Full multicondition training for robust i-vector based speaker recognition

Dayana Ribas 1 Emmanuel Vincent 2 José Ramon Calvo 1
2 MULTISPEECH - Speech Modeling for Facilitating Oral-Based Communication
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : Multicondition training (MCT) is an established technique to handle noisy and reverberant conditions. Previous works in the field of i-vector based speaker recognition have applied MCT to linear discriminant analysis (LDA) and probabilistic LDA (PLDA), but not to the universal background model (UBM) and the total variability (T) matrix, arguing that this would be too much time consuming due to the increase of the size of the training set by the number of noise and reverberation conditions. In this paper, we propose a full MCT approach which consists of applying MCT in all stages of training, including the UBM and the T matrix, while keeping the size of the training set fixed. Experiments in highly nonstationary noise conditions show a decrease of the equal error rate (EER) to 14.16% compared to 17.90% for clean training and 18.08% for MCT of LDA and PLDA only. We also evaluate the impact of state-of-the-art multichannel speech enhancement and show further reduction of the EER down to 10.47%.
Type de document :
Communication dans un congrès
Interspeech 2015, Sep 2015, Dresden, Germany. 2015
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

Contributeur : Emmanuel Vincent <>
Soumis le : mardi 2 juin 2015 - 00:07:08
Dernière modification le : jeudi 11 janvier 2018 - 06:27:31
Document(s) archivé(s) le : lundi 24 avril 2017 - 21:37:29


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01158774, version 1


Dayana Ribas, Emmanuel Vincent, José Ramon Calvo. Full multicondition training for robust i-vector based speaker recognition. Interspeech 2015, Sep 2015, Dresden, Germany. 2015. 〈hal-01158774〉



Consultations de la notice


Téléchargements de fichiers