow. It is recorded at every level and passed to the next level in comments of output file.
At the end, our output files along with the measurements results contain a large collec-
tion of extra information about the experiment setup. A sample of one of these files can
be found in the Appendix.

13

Figure 3.1: Cause-and-effect diagram of our workflow.

Figure 3.1 illustrates our experiment workflow, with all important parameters sorted
in described groups. We use modified “cause-and-effect“ (fishbone) diagram[6] to dis-
play steps in experiment planning. We will demonstrate in chapter 4 how some of this
parameters can drasticlly change the final results.

It is important to state that we do not perform any statistical analysis until this point.
We do not do any aggregation, we keep all information and delay the analysis to the end
in order to spot the outliers and strange behavior, instead of losing them. Lastly, we use
R 3 and Sweave to build automatically reports and analysis. R is an open source pro-
gramming language and software environment for statistical computing and graphics.
It supports data manipulation and transformations, as well as sophisticated graphical
displays, which we intensely needed for the analysis of our gather data. Sweave is a
function that enables integration of R code into LaTeX documents. The purpose is to
create dynamic reports, which can be updated automatically if data or analysis change.
In other words Sweave allows us to have both data analysis written in R and explanations
in classic LaTeX in the same file and at the end build final .pdf report directly.

All our code and data are available to anyone interested in reviewing the results or
doing the similar experiments on other platforms. R and Sweave used in the analysis
are both freely available online. We strongly believe this, inspired by the open science
trend, is the best way to accelerate research and to allow more rigorous peer review.

3. R: www.r-project.org

14

4
Experimental Results: Taxonomy of

Unexpected Behaviors

During this master thesis project, we studied the influence of various parameters
grouped in a previously described way. It will be demonstrated in this chapter how
some of these parameters not only affect the absolute values of the final output, but can
also cause completely distinctive behavior.

All observations throughout this work are gathered with the help of our well-structured
methodology, that enabled us to recognize and understand often unexpected results.

4.1 Influence of Stride Parameter

We started this internship by trying to reproduce the results obtained by MultiMAPS
algorithm for small buffer memory size shown on Figure 2.4. One can notice that for
small buffer size that fits into L1 cache, all three strides generate the same bandwidths.
This is due to the fact that once fetched into the cache, all memory accesses are per-
formed inside L1, regardless of the adopted pattern. Additionally, even when looped
back (since inner loop is executed cycles time) the whole buffer is still inside the L1,
therefore there will be no cache misses.

In case when the buffer size is larger than L1 cache, accessing the element that is
outside L1 will result in cache miss and the data will be fetched from L2. Since L2
caches are much slower than L1, it will require longer time to execute the for loop,
therefore the final bandwidth value will be smaller. This explains the drop of the curve
on L1 cache size value. Regarding the different stride performance, it is the easiest to
illustrate it through stride=1 and stride=2 comparison. For stride=1 kernel accesses
all the elements of buffer one by one, then loops back and repeats this cycles times.
For stride=2 kernel accesses every second element, as it traverses through buffer by
two, then loops back and do it again cycles*2 times. In general, both strides will have
approximately the same number of cache misses inside one inner loop run, but stride=2
will execute this loop twice as many times. Therefore, due to the spatial locality of the

15

data and prefetching mechanism, stride=1 will in overall cause less cache misses, hence
the performance will be better.

Additionally, from the Figure 2.4, one can conclude that increasing stride values ac-
cordingly decreases the bandwidths in a very regular way. By closely looking into band-
width values, one can observe that multiplying strides by two lowers the performance
by approximately the same factor. This is consistent with the previous explanation about
the stride influence on bigger buffer size measurements.

This simple benchmark was allegedly dependent only on stride and buffer size, al-
though when we tried to reproduce it we encountered the opposite. There are numerous
parameters that have severe influence on measurements and we will discuss some of
them in the following sections. Here these parameters are already carefully manually
tuned, so we can concentrate solely on stride and buffer size. First, we will show how
it is possible to achieve the results that do resemble to the ones from Figure 2.4. After
that, we will demonstrate the existence of many pitfalls regarding stride selection, on
both ARM and Intel processors.

4.1.1 Stride Influence in General
Figure 4.1 displays the experiment for strides 1,2,4,8,16,32 on Intel Sandy Bridge

processor. 42 repetitions have been performed, for the buffer size values ranging from
1KB to 100KB and the results have been represented with the boxplots. If looking only
on strides 1,2,4, one can recognize the behavior similar to what we expected, based on
Figure 2.4. There are two clean plateaus and sharp drop of performance between them.
Different strides produce same bandwidths inside L1 cache, but different bandwidths
for larger buffer size. Nevertheless, bigger strides already introduce some differences.
The bandwidths for bigger strides, for small buffer size that is inside L1 cache, are
lower than for the strides 1,2,4. Additionally, the difference in performance for larger
buffer size between strides start to fade after stride=8. Furthermore, anticipated drop of
performance by the factor two is not present even for the initial strides.

We remind that these results were obtained after carefully choosing environment
setup. Additionally, strides used in this experiment are all (apart from starting point
stride=1) multiples of 2. For the different stride selection, results are much more irreg-
ular.

16

Figure 4.1: Optimistic results on Intel Sandy Bridge: 2 plateaus with a sharp drop be-
tween them; lower performance for larger strides for buffer size values bigger than L1
cache; 42 repetitions; buffer size 1KB-100KB; boxplots with average values line and
dotted outliers; strides 1,2,4,8,16,32.

4.1.2 Unexpected Behavior Caused by Different Strides

Anomalies on Intel architecture

Figure 4.2 shows the results from the same Intel Sandy Bridge processor, with the
same experiment setup previously described only difference being that this measure-
ments were performed for the strides 32,64. On this plot, one can still observe the drop
of performance on L1 cache size, along with the plateaus for the bigger buffer size.
Nevertheless, the behavior for smaller buffer size values, the ones inside L1 cache, is
completely different. Instead of clean plateaus, there is high variability that almost looks
like a measurement noise. As a matter of fact, these deviations are not random at all,
since the additional experiments with the same input parameters proved that these atyp-
ical patterns are completely reproducible.

17

Figure 4.2: Atypical behavior inside L1 cache on Intel Sandy Bridge: unexpected, re-
producible pattern for both strides for small buffer size. 42 repetitions; buffer size 1KB-
100KB; boxplots with average values line and dotted outliers; strides 1,2,4,8,16,32.

Anomalies on ARM architecture

Figure 4.3 depicts the results from ARM Snowball processor, for strides 8,10,12,14,16.
Buffer size ranges from 1KB to 50KB, with the boxplots representing 42 repetitions for
each stride and buffer size. Left plot is showing only strides 8,16. Although there is a
sufficient noise for buffer size values around L1 cache size (that will be explained in
section 4.3), one can still observe the drop of average performance (represented by the
solid line) caused by the buffer size getting to big to fit L1 cache. However, on right
plot that displays all strides (8,10,12,14,16), one can see that intermediate stride values
(10,12,14) do not induce performance drop, as the bandwidth values are uniform even
when the buffer size goes larger than L1 cache size.

Explanation

One could expect slightly different performance when changing the stride parameter
in for loop, but certainly not completely unique patterns. Without the complete access

18

Figure 4.3: No drop on L1 cache size for strides 10,12,14 on ARM Snowball: strides
10,12,14 counterintuitively have better performance than stride 8; 42 repetitions;
buffer size 1KB-50KB; boxplots with average values line and dotted outliers; strides
8,10,12,14,16.

19

to the hardware implementation details, it is hard find the satisfactory explanation for
this unexpected behavior.

We did not go into deep investigation of what is causing described anomalies, as it
was not our primary objective. The goal of this internship was not to find and explain
all odd behaviors that can occur in measurements using our simple kernel. We only
wanted to explore which parameters have the significant influence. These experiments
are a good illustration of how very simple programs (just like our kernel), from which
we expect regular behavior, can produce surprising results.

4.2 Noticable Behavior Change with Large Buffer
Size

In previous section we presented measurements for buffer memory size that is small
enough to fit into L1 cache or it is slightly exceeding it. The results for larger mem-
ory sizes, the ones that reach the limits of L2 cache and go beyond it, have their own
characteristics.

In the related work (Figure 2.4), one could observe the sharp drop when the buffer
size exceeds the L2 cache size. This is caused by the fact that the buffer cannot fit into L2
cache memory, therefore our simple kernel will have more L2 cache misses. Data will be
fetched from the main memory (or L3 cache if it exists) and it takes more time (cycles)
to do it, hence the overall time of execution of our kernel will be longer. Thought by our
previous experience, we expected to have to do a lot of parameters tuning in order to
get results similar to the ones on Figuree 2.4, but that we will reach them at the end. On
contrary, once again we obtained unforeseen results.

The experiments were performed on ARM Snowball and Intel Sandy Bridge proces-
sors whose full memory hierarchy along with the other architectural differences can be
found in chapter 2.1 . It is important to point out here that the L2 cache size is different
for each of them, ARM having 512KB and Intel 256KB L2 cache size. Although ARM
appears to be superior, which is counter-intuitive, we remind that Intel Sandy Bridge
has three level of caches, with the 8MB shared L3 cache, while ARM has only two lev-
els. Another substantial distinction between L2 on these architectures is that on ARM
it is shared between two cores, while on Intel it is private. Nevertheless, we ensured
that this last characteristics do not make the influence on our results, since no external
process (except the system ones from operating system) was running on the second core
on ARM during the whole experimentation period.

4.2.1 Smooth Performance Drop
Figure 4.4 represents the results for larger buffer memory size from both ARM

Snowball (left plot) and Intel Sandy Bridge (right plot) processors. The strides are 1,2,4
but only the average values are shown on both plots. The observed behavior is analogous

20

on two machines: The performance decrease “smoothly“, there is neither clean plateaus
neither sharp drop on L2 cache size. In additional experiments we proved that changing
the element type and loop unrolling only changed the absolute values of the bandwidths,
but the shape of the curves stayed the same.

Figure 4.4: Smooth performance drop on ARM Snowball (left) and Intel Sandy Bridge
(right): large buffer size; presenting only average values; strides 1,2,4.

There could be various causes for different behavior of L1 and L2 cache. Primary,
all the L1 cache characteristics have the influence on L2 results as well, since most
of the memory accesses even for large buffer memory size are still inside L1 cache.
Respectively, for buffer memory size that exceeds the L2 cache size and goes into main
memory (ARM) or L3 (Intel), there is an influence of both L1 and L2 cache. Secondary,
the internal organization of L1 and L2 caches are not the same, with possibly different
cache eviction and prefetching techniques which have severe influence on performance.

4.2.2 Performance Variability
Another interesting phenomenon we observed on larger buffer size experiments is

regarding measurement noise. The average values do not vary from one measurement
to another, but the confidence intervals of our results are bigger comparing to the small
buffer size experiments. Although there is not a lot of outliers, the overall noise of
experiments is not negligible any more. The one desiring to model the caches could
not solely rely on average values, since this variation is significant enough to severely
influence the final performance prediction.

Figure 4.5 on the left plot displays the same measurement on ARM Snowball as
the Figure 4.4, but with the all values obtained from the experiment. Strides 1,2,4 can

21

still clearly be seen on the plot, but with much more noise. On the right plot of the
Figure 4.5, there is a measurement from the same machine (ARM Snowball), but for
the smaller values of buffer size. This plot also represents the strides 1,2,4 although it
cannot be seen in the first part of the graph, while the buffer fits into L1 cache. It is
due to the fact that the stride has no influence for the small buffer memory size, as it
was explained in section 4.1. By comparing two graphs, one can recognize how for the
smaller buffer size all the single measurement are very closely grouped together (plot
on the right), while for the larger buffer size there is a substantial noise (plot on the left).

Figure 4.5: High performance variability on ARM Snowball: comparing large buffer
size (left) with smaller buffer size (right); presenting all measurement values; strides
1,2,4.

Additionally, Figure 4.5 clearly shows how the drop on L1 cache size is much
sharper than the one on L2, as already explained in subsection 4.2.1.

22

4.3 Influence of Allocation Strategy

Experiments on Snowball show that even though there was very little noise in our
measurements, from one run to another we were getting very different results. The en-
vironment setup and input parameters were completely the same for all experiments.
Figure 4.6 shows results of 4 consecutive experiments on Snowball, for stride that is
equal to 1. Other strides we have tried in our experiments demonstrated similar behav-
ior, which is the reason they are not displayed on the plots. 42 repetitions for each buffer
memory size (on each plot) are represented by the boxplots. One can observe that there
is very little variability in each experiment, but that the performance drop occurs on dif-
ferent places. Extreme values of buffer memory size were always exhibiting the same
behavior, but the middle part (around L1 cache size) was unpredictable. This applies not
only for these 4, but to all experiments we have done on ARM, since we encountered
the same issue on Tegra 3 quad-core ARM Cortex A9 1.4GHz from Tibidabo cluster in
Barcelona. On contrary, this issue was never present in any Intel machine we have used.

Figure 4.6: Reproducibility issue on ARM Snowball: 4 consecutive experiments with
identical input parameters behaving differently; 42 repetitions for each buffer size de-
picted by boxplots show no noise for each single experiment; only showing stride=1.

23

After much efforts, we finally found the source of this surprising phenomenon. It
comes from the way OS on ARM allocates physical memory pages. In some cases,
nonconsecutive pages in physical memory for buffer memory size around 32KB (the
size of L1 cache) are allocated, which causes much more cache misses, hence the drop
of overall performance. Furthermore, during one experiment run, OS is likely to reuse
the same pages, as we do malloc/free repeatedly for each buffer size. Hence, buffer
starts from the same physical memory location for each buffer memory size during one
experiment, which explains why there is no noise in the results.

To corroborate our claims, we tried different memory allocation technique. In the
initial kernel, we were using individual malloc function call for each memory size and
repetition to allocate buffer, after that executing for loop and finally freeing the memory.
In the alternative version, we were doing only one memory allocation at the beginning
of our program for all the measurements. We would allocate one big memory block
(e.g. 2 MB), much bigger than our maximum buffer memory size (in these experiments
50KB). After that, for each memory size and repetition, we would randomly choose the
starting point inside our big memory, i.e. we would perform memory accesses in for
loop on randomly chosen small part inside our allocated big memory block. This way,
we planned to experience the influence of different physical memory pages during the
one experiment run and not always use the same.

Figure 4.7 supports our assumptions. Plot shows all single measurements, 42 for
each memory size when using alternative memory allocation technique. Solid line is
displaying the average values for each buffer size. This curve is behaving according to
our first expectations from these measurements, with possibly only slightly less sharp
angle of the performance drop due to the L1 cache size. Regarding variability on this
figure, although at first sight it resembles to the random noise, if inspecting more closely
one can recognize some regular patterns which represent the same behaviors as the
examples from Figure 4.6.

If we have used second allocation technique from the start and concentrated only on
maximum values of bandwidths, we would observe very regular behavior with a clean
drop on L1 cache size. This way we would miss this physical memory allocation phe-
nomenon, which eventually in modeling process could lead us to incorrect predictions.
The same applies to the case of using only average values, as they would hide this high
variation of results for the measurements around L1 cache size. This is a good example
of how our methodology and decision to keep all data without any aggregation proved
beneficial. It provided us with the opportunity to notice anomalies in our experiments
which with the approach from related work would have been missed.

24

Figure 4.7: Explanation for strange results on ARM Snowball: using alternative memory
allocation technique; all 42 repetitions represented by dots; solid line for average values;
only showing stride=1.

4.4 Influence of Code Optimizations
In previous experiments we were mostly interested in trends of our measurements

when buffer memory size is growing, i.e. the “shape“ of the average values curve. We
presumed that the absolute value of the bandwidth depend mostly on the processor and
memory bus frequencies. These parameters are always well known for each machine,
therefore including them in the equation for the final model should not be hard. Nev-
ertheless, there are some optimization techniques that can have severe influence on the
bandwidth values (and surprisingly on the “shape of the curve“ as well) and they will
be discussed in this section.

If we inspect more precisely the implementation of our code, the heart of the kernel
(for loop) looks as following:

f o r (j =0 ; j < b u f f e r s i z e ; j +=STRIDE)
{

sum+= b u f f e r [j] ;
}

25

Since the values inside buffer are completely random, we are not interested in the
final result of the variable sum. Its sole purpose is to ensure desired memory accesses
will be indeed performed and not discarded by compiler as dead code. Since simple
addition, as the one performed here, takes sufficiently less CPU cycles than the memory
access of the element inside the buffer, we can unreservedly claim that the memory
speed and memory hierarchy is completely dictating the execution time of such code.

Evidently, any optimizations to this for loop would improve the execution time and
consequently the bandwidth values would increase. We will demonstrate two techniques
to do so, one changing the type of the buffer and the other regarding loop unrolling.

4.4.1 Changing the Size of Element

First optimization is concerning the type of the element our buffer is composed of.
In the initial version of the code, buffer is a large array of integers. Integer size in C lan-
guage is 32b (bits) (4 Bytes), from which follows that if the whole buffer memory size
is 1KB (which is the minimal value we start our experiments) the buffer is composed of
1024B/4B=256 integers. If we change the buffer type and take for example long long int
which is 64b (8B), for the same array size 1KB we would have two times less elements
in the buffer (1024B/8B=128). The loop iterator is traversing whole buffer memory size
element by element (multiplied by stride), hence for the long long int (64b) case we
will have two times less iterations than for the int (32b). Since the final bandwidths are
computed as the total number of accesses divided by the execution time of the loop,
doubling element size should double the bandwidths as well.

This is a good example of how data level parallelism can improve the performance.
Since increasing CPU frequency has reached its limits due to the high power consump-
tion, hardware manufacturers are trying to use this feature along with increasing the
number of cores and the size of caches in order to build faster machines. That is the
reason why new generations of processors introduce hardware support for vectorized
instruction. The main idea behind vectorized instructions is to pack the standard vari-
ables into larger vectors and then instead of performing the operation on each element
do it on the whole vector. This is known as SIMD (Single Instruction Multiple Data).
For example in our case, if one needs to do the sum of 256 (32b) integers, it would be
much more efficient to do the sum of 32 (256b) vectors, each composed of 8 integers. Of
course, special instructions need to be added to the processor instruction set to unable
performing these kind of operations. Another drawback is that programers who want
to benefit from this feature need to change their habitual approach. They need to use
specific libraries and adjust their programing style to them.

In our experiments on Intel Sandy Bridge, we used SSE3 hardware extension for
128b vectors composed of two 64b long long int. For the 256b variables, we encountered
a problem. Although AVX hardware extension supports vectors composed of integers
(and long long integers), it does not support their addition. This feature will only be
introduced in new Intel processors, still not available on the market. That is why we

26

were obliged to use vectors composed of doubles, whose addition is supported by AVX.
We are aware of the fact that comparing integer and double addition can be dangerous,
since they do not use the same processor pipeline stages. Even though memory accesses
are still the bottleneck of our simple program, we performed experiments and especially
the comparisons extremely cautiously. It is important to point out that the goal of this
internship was not to achieve maximum performance of our simple algorithm, but rather
to investigate all possible influential parameters and build a model based on them.

On ARM Snowball we used “NEON“, Advanced SIMD extension that is a combin-
ing 64b and 128b single instruction multiple data (SIMD) instruction set. Once again
we encountered an issue that resembled to the one with the AVX on Intel. Particularly,
The ARM Cortex A9 processors (family Snowball belongs to) do have the support for
128-bit vectors, but they can execute instructions with just 64b at a time. In other words
our code cannot fully benefit from this optimization.

4.4.2 Loop Unrolling

Second optimization involves loop unrolling. Loop unrolling is a code transforma-
tion technique that tries to minimize branch penalty by unwinding the code inside the
loop in order to lower the program’s execution time. The price is paid in binary size of
the code that increases drastically (space-time tradeoff). Nowadays, optimized compil-
ers often perform unrolling automatically or upon request. In our experiments we have
done it manually.

The code of our unrolled, optimized loop is displayed here:

f o r (j =0 ; j < b u f f e r s i z e ; j +=STRIDE *8)
{

sum+= b u f f e r [j] ;
sum+= b u f f e r [j +STRIDE] ;
sum+= b u f f e r [j +2*STRIDE] ;
sum+= b u f f e r [j +3*STRIDE] ;
sum+= b u f f e r [j +4*STRIDE] ;
sum+= b u f f e r [j +5*STRIDE] ;
sum+= b u f f e r [j +6*STRIDE] ;
sum+= b u f f e r [j +7*STRIDE] ;

}

It is important to indicate that we have done only experiments with unrolling by the
factor of 8, as we learned from the experts that the optimal number is often around this
value. We do not claim that we achieved maximum performance with this number, but
neither that was our objective. Our intention was only to examine whether this optimiza-
tion has an influence on bandwidths and whether it is significant. Additionally, for the
better comparison reasons, we wanted to do the unrolling by the same factor on all our

27

processors with all configuration setups. In fact, optimal factor for each architecture,
even for the simple kernel as this one, probably differs.

4.4.3 Evaluation on Intel
Intel Sandy Bridge experiments are displayed on Figure 4.8. Only stride=1 mea-

surement are presented, as other ones behave similarly. The results from 42 repetitions
for each buffer memory size are represented by the boxplots, which due to very high
precision (very little noise) almost resemble to the line. Plots in the left column depict
the results measured with the initial kernel (no loop unrolling), while on the right are the
ones with 8 times unrolled loop. Rows are showing the results depending on the element
type of the buffer, more precisely the size of the element (32b, 64b, 128b, 256b).

As it can be observed, increasing element type from 32b int to 64b long long int
practically doubles the bandwidths. This trend, only a bit mitigated, continues with the
vectorized instructions as values increase even more. Loop unrolling also has a positive
effect, as the bandwidths increase in all cases except one. For the 256b vectorized in-
structions with loop unrolling, in the place where we expected the highest values, the
actual results are extremely low. As it was not the primary goal of our work and we were
constrained by the time, we did not fully investigate the reasons behind this anomaly.
We assume that it is connected to the fact that the 256b vectors are composed of doubles
and not ints, but we have nothing to corroborate that hypothesis. For that reason, we
will exclude the results from 256b element type measurements from the further analy-
sis, although we think it was important to mention them, since they are a good example
of how unexpected results for this kind of measurements can be.

Another very important phenomenon demonstrated by these plots comes from the
“shape of the curves“. One can observe that difference between the buffer memory size
that is fitting L1 cache and the bigger ones is becoming more noticeable as the absolute
values of bandwidth rise. Even more, for the 32b element type there is no drop at all
when buffer size is getting out of the cache size. The cause for this behavior comes
from the fact that we are not using the full capacity of our processor. When we add loop
unrolling and increase element size, we are going towards the true boundaries of the
processor, hence the limitations of the hardware are becoming more evident.

This implies that there could be some other deviations hidden each time we are not
reaching the full potential of our machine. One can recognize that only with these two
factors (element type and loop unrolling), we have achieved very distinctive results. In
the context of modeling caches, this fact can become very troublesome.

28

Figure 4.8: Influence of code optimizations on Intel Sandy Bridge: adding loop unrolling
and changing buffer element size can increase performance and change curve pattern;
42 repetitions; buffer size 1KB-100KB; boxplots with dotted outliers; only showing
stride=1.

4.4.4 Evaluation on ARM

Concerning the results from ARM Snowball, they are depicted on the Figure 4.9.
Once again, since there is very little noise in these experiments, boxplots representing
42 repetitions of each buffer size, almost resemble to the line. The plots are organized
analogous to the Intel results depicted on previous figure. The only difference is that on
Figure 4.9 there is no plots for 256b element type, since such hardware support does not

29

yet exist for ARM processors. The fact that the drop of performance occurs on different
places before L1 cache size is already described in section 4.3 and we will ignore it
now, since it is the artifact of another parameter. We are now concerned only about the
bandwidth value depending on the optimizations used.

Figure 4.9: Influence of code optimizations on ARM Snowball: adding loop unrolling
and changing buffer element size can increases performance and change curve pat-
tern; 42 repetitions; buffer size 1KB-50KB; boxplots with dotted outliers; only showing
stride=1.

Similar to Intel results, changing element type from 32b int to 64b long long int
doubles the bandwidths. Additionally, using loop unrolling on both element types also

30

increases the bandwidth drastically.
Although the fact that 128b element size does not increase performance may at first

appear as unexpected, it is actually due to the ARM Cortex A9 characteristics. These
ARM processors do have the SIMD extension for 128b vectors, but they can execute
instructions with only 64b per cycle. Additionally, loop unrolling has no influence on
128b vectorized instructions.

It is also important to notice that on ARM, contrary to the Intel, the drop caused by
buffer memory size getting bigger than L1 cache is present in all cases, even when no
optimization technique is used.

Finally, we can observe that, as expected, distinctive microarchitectures behave dif-
ferently when some optimizations are applied to the code executed on them. First char-
acteristics are absolute values of bandwidth they can achieve, which come primary from
the differences in processor and memory frequencies. Second, more interesting, is the
trend (shape) of the curve, i.e. changes optimizations make on drop at L1 cache size.

4.5 Influence of Compiler Optimization Option
Another way to optimize the performance is regarding the compilation options. As

our code is written in pure C language, we used “gcc compiler“ on both ARM and Intel
machines. Various feature on gcc compiler have the unique goals when optimizing code,
so it is not a surprise that using different options produces distinctive final results.

Although we have tried all levels, the best and most interesting results came from
last two optimization flags. Gcc -O2 optimization enables all supported optimizations
within the given architecture that do not involve a space-speed trade-off. On contrary,
the third (-O3) and highest level enables even more optimizations by putting emphasis
on speed over size. This includes optimizations enabled at -O2 and rename-register. The
optimization inline-functions are also enabled here, which can increase performance but
also can drastically increase the size of the object, depending upon the functions that are
inlined. Although -O3 can produce fast code, the increase in the size of the image can
have adverse effects on its speed. For example, if the size of the image exceeds the
size of the available instruction cache, severe performance penalties can be observed.
Therefore, in some cases it may be better simply to compile at -O2 to increase the
chances that the image fits in the instruction cache.

We point out once again that we were recompiling our code for each measurement.
Together with the optimization level, we were also logging the report of the compiler in
order to capture any possible anomalies.

Figure 4.10 depicts results from ARM Snowball for two described compiling op-
tions. For each memory size there are 42 measurements, represented by small dots on
both plots and solid lines connect the maximums. As all stride values we have tested
behave similarly, we here present only the results for stride=1.

The noise around L1 cache size is already explained in section 4.3 and we will
concentrate now only on maximum bandwidths these experiments have scored.

31

For the smaller buffer memory size, gcc=-O2 option (plot on the right) is not achiev-
ing the same bandwidths as gcc=-O3 (plot on the left). It can be observed that gcc=-O2
is reaching the boundaries in some cases (peaks for some memory sizes just before
L1 cache size), but the gcc=-O3 option is securing these bandwidths during the whole
period inside L1 cache. To conclude, the gcc=-O3 optimization is producing substan-
tial speed up for our simple kernel. Nevertheless, it would be unreasonable to assume
that this compiling option is better for other kernels, even the very similar ones. This
stresses even more our claim that there are many setup configuration parameters that
can drastically influence final performance prediction.

Figure 4.10: Different compilation optimization on ARM Snowball: -O3 providing bet-
ter performance than -O2 for small buffer size; all 42 repetitions for buffer size 1KB-
50KB are presented; solid line for maximum values; only showing stride=1.

Even though the results from Figure 4.10 are coming from ARM Snowball machine,
we have observed the same behavior on Intel architectures. It is important to state that
when other optimization techniques are enabled (loop unrolling and different element
type), the differences between gcc levels gradually fade. It applies to both ARM and
Intel microarchitectures. This demonstrates how particular parameters may or may not
have the influence, depending on the rest of the configuration. It makes potential mod-
eling of the machine behavior even harder.

32

4.6 Influence of OS Scheduling Policy

Although our kernel is very simple, single-threaded and we were alone on the ma-
chine while performing experiments, inevitably some external influence still existed.
Primary, there was an operating system with its own processes running on processor in
parallel. To minimize the influence, we removed all the unnecessary OS services, leav-
ing only the elemental ones. Additionally, the core on which our program is executed
was strictly pinned, in order to avoid potential changing of the core during the run-time.

Another important parameter is OS scheduler, since the way it is giving access to
system resources directly affects the execution time of the code. Experiments with dif-
ferent scheduling policies were performed and we will demonstrate how in some cases
on ARM architectures these can produce distinctive results.

The ARM Snowball measurements previous displayed were all obtained for the de-
fault scheduling priority. When executing the same experiments with “nice“ priority,
we observed equivalent results. Nevertheless, with real-time priority we encountered a
peculiar anomaly.

Figure 4.11 shows the results of the experiment on ARM Snowball with the real-
time priority. 42 repetitions for each buffer size ranging from 1KB to 50KB has been
performed with stride=1 (other strides behave similarly). All single measurements have
been displayed on both plots as they represent the same experiment. Left plot is orga-
nized the same way as all the other plots previously presented, while right plot has a
different x-axis.

Variations for bigger buffer memory size are explained in section 4.3 and we will
ignore them in this analysis. We will focus solely on the presence of the two modes of
execution.

First mode, the one with the higher bandwidth values is similar to the results we
have obtained with other scheduling priorities.

Second mode, absent in previous experiments, has the bandwidth values that are
almost 6 times lower. From the solid line that represents the average values (on the left
plot), one can also conclude that this second mode is present in between 20-25% of the
time.

This observation is even more clear when looking on the graph on the right side
of the Figure 4.11. This plot is displaying the same data as the experiment on the left,
with as usual y-axis representing the bandwidth values, but with x-axis changed, now
representing the sequence order. Sequence order is the order in which our single mea-
surements inside one experiment are conducted. As the order of using different buffer
memory size values is completely randomized, approximately the same number of sec-
ond mode execution is present for all buffer memory size values.

What is even more important to notice from the right plot is that the whole second
mode occurred as “one big block“, i.e. throughout one period of time during the whole
experiment execution. This is very significant, as it is pointing to the fact that the second
mode is almost certainly caused by some external process that was running in parallel

33

on the same core during that period of time. We were convinced even more in this
assumption when we did additional experiments with equal setup parameters as they
provided similar results.

Figure 4.11: Real-time priority on ARM Snowball: 2 modes of execution; same data file
on Bandwidth vs. Size plot (left) and Bandwidth vs. Sequence order plot (right); all 42
repetitions for each buffer size 1KB-50KB are presented; solid line for average values
(left plot); only showing stride=1.

This anomaly could have probably been avoided if we had performed our exper-
iments on a “bare metal“, i.e. without operating system. There would be no external
influence and additionally the final bandwidths would be even higher. Nevertheless, the
purpose of this internship was not to achieve the best performance but to evaluate it in
a realistic environment. The future HPC code is going to run on the machines that will
possess similar OS, not on “bare metal“. We are interested in investigating cache behav-
ior in an environment that simulates the ones that will be loaded on future processors.

One can again recognize that our choice do postpone the aggregation of data along
with logging all the relevant information during the experimentation process, proved
to be crucial. For example, solely looking at average value would only show as that
real-time priority is slower, but it would completely hide the relevant information about
the existence of the two modes of execution. Finally, although this anomaly was exclu-
sive to ARM architectures, there is no guarantee that it may not occur on some Intel
microarchitectures we have not tested or on the ones with a different OS setup.

34

5
Conclusion and Future Work

Conclusion

This work has been done in the context of future HPC systems that will certainly
be composed from large number of multicore processor. Due to the power consumption
limitations, it is very likely that this future platforms will be built from more energy-
efficient processor, such as ARM. Nevertheless, ARM processors have never been used
so far on such a large scale and their behavior when executing HPC code is unknown.

Performance prediction, required to carefully plan large computer platforms, com-
monly rely on accurate processor models. However, previous models from the architec-
tures used in such platforms might not be appropriate representation of ARM charac-
teristics. Thus, this research is an important step towards better understanding of ARM
architecture in the described context. Results obtained during this internship met some
of our expectations and on the other hand showed some surprising phenomenons, but
they all provide immense contribution for future use of ARM processor in HPC pro-
graming.

Numerous experiments regarding CPU caches on several different processor mi-
croarchitectures (from ARM and Intel families) have been performed. Although sim-
plistic kernel was used, the results intensively varied depending on environment setup
and optimizations. One can conclude from our experiments that predicting cache behav-
ior is very difficult and that there are many parameters with great influence on the final
results. Additionally, specific architectures have their own characteristic features (e.g.
physical address issue on ARM), which makes any prediction even harder.

However good performance and estimations are still possible, but it requires a lot
of careful tuning of all the parameters. One could question the motives for doing so, as
it might not represent the realistic environment in which the future applications will be
executed.

35

Apart from actual results, we have presented very clean, coherent and well-structured
methodology that can be used in performance evaluation, not only in HPC area. We de-
compose our workflow into several steps and traverse through them carefully, logging
all relevant information, as numerous parameters on every level can cause distinctive
behavior. Later, we demonstrate how this systematic approach enabled us to distinguish
anomalies that would have been missed otherwise.

This whole research has been done in the open science trend. In contrast to the
PMaC[9][8], this work with all its source code, data and experiment analysis is publicly
available. Additionally, our smooth, intuitive methodology makes it easy for everyone
to reproduce the experiments and contribute to this research topic.

Future Work

We decided to restrict the scope of our research to thorough study of the simplis-
tic kernel. Nevertheless, it would be interesting to investigate slightly modified code,
adding functions that put more pressure on CPU. Even then, the program could still be
memory bounded, but it might not be generating same bandwidth patterns.

Next natural step would be to try a multi-threaded version of our code. Since data
would be shared among the threads, the influence that they would have on each other
would dictate the overall performance.

Another direction would be to try running multiple instances of this simple kernel on
the same machine. This way threads would be sharing processor resources, but not using
the same data, thus the behavior would be different from the one with multi-threaded
version of the program.

Loop unrolling has proved beneficial to the overall performance of our program.
We have tried to do the unrolling only 8 times, as this number was suggested to us by
more experienced researchers. Nevertheless, we suspect that the optimal value might not
exactly be this one and that it could be different depending on the processor microarchi-
tecture (possibly some additional parameters as well). Perhaps this optimal value would
not only induce higher bandwidths, but also reveal some behavior not yet present in our
results.

Another interesting feature, in the context of Mont-Blanc project and energy con-
sumption, would be to measure actual power efficiency of our program. Specialized
equipment have been developed for this purpose for ARM, USB device that connects
directly to Snowball board and then captures to power consumption. Unfortunately, we
did not have the opportunity to use this device while performing our experiments.

36

Finally, my personal ambitions are to continue with this work through a Phd. thesis.
The goal would be to build precise models of processors depending on their cache hi-
erarchy, but in an advanced context, investigating multi-threaded kernels on multicore
machines. Later, these models could be used by frameworks like SimGRID 1 in order to
predict performance of future computer platforms.

Although this would be a difficult path, filled with pitfalls similar to the ones en-
countered during this internship, I think that after this invaluable experience, I am well
prepared for the task.

1. SimGRID: simgrid.gforge.inria.fr

37

Appendix

Sample of a Shortened Output File

###
F r i Jun 8 1 5 : 3 7 : 3 5 CEST 2012
###
EXECUTION PRIORITY :
FILE NAME: da ta / Snow2Data0 . d a t
###
VERSION :
L inux v e r s i o n 3.1.0−1−amd64 (Debian 3 .1 .8 −2) (ben@decadent . org . uk)

(gcc v e r s i o n 4 . 6 . 2 (Debian 4 .6 .2 −11)) #1 SMP Tue Jan 10 0 5 : 0 1 : 5 8
UTC 2012

###
CPU INFO :
p r o c e s s o r : 0
v e n d o r _ i d : G e n u i n e I n t e l
cpu f a m i l y : 6
model : 42
model name : I n t e l (R) Core (TM) i7 −2600 CPU @ 3 . 4 0GHz
s t e p p i n g : 7
cpu MHz : 1600 .000
cache s i z e : 8192 KB
p h y s i c a l i d : 0
s i b l i n g s : 8
core i d : 0
cpu c o r e s : 4
a p i c i d : 0
i n i t i a l a p i c i d : 0
f p u : y e s
f p u _ e x c e p t i o n : y e s
c p u i d l e v e l : 13
wp : y e s
f l a g s : f p u vme de pse t s c msr pae mce cx8 a p i c sep mt r r pge mca

cmov p a t pse36 c l f l u s h d t s a c p i mmx f x s r s s e s s e 2 s s h t tm pbe
s y s c a l l nx r d t s c p lm c o n s t a n t _ t s c arch_per fmon pebs b t s rep_good
nop l x t o p o l o g y n o n s t o p _ t s c a p e r f m p e r f p n i pc lmulqdq d t e s 6 4 m o n i t o r

d s _ c p l vmx smx e s t tm2 s s s e 3 cx16 x t p r pdcm sse 4_ 1 s se 4_ 2 x 2 a p i c
po pc n t aes x s a v e avx l a h f _ l m i d a a r a t epb x s a v e o p t p l n p t s d t s
tpr_shadow vnmi f l e x p r i o r i t y e p t v p i d

bogomips : 6784 .71
c l f l u s h s i z e : 64
c a c h e _ a l i g n m e n t : 64
a d d r e s s s i z e s : 36 b i t s p h y s i c a l , 48 b i t s v i r t u a l
power management :
#

38

/ / Here f i l e i s s h o r t e n e d , a s t h e p r o c e s s o r p o s s e s s e s 8 i d e n t i c a l
l o g i c a l c o r e s .

###
SVN REVISION :
Path : Snow2
URL: svn+s s h : / / s t a n i s i c _ l u k a @ s c m . g f o r g e . i n r i a . f r / s v n r o o t / memo /

p e o p l e / l s t a n i s i c / Snow2
R e p o s i t o r y Root : svn+s s h : / / s t a n i s i c _ l u k a @ s c m . g f o r g e . i n r i a . f r /

s v n r o o t / memo
R e p o s i t o r y UUID: 71 a86571−7a23−0410−9aa8−cd970210d03d
R e v i s i o n : 14129
Node Kind : d i r e c t o r y
L a s t Changed Author : s t a n i s i c _ l u k a
L a s t Changed Rev : 14126
L a s t Changed Date : 2012−06−07 2 1 : 1 6 : 2 1 +0200 (Thu , 07 Jun 2012)
#
###
COMPILATION :
gcc −I$HOME / i n c l u d e −L$HOME/ l i b / −g −w −O3 −DVERBOSE −DTYPE=" i n t "

−DVECTOR="0" −msse3 −mavx −D_GNU_SOURCE −c −o k e r n e l . o k e r n e l . c
gcc −I$HOME / i n c l u d e −L$HOME/ l i b / −g −w −O3 −DVERBOSE −DTYPE=" i n t "

−DVECTOR="0" −msse3 −mavx −D_GNU_SOURCE k e r n e l . o −lm − l r t −o
k e r n e l

rm k e r n e l . o
###
#PARAMETERS FOR INPUT GENERATOR:
42 =SEED / / Seed f o r random number g e n e r a t o r
1 =N_ARRAYS / / Number o f a r r a y s
2 =N_REP / / Number o f r e p e t i t i o n s o f t h e whole measerement f o r 1

s t r i d e
1024 =N_CYCLES / / Number o f l o o p s f o r 1 N_REP , f o r s m a l l v a l u e s

o f memory s h o u l d be 32768
1 =MIN_MEM / / S t a r t i n g a r r a y s i z e , t h e s m a l l e s t s i z e ; When MODE=4

t h e s e v a l u e s are i g n o r e d
50 =MAX_MEM / / Ending a r r a y s i z e , t h e b i g g e s t s i z e ; When MODE=4

t h e s e v a l u e s are i g n o r e d
1024 =TYPE_MEM / / The s i z e o f one b l o c k i n memory , i f 1024=>1KB
1 =MIN_STRIDE / / S t a r t i n g s t r i d e s i z e , t h e s m a l l e s t s i z e
4 =MAX_STRIDE / / Ending s t r i d e s i z e , t h e b i g g e s t s i z e
3 =MODE / / Mode f o r p r o d u c i n g i n p u t f i l e : 1=REGULAR; 2=INVERT ; 3=

RANDOM; 123=ALL 3 MODES; 4=FIXED MEMORY; 5=FIXED STRIDES
#THESE PARAMETERS ARE USED ONLY IN SPECIAL CASES (MODE=4 | | MODE=5)

:
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 0 / / For FIXED MEMORY

MODE: Va lu es o f t h e MEM
1 13 17 3 9 0 / / For FIXED STRIDES MODE: Va lu es o f t h e STRIDE
#
!PARAMETERS FOR KERNEL:
3 =GCC / / GCC o p t i m i z a t i o n 0= d e f a u l t ; 2=−02; 3=−03

39

4 =CORE / / Core on which t h e program w i l l be e x e c u t e d . 99 i s f o r
n o t s p e c i f i e d .

1 =ALLOCTYPE / / Type o f t h e b u f f e r : 1= i n t ; 2= long long i n t ; 3=
v e c t o r i z e d i n s t r u c t i o n s

42 =SEED / / Seed f o r random number g e n e r a t o r
1 =EXEMODE / / E x e c u t i o n mode : 1=STANDARD; 2=LOOP UNROLLING
1024 =ACCESSES_SQR / / Number o f a c c e s s e s f o r EXEMODE=3 , s t i l l n o t

s t a b l e t o use
1 =ALLOCMODE / / A l l o c a t i o n mode o f memory : 1=MALLOC; 2=STATIC FOR

BIGGEST MEMORY SIZE ; 3=ALLOCATING WITHOUT FREEING ; 4=ONE BIG FOR
RANDOM ACCESS

2100 =STATIC_SIZE / / I f ALLOCMODE=2 or ALLOCMODE=4 , t h i s i s t h e
s i z e o f s t a t i c a l l y a l l o c a t e d memory i n TYPE_MEM (number o f b l o c k s)
, 2100 d e f a u l t v a l u e f o r ALLOCMODE=4

1024 =TYPE_MEM / / The s i z e i n b y t e s o f one b l o c k i n memory f o r
s t a t i c a l memory a l l o c a t i o n f o r ALLOCMODE=2 or ALLOCMODE=4 , 1024=1
KB

###
MEASUREMENTS=
NUM STRIDE SIZE ADDRESS START_TIME END_TIME TIME

BANDWIDTH MODE EXEMODE
0 1 19456 0 x20d9490 1339162656.524169 1339162656.528627

0 .004458 4261 .978909 3 1
1 1 47104 0 x20d9490 1339162656.528887 1339162656.539663

0 .010776 4268 .692675 3 1
2 1 7168 0 x20d9490 1339162656.539708 1339162656.541354

0 .001646 4252 .400632 3 1
3 1 43008 0 x20d9490 1339162656.541551 1339162656.546983

0 .005432 7732 .017123 3 1
4 1 11264 0 x20d9490 1339162656.547010 1339162656.548162

0 .001152 9552 .425448 3 1
5 1 1024 0 x20d9490 1339162656.548169 1339162656.548277

0 .000108 9244 .023739 3 1
6 1 22528 0 x20d9490 1339162656.548322 1339162656.550482

0 .002159 10187.633047 3 1
7 1 3072 0 x20d9490 1339162656.550491 1339162656.550794

0 .000303 9907 .562442 3 1
8 1 36864 0 x20d9490 1339162656.550865 1339162656.554464

0 .003598 10004.821768 3 1
9 1 23552 0 x20d9490 1339162656.554511 1339162656.556828

0 .002316 9929 .959248 3 1
10 1 40960 0 x20d9490 1339162656.556908 1339162656.560923

0 .004014 9964 .523804 3 1
/ / Here f i l e i s s h o r t e n e d , a s t h e a c t u a l d a t a i s t o o b i g .
ID o f t h i s measurement = 71061504; T o t a l t i m e : 0 .825522 s e c

40

Bibliography

[1] S. Browne, J Dongarra, N. Garner, K. London, and P. Mucci. A portable program-
ming interface for performance evaluation on modern processors. The Interna-
tional Journal of High Performance Computing Applications, 14:189–204, 2000.

[2] Christine Jacqmot. Load Management in Distributed Computing Systems: Towards
Adaptive Strategies. PhD thesis, Universite catholique de Louvain, 1996.

[3] R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1 edition,
April 1991.

[4] Jack L. Lo, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm, and
Dean M. Tullsen. Converting thread-level parallelism to instruction-level paral-
lelism via simultaneous multithreading. ACM Transactions on Computer Systems,
15:322–354, 1997.

[5] J. D. McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Technical Committee on Computer Architecture (TCCA)
Newsletter, Dec 1995.

[6] Douglas C. Montgomery. Design and Analysis of Experiments, Student Solutions
Manual. Wiley, August 2005.

[7] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Pro-
ducing wrong data without doing anything obviously wrong! SIGPLAN Not.,
44(3):265–276, March 2009.

[8] Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and
Avi Purkayastha. A framework for performance modeling and prediction. In Pro-
ceedings of the 2002 ACM/IEEE conference on Supercomputing, Supercomputing
’02, pages 1–17, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[9] Mustafa M Tikir, Laura Carrington, Erich Strohmaier, and Allan Snavely. A ge-
netic algorithms approach to modeling the performance of memory-bound com-

41

putations. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
SC ’07, pages 47:1–47:12, New York, NY, USA, 2007. ACM.

[10] Vincent M. Weaver and Sally A. Mckee. Are cycle accurate simulations a waste
of time?

42

