M. Wölfel and J. Mcdonough, Distant Speech Recognition, 2009.

L. Deng, Front-end, back-end, and hybrid techniques for noiserobust speech recognition, " in Robust Speech Recognition of Uncertain or Missing Data -Theory and Applications, pp.67-99, 2011.

K. S. Rao and S. Sarkar, Robust Speaker Recognition in Noisy Environments, 2014.
DOI : 10.1007/978-3-319-07130-5

J. A. Arrowood and M. A. Clements, Using observation uncertainty in HMM decoding, Interspeech, pp.1561-1564, 2002.

L. Deng, J. Wu, J. Droppo, and A. Acero, Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion, IEEE Transactions on Speech and Audio Processing, vol.13, issue.3, pp.412-421, 2005.
DOI : 10.1109/TSA.2005.845814

M. Delcroix, T. Nakatani, and S. Watanabe, Static and Dynamic Variance Compensation for Recognition of Reverberant Speech With Dereverberation Preprocessing, IEEE Transactions on Audio, Speech, and Language Processing, vol.17, issue.2, pp.324-334, 2009.
DOI : 10.1109/TASL.2008.2010214

R. F. Astudillo, Integration of short-time Fourier domain speech enhancement and observation uncertainty techniques for robust automatic speech recognition, 2010.

D. Kolossa and R. Haeb-umbach, Robust speech recognition of uncertain or missing data, 2011.
DOI : 10.1007/978-3-642-21317-5

A. H. Abdelaziz, S. Zeiler, D. Kolossa, V. Leutnant, and R. Haeb-umbach, GMM-based significance decoding, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.6827-6831, 2013.
DOI : 10.1109/ICASSP.2013.6638984

D. Tran, E. Vincent, and D. Jouvet, Extension of uncertainty propagation to dynamic MFCCS for noise robust ASR, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5507-5511, 2014.
DOI : 10.1109/ICASSP.2014.6854656

URL : https://hal.archives-ouvertes.fr/hal-00954654

X. Zhao, Y. Dong, J. Zhao, L. Lu, J. Liu et al., Variational Bayesian Joint Factor Analysis Models for Speaker Verification, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.3, pp.1032-1042, 2012.
DOI : 10.1109/TASL.2011.2170972

A. Ozerov, M. Lagrange, and E. Vincent, Uncertainty-based learning of acoustic models from noisy data, Computer Speech & Language, vol.27, issue.3, pp.874-894, 2013.
DOI : 10.1016/j.csl.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-00717992

C. Yu, G. Liu, S. Hahm, and J. H. Hansen, Uncertainty propagation in front end factor analysis for noise robust speaker recognition, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.
DOI : 10.1109/ICASSP.2014.6854356

V. Hautamäki, Y. Cheng, P. Rajan, and C. Interspeech, Minimax i-vector extractor for short duration speaker verification, pp.3708-3712

T. Stafylakis, P. Kenny, P. Ouellet, J. Perez, M. Kockmann et al., Text dependent speaker recognition using PLDA with uncertainty propagation, pp.3684-3688

P. Kenny, T. Stafylakis, P. Ouellet, M. J. Alan, and P. Dumouchel, PLDA for speaker verification with utterances of arbitrary duration, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.7649-7653, 2013.
DOI : 10.1109/ICASSP.2013.6639151

D. Reynolds, Large population speaker identification using clean and telephone speech, IEEE Signal Processing Letters, vol.2, issue.3, p.4648, 1995.
DOI : 10.1109/97.372913

P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, Joint factor analysis versus eigenchannels in speaker recognition Front-end factor analysis for speaker verification, IEEE Transactions on Audio, Speech, and Language Processing IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.19 4, pp.14351447-788, 2007.

C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

A. El-solh, A. A. Cuhadar, and R. A. Goubran, Evaluation of Speech Enhancement Techniques for Speaker Identification in Noisy Environments, Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007), 2007.
DOI : 10.1109/ISM.Workshops.2007.47

J. Ming, T. J. Hazen, J. R. Glass, and D. A. Reynolds, Robust Speaker Recognition in Noisy Conditions, IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.5, pp.1711-1723, 2007.
DOI : 10.1109/TASL.2007.899278

Y. Lei, L. Burget, L. Ferrer, M. Graciarena, and N. Scheffer, Towards noise-robust speaker recognition using probabilistic linear discriminant analysis, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4253-4256, 2012.
DOI : 10.1109/ICASSP.2012.6288858

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.5165

D. Martinez, L. Burget, T. Stafylakis, Y. Lei, P. Kenny et al., Unscented transform for ivector-based noisy speaker recognition, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4042-4046, 2014.
DOI : 10.1109/ICASSP.2014.6854361

E. Vincent, J. Barker, S. Watanabe, J. L. Roux, F. Nesta et al., The second ‘chime’ speech separation and recognition challenge: Datasets, tasks and baselines, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.126-130, 2013.
DOI : 10.1109/ICASSP.2013.6637622

D. Garcia and C. Espy-wilson, Analysis of i-vector length normalization in speaker recognition systems, pp.249-252, 2011.

A. Ozerov, E. Vincent, and F. Bimbot, A General Flexible Framework for the Handling of Prior Information in Audio Source Separation, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.4, pp.1118-1133, 2012.
DOI : 10.1109/TASL.2011.2172425

URL : https://hal.archives-ouvertes.fr/inria-00536917

Y. Salaün, E. Vincent, N. Bertin, N. Souvirà-a-labastie, X. Jaureguiberry et al., The flexible audio source separation toolbox version 2.0, " in Show and Tell of ICASSP, 2014.

M. Radovanovic, A. Nanopoulos, and M. Ivanovic, Hubs in space: Popular nearest neighbors in high dimensional data, Journal of Machine Learning Research, vol.11, pp.2487-2531, 2010.

C. Aggarwal, A. Hinneburg, and D. Keim, On the Surprising Behavior of Distance Metrics in High Dimensional Space, ICDT, pp.420-434, 2001.
DOI : 10.1007/3-540-44503-X_27

D. François, V. Wertz, and M. Verleysen, The Concentration of Fractional Distances, IEEE Transactions on Knowledge and Data Engineering, vol.19, issue.7, pp.873-886, 2007.
DOI : 10.1109/TKDE.2007.1037

D. Schnitzer, A. Flexer, and J. Schlüter, The relation of hubs to the Doddington zoo in speaker verification, EUSIPCO, 2013, pp.1-5

D. Schnitzer, A. Flexer, M. Schedl, and G. Widmer, Local and global scaling reduce hubness in space, Journal of Machine Learning Research, vol.13, pp.2871-2902, 2012.