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Abstract. Rewriting Logic is a simply, flexible, and powerful framework
for specifying and analysing concurrent systems. Reachability Logic is a
recently introduced formalism, which is currently used for defining the
operational semantics of programming languages and for stating prop-
erties about program executions. Reachability Logic has its roots in a
wider-spectrum framework, namely, in Rewriting Logic Semantics. In
this paper we show how Reachability Logic can be adapted for stating
properties of transition systems described by Rewriting-Logic specifica-
tions. We propose a procedure for verifying Rewriting-Logic specifica-
tions against Reachability-Logic properties. We prove the soundness of
the procedure and illustrate it by verifying a communication protocol
specified in Maude.

1 Introduction

Since its original formulation [1] by José Meseguer, Rewriting Logic (rwl) has
been defined both as a semantical framework, suitable for describing concurrent
and distributed systems, and as a logical framework, i.e. a meta-logic where other
logics can be naturally represented. Both directions have dynamic and strong
development. A concurrent system is specified by a rewrite theory (Σ,E,R),
where Σ defines the syntax of the system and of its states, E defines the states
of the system as an algebraic data type, and R is a set of rewriting rules defining
the local transitions of the system. rwl deduction consists of a set of inference
rules used to prove sequents t→ t′, meaning that the term-pattern t "becomes"
t′ by concurrently applying the rewrite rules R modulo the equations E. Here
the relation "becomes" refers the dynamics of the specified concurrent system.

Maude [2] is the most well-known and most used implementation of rwl.
Maude is accompanied by a set of tools for analysing rewrite theories and the
systems they describe.

Reachability Logic (hereafter, rl) was introduced in a series of papers [3,4,5,6]
as means for specifying the operational semantics of programming languages and



for stating reachability properties between states of program executions. Reach-
ability Logic is a very promising framework. It has emerged from the Rewriting
Logic Semantics project introduced by José Meseguer and Grigore Roşu [7].
Briefly, an rl formula ϕ ⇒ ϕ′ expresses reachability relationships between two
sets of states of a system, denoted by the patterns ϕ and ϕ′ respectively. De-
pending on the interpretation of formulas, the relationships can express either
programming-language semantic steps, or safety properties of programs in the
languages in question. Several widely-used languages (including C [8], Java [9])
have been completely specified using an rl-based semantics in the K tool [10],
and nontrivial programs have been proved using an implementation of rl4.

Contributions. In this paper we show that rl can be used beyond its (by now,
traditional) domain of programming languages. Specifically, we adapt rl for
stating properties of systems described in Rewriting Logic [11] (hereafter, rwl).
We propose a procedure for proving rl properties of rwl specifications, we prove
the soundness of our procedure, and illustrate its use by verifying rl properties
of a communication protocol written in Maude [2].

Our contribution with respect to rl is a proved-sound verification procedure.
Previous works [3,4,5,6] include sound and relatively complete proof systems for
various versions of rl, but these systems lack strategies for rule applications,
making them unpractical for verification; our procedure can be seen as such a
strategy.

With respect to rwl, our contribution is the adaptation of the above pro-
cedure for verifying rwl theories against reachability properties ϕ ⇒ ϕ′, which
say that all terminating executions starting from a state in the set ϕ eventually
reach a state in the set ϕ′. Both ϕ and ϕ′ denote possibly infinite sets of states.
We note that rl properties for rwl theories are different from the reachability
properties that can be checked in Maude using the search command or the
Linear Temporal Logic (ltl) model checker [2]. The difference resides in the
possibility of using first-order logic for constraining the initial and the final state
terms, and in the interpretation of rl formulas. Specifically, the version of rl
that we consider (the all-paths interpretation) corresponds to a subset of ltl
interpreted on finite paths, whereas Maude’s ltl model checker uses the stan-
dard (infinite-paths) interpretation of ltl; and both the model checker and the
search command are bound to checking reachability properties starting from
finitely many initial states by exploring finitely many execution paths.
Related work. We focus only on related verification approaches for rwl spec-
ifications. These fall under the usual classification of verification techniques:
algorithmic ones, which essentially consist in using an automatic model che-
cker; deductive ones, which involve an interaction with a theorem prover; and
abstraction-based ones, which consist in first reducing the state-space of a sys-
tem from unmanageable (e.g., infinite/large) to manageable (e.g., finite/small),
a step that typically involves human interaction, and then using a model checker
on the reduced system.
4 Available at http://www.matching-logic.org/index.php/Special:MatchCOnline.
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Algorithmic techniques include Maude’s finite-state ltl model checker [12]
with its more recent extensions to the temporal logic of rewriting [13], and a
narrowing-based symbolic model-checker for handling classes of infinite-state
systems [14]. Among the deductive techniques, [15,16] propose two different ap-
proaches for reducing safety properties of rwl to equational reasoning, and
then using equational reasoning tools for proving the resulting encoded prop-
erties. We note that the encoding of rwl into equational logic was proposed
earlier in [17] for defining the semantics of rwl. Among the abstraction-based
techniques, equational abstractions [18], and algebraic simulations [19] are key
contributions.

Finally, our verification procedure uses an operation called derivative that
consists in computing the symbolic successors of a given set of states (represented
by a formula). This symbolic computation is inspired from [20,21].
Outline. After preliminaries in Section 2, we introduce in Section 3 the notion of
derivative, which is essential for our approach. We then introduce in Section 4
our procedure for verifying rl properties on transition systems also defined by
rl formulas, and state its soundness. In Section 5, we adapt our approach to
transition systems defined by rwl theories. We illustrate in Section 6 the us-
ability of our procedure by applying it to a communication protocol described
in Maude. Proofs of the technical results are included in an Appendix.
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2 Preliminaries

2.1 Matching Logic

We recall the syntax and the semantics of Matching Logic (ml) as presented
in [3]. Since ml is based on the many-sorted first-order logic (fol), we recall
first the basic definitions from fol.

Given S a set of sorts, an S-sorted first order signature Φ is a pair (Σ,Π),
where Σ is an algebraic S-sorted signature and Π is an indexed set of the form
{Πw | w ∈ S∗} whose elements are called predicate symbols, where π ∈ Πw

is said to have arity w. A Φ-model consists of a Σ-algebra M together with a
subset Mp ⊆Ms1 × · · · ×Msn for each predicate p ∈ Πw, where w = s1 . . . sn.

Next, we define the syntax of fol formulas over a first order signature Φ =
(Σ,Π) and a possible infinite S-indexed set of variables Var . We let S denote
the set of sorts in Φ and TΣ(Var) the algebra of Σ-terms with variables in Var .

The set of Φ-formulas is defined by

φ ::= > | p(t1, . . . , tn) | ¬φ | φ ∧ φ | (∃V )φ



where p ranges over predicate symbols Π, each ti ranges over TΣ(Var) of appro-
priate sort, and V over finite subsets of Var .

Given a first order Φ-model M ,a Φ-formula φ, and a valuation ρ : Var →M ,
the satisfaction relation ρ |= φ is defined as follows:

1. ρ |= >;
2. ρ |= p(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈Mp;
3. ρ |= ¬φ iff ρ |= φ does not hold;
4. ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
5. ρ |= (∃V )φ iff there is ρ′ : Var →M with ρ′(X) = ρ(X), for all X 6∈ V , such

that ρ′ |= φ.

A formula φ is valid in M , denoted byM |= φ, if it is satisfied by all valuations ρ.
We recall below the ml concepts and results used in this paper. Their pre-

sentation is based on [3].

Definition 1 (ml Formulas). An ml signature Φ = (Σ,Π,State) is a first-
order signature (Σ,Π) together with a distinguished sort State for states. The
set of ml-formulas over Φ is defined by

ϕ ::= π | > | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃V )ϕ

where the basic pattern π ranges over TΣ,State(Var), p ranges over predicate
symbols Π, each ti ranges over TΣ(Var) of appropriate sorts, and V over finite
subsets of Var .

The sort State is intended to model system states. The free occurrence of vari-
ables in ml formulas is defined as usual (i.e., like in fol) and we let FreeVars(ϕ)
denote the set of variables freely occurring in ϕ. We often use particular ml
formulas ϕ , π ∧ φ, where π represents a state and φ is a fol formula used for
constraining this state.

Example 1. Assume that S includes the sorts Nat ,State, Σ includes a binary
operation symbol 〈_,_〉 : Nat × Nat → State, and Π the predicate symbols
div and _>_, with arguments of sort Nat . Then ϕ , 〈x, y〉 ∧ (∃z)((z > 1) ∧
div(z, x) ∧ div(z, y)) is an ml formula. We have FreeVars(ϕ) = {x, y}.

Definition 2 (ml satisfaction relation). Given Φ = (Σ,Π,State) an ml
signature, M a (Σ,Π)-model, ϕ an ml formula over Φ, γ ∈ MState a state,
and ρ : Var → M a valuation, the satisfaction relation (γ, ρ) |= ϕ is defined as
follows:

1. (γ, ρ) |= π iff ρ(π) = γ;
2. (γ, ρ) |= >;
3. (γ, ρ) |= p(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈Mp;
4. (γ, ρ) |= ¬ϕ iff (γ, ρ) |= ϕ does not hold;
5. (γ, ρ) |= ϕ1 ∧ ϕ2 iff (γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2; and
6. (γ, ρ) |= (∃V )ϕ iff there is ρ′ : Var →M with ρ′(X) = ρ(X), for all X 6∈ V ,

such that (γ, ρ′) |= ϕ.



Example 2. Let M be a model defined such that MNat is the set of natu-
ral numbers, M< is the inequality "greater than" over natural numbers, and
Mdiv (m,n) holds iff m divides n. Let ϕ denote the ml formula 〈x, y〉∧ ((∃z)(z >
1) ∧ div(z, x) ∧ div(z, y)). If we consider ρ(x) = 4 and ρ(y) = 6 then we have
(〈4, 6〉, ρ) |= ϕ because ρ(〈x, y〉) = 〈4, 6〉 and ρ |= ((∃z)(z > 1) ∧ div(z, x) ∧
div(z, y)). We do not have (〈3, 5〉, ρ) |= ϕ because ρ(〈x, y〉) 6= 〈3, 5〉. Even if we
consider ρ′(x) = 3 and ρ′(y) = 5 we still have (〈3, 5〉, ρ′) 6|= ϕ because there is
no m greater than 1 such that Mdiv (m, 3) and Mdiv (m, 5) hold.

Definition 3 (fol encoding of ml). If ϕ is an ml-formula then ϕ=? is the
fol formula (∃z)ϕ′, where ϕ′ is obtained from ϕ by replacing each basic pattern
occurrence π with z = π, and z is a variable that does not occur in ϕ.

Example 3. Here are a few examples of ml formulas and their fol encodings:
ϕ ϕ=?

(π1 ∧ φ1) ∨ (π2 ∧ φ2) (∃z)((z = π1 ∧ φ1) ∨ (z = π2 ∧ φ2))
¬π (∃z)¬(z = π)

π1 ∧ ¬π2 (∃z)((z = π1) ∧ ¬(z = π2))

π ∨ ¬π (∃z)(z = π ∨ ¬(z = π))

The relationship between ml formulas and their fol encodings is given by
the following result:

Proposition 1. ρ |= ϕ=? iff there is γ such that (γ, ρ) |= ϕ.

The following proposition is needed later for our soundness result.

Proposition 2. If φ is a fol (i.e. structureless) formula, then (φ ∧ ϕ)=? is
equivalent to φ ∧ ϕ=?. Moreover, if ρ |= φ and (γ, ρ) |= ϕ then (γ, ρ) |= φ ∧ ϕ.

Example 4. We consider first an ml formula including two state terms. Let ϕ
denote the ml formula 〈x, y〉 ∧ x < 5 ∧ 〈u, v〉 ∧ 8 < v. Then ϕ=? is equivalent
to (∃z)z = 〈x, y〉 ∧ z = 〈u, v〉 ∧ x < 5 ∧ 8 < v, which in turn is equivalent to
〈x, y〉∧ = 〈u, v〉∧x < 5∧8 < v. We have ρ |= ϕ=? iff ρ(〈x, y〉) = ρ(〈u, v〉)∧ρ(x) <
5 ∧ ρ(v) > 8 iff (γ, ρ) |= ϕ, where γ = ρ(〈x, y〉) = ρ(〈u, v〉).

If ϕ1 is an ml formula not including a state term (i.e., it is structureless
according to ml terminology), then ϕ=?

1 is the same with ϕ1.

2.2 Reachability Logic

In this section we recall reachability-logic formulas, the transition systems that
they induce, and their all-paths interpretation [6]. We consider a fixed ml sig-
nature Φ = (Σ,Π,State), a set of variables Var , and a fixed Φ-model M .

Definition 4 (rl Formulas). An rl formula is a pair ϕ⇒ ϕ′ of ml-formulas.



Definition 5 (Transition-System Specification). An rl transition-system
specification is a set S of rl-formulas. The transition system defined by S
over M is (MState ,⇒S), where ⇒S = {(γ, γ′) | (∃ϕ ⇒ ϕ′ ∈ S)(∃ρ)(γ, ρ) |=
ϕ ∧ (γ′, ρ) |= ϕ′}. We write γ ⇒S γ′ for (γ, γ′) ∈ ⇒S .

Example 5. The following set of rules is meant to compute the gcd of two natural
numbers:

S = {〈x, y〉 ∧ x > y ∧ y > 0⇒ (∃k)〈y, x− k ∗ y〉 ∧ x ≥ k ∗ y ∧ k > 0,

〈x, y〉 ∧ y ≥ x⇒ 〈y, x〉}
.

We further assume that M interprets + and ∗ as being the usual operations
over natural numbers; m − n is the difference between m and n, if m > n, or
0, otherwise. Examples of transitions are: 〈8, 2〉 ⇒S 〈2, 0〉 as instance of the first
rule, and 〈8, 10〉 ⇒S 〈10, 8〉 and 〈2, 2〉 ⇒S 〈2, 2〉 as instances of the second rule.

In the sequel we consider a fixed transition system (MState ,⇒S).

Definition 6 (Execution Paths). An execution path is a (possibly infinite)
sequence of transitions τ , γ0 ⇒S γ1 ⇒S · · · .

If i ≥ 0 then τ |i.. is the execution path consisting of the (possibly infinite)
subsequence starting from γi, if any. An execution path is complete iff it is not
a strict prefix of an another execution path.

A pair (τ, ρ), consisting of an execution path τ , γ0 ⇒S · · · and a valuation
ρ, starts from an ml formula ϕ if (γ0, ρ) |= ϕ.

Example 6. Examples of executions are τ , 〈8, 10〉 ⇒S 〈10, 8〉 ⇒S 〈8, 2〉 ⇒S
〈2, 0〉 and τ ′ , 〈8, 10〉 ⇒S 〈10, 8〉 ⇒S 〈8, 2〉 ⇒S 〈2, 2〉 ⇒S 〈2, 2〉 ⇒S · · · . Both
executions are complete.

Since an infinite execution path cannot be the prefix of an another one, it
follows that infinite execution paths are complete and hence the above definition
is slightly different from that given in [6].

Definition 7 (All-Paths Interpretation of rl formulas). We say that a
pair (τ, ρ) satisfies an rl formula ϕ ⇒ ϕ′, written (τ, ρ) |= ϕ ⇒ ϕ′, iff (τ, ρ)
starts from ϕ and one of the following two conditions holds: there exists i ≥ 0
such that (γi, ρ) |= ϕ′ or τ is infinite. We say that ⇒S satisfies ϕ⇒ ϕ′, written
⇒S |= ϕ⇒ ϕ′, iff (τ, ρ) |= ϕ⇒ ϕ′ for all (τ, ρ) starting from ϕ with τ complete.

We let [[ϕ ⇒ ϕ′]] , {τ | (∃ρ)(τ, ρ) |= ϕ ⇒ ϕ′}. If F is a set of rl formulas,
then [[F ]] =

⋃
ϕ⇒ϕ′∈F [[ϕ⇒ ϕ′]].

Example 7. An rl formula specifying that any execution path satisfying it com-
putes the greatest common divisor (gcd) is 〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y),
where gcd is a predicate symbol with the interpretation: Mgcd(d,m, n) holds iff
d is the gcd of m and n. If ρ(x) = 10, ρ(y) = 8, τ and τ ′ are the execution paths
defined in Example 6, then both (τ, ρ) and (τ ′, ρ) satisfy the given formula.



The definition of all-paths interpretation of ml formulas given above is slightly
different from that given in [6], where ⇒S |= ϕ ⇒ ϕ′ iff (τ, ρ) |= ϕ ⇒ ϕ′ for all
(τ, ρ) starting from ϕ with τ finite and complete. By contrast, our definition lets
infinite paths satisfy formulas vacuously. The infinite paths are introduced from
technical reasons,e.g., in order to prove (τ, ρ) |= ϕ⇒ ϕ′ we do not need to prove
or know that τ is finite and complete.

2.3 Rewrite Theories

In this paper we propose a new approach for analysing rewrite theories. Our ap-
proach is dedicated to rewrite theories that model systems having at least some
terminating executions, since nonterminating executions satisfy rl formulas vac-
uously. Communication protocols, such as the one we illustrate our approach on
later in the paper, are an example of such systems. A counterexample are reac-
tive systems, which (in the ideal case) execute forever in interaction with their
environment.

Here we briefly recall the definition for (a particular case of) rewrite theo-
ries and their rewriting relation. A rewrite theory R = (Σ,E ∪ A,R) consists
of a signature Σ, a set of equations E, a set of axioms A, e.g., associativity,
commutativity, identity or combinations of these, a set of rewrite rules R of the
form l → r if b, where l and r are terms with variables and b is a term of a
distinguished sort Bool. We further assume that there is a special constant true
of sort Bool.

In this paper we shall consider rewrite theories R = (Σ,E ∪ A,R) with a
distinguished sort State such that R is topmost w.r.t. State. Moreover, the actual
theories R that we can analyse impose some additional technical restrictions on
their components, which are briefly discussed in Section 5.

We use the standard notation for rwl artefacts: =E∪A denotes the equality
modulo the equations given by E and A, TΣ,E∪A(X) denotes the set of =E∪A-
equivalences classes of Σ-terms with variables in X, TΣ,E∪A , TΣ,E∪A(∅) is the
set of =E∪A-equivalences classes of ground Σ-terms, and FreeVars(t) denotes the
set of variables occurring in the term t5. The relation →R denotes the one-step
rewriting relation defined by applying a rule from R modulo axioms E ∪A over
ground terms of sort State: [u]→R [v] iff there are a rule l → r if b in R and a
(ground) substitution σ : FreeVars(l, r, b)→ TΣ,E∪A such that σ(l) =E∪A σ(u),
σ(r) =E∪A σ(v), and σ(b) =E∪A true.

3 Derivatives of ml and rl Formulas

The notion of derivative is essential for our approach. Roughly speaking, the
derivative of a formula specifies states/execution paths obtained from those sat-
isfying the initial formula after executing one step. For the remaining part of this
5 For the sake of uniformity, we keep the notation FreeVars(t) for the set of variables
occurring in the term t. This is a consistent notation since all occurrences of variables
in term are considered as being free. FreeVars(t1, t2) is FreeVars(t1)∪FreeVars(t2).



section we consider a fixed transition system specification S and its associated
transition system (MState ,⇒S) over a fixed model M .

Assumption 1 In what follows we consider only ml formulas ϕ with the fol-
lowing property: if ϕ does not occur as a member of a rule in S and ϕl ⇒ ϕr ∈ S
then FreeVars(ϕ)∩FreeVars(ϕl, ϕr) = ∅. This is not a real restriction since the
free variable in rules can always be renamed.

Definition 8 (Semantic Definition of Derivatives for rl Formulas). We
say that ϕ1 ⇒ ϕ′ is a S-derivative of ϕ ⇒ ϕ′ if for all (τ1, ρ) |= ϕ1 ⇒ ϕ′ there
is (τ, ρ) |= ϕ⇒ ϕ′ such that τ1 = τ |1...

Example 8. An S-derivative for 〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y) is the fol-
lowing formula: 〈y, x− y〉 ∧ x > y ∧ y > 0⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y).

Definition 9 (Complete Sets of Derivatives). A set D of S-derivatives of
ϕ ⇒ ϕ′ is complete iff [[ϕ1 ⇒ ϕ′]] ⊆ [[D]] for each S-derivative ϕ1 ⇒ ϕ′ of
ϕ⇒ ϕ′.

Example 9. The set
{(∃k)〈y, x− k ∗ y〉 ∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y),

〈y, x〉 ∧ y ≥ x⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y)}
is a complete set of S-derivatives for 〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y).

The next definition and lemma provide us with syntactical means of com-
puting complete sets of derivates for rl formulas.

Definition 10 (Syntactic Definition of Derivative for rl Formulas). If
ϕ is an ml formula then

∆S(ϕ) , {(∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr | ϕl ⇒ ϕr ∈ S}.

If ϕ⇒ ϕ′ is an rl-formula then

∆S(ϕ⇒ ϕ′) , {ϕ1 ⇒ ϕ′ | ϕ1 ∈ ∆S(ϕ)}.

Lemma 1. If ϕ1 ∈ ∆S(ϕ) then ϕ1 ⇒ ϕ′ is an S-derivative of ϕ⇒ ϕ′.

Lemma 2. Let ϕ1 ⇒ ϕ′ be an S-derivative of ϕ⇒ ϕ′, τ1 be an execution path
and ρ a valuation. If (τ1, ρ) |= ϕ1 ⇒ ϕ′ then there is ϕ′1 ∈ ∆S(ϕ) such that
(τ1, ρ) |= ϕ′1 ⇒ ϕ′.

From Lemma 1 and Lemma 2 we directly obtain:

Proposition 3. ∆S(ϕ⇒ ϕ′) is a complete set of S-derivatives for ϕ⇒ ϕ′.



Example 10.
∆S(〈x, y〉∧y ≥ 0)={(∃x′, y′, k)〈y′, x′−k ∗ y′〉 ∧ 〈x′, y′〉=〈x, y〉 ∧ y′ > 0 ∧ x′ > y′

∧ x′ ≥ k ∗ y′ ∧ k > 0 ∧ y ≥ 0,

(∃x′, y′)〈y′, x′〉 ∧ 〈x′, y′〉 = 〈x, y〉 ∧ y′ ≥ x′ ∧ y ≥ 0},
which can be simplified to

∆S(〈x, y〉 ∧ y ≥ 0) = {(∃k)〈y, x− k ∗ y〉 ∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0,

〈y, x〉 ∧ y ≥ x ∧ y ≥ 0},
using the implications M |= 〈x′, y′〉 = 〈x, y〉 −→ (x = x′ ∧ y = y′), M |= (x ≥
k ∗ y ∧ k > 0) −→ x > y and M |= y > 0 −→ y ≥ 0, where M is the model
defined in the previous examples, and −→ is the usual implication in fol.

∆S(〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y)) is the set given in Example 9.

The following definition of S-derivability is used in our verification procedure
for rl formulas. The lemma following it gives an equivalent characterisation in
terms of fol, which enables the checking of S-derivability using smt solvers.

Definition 11 (S-derivability of ml-formulas). An ml formula ϕ is S-
derivable iff there is at least a transition starting from it, i.e., there exist a
model (γ, ρ) |= ϕ and a transition γ ⇒S γ1.

Lemma 3. ϕ is S-derivable iff
∨
ϕ1∈∆S(ϕ) ϕ

=?
1 is satisfiable.

Lemma 3 also shows the strong relationship between the S-derivability of a
ml formula ϕ and the S-derivatives of rl-formulas ϕ⇒ ϕ′. Hence it does make
sense to name the elements of the set ∆S(ϕ) as being S-derivatives of ϕ.

The notion of totality, defined below, is essential for the soundness of our
verification procedure. Intuitively, a transition-system specification S is total if
its rules cover all models (γ, ρ) of any S-derivable formula ϕ. For instance, if
〈x, y〉 ∧ y 6= 0 ⇒ 〈y, x% y〉 ∈ S then in order to be total S must also include a
rule for the case y = 0.

Definition 12. S is total iff for for each S-derivable ϕ and each pair (γ, ρ) such
that (γ, ρ) |= ϕ, there is γ1 such that γ ⇒S γ1.

Note the difference between S-derivability and totality: S-derivability re-
quires to have at least one transition starting from ϕ and the totality requires
to have at least one transition starting from γ for any model (γ, ρ) of ϕ.

The next result enables the use of sit solvers for checking totality.

Proposition 4. S is total iff for each S-derivable ϕ,

M |= ϕ=? −→
∨

ϕ1∈∆S(ϕ)

ϕ=?
1 .

We note that in general smt solvers do not support theories for high-level alge-
braic structures. However, in practice, one can either introduce the theories in
the solver, or use simplifications rules before sending the formulas to the solver.



procedure prove(S, G0, G)

1: if G = ∅ then return success

2: else choose ϕ⇒ ϕ′ ∈ G
3: if M |= ϕ −→ ϕ′ then return prove(S, G0, G \ {ϕ⇒ ϕ′})
4: else if there is ϕc ⇒ ϕ′

c ∈ G0 s. t. M |= ϕ −→ (∃FreeVars(ϕc))ϕc then
5: return prove(S, G0, G \ {ϕ⇒ ϕ′} ∪∆ϕc⇒ϕ′

c
(ϕ⇒ ϕ′))

6: else if ϕ is S-derivable then
7: return prove(S, G0, G \ {ϕ⇒ ϕ′} ∪∆S(ϕ⇒ ϕ′))
8: else return failure.

Fig. 1. rl verification procedure.

4 A Procedure for Verifying rl Properties

We now introduce our procedure for verifying rl properties on transition systems
also defined by rl formulas. We assume given an ml signature Φ and Φ-modelM .

The soundness result, stated below, says that if the procedure returns success
when presented with a given input (consisting of a transition system rl specifica-
tion S, a set of goals G0, and the S-derivatives of G0, then the transition system
⇒S satisfies all the goals. We note that this result is not a trivial consequence of
the soundness of the rl proof system [6]; our initial attempts at proving sound-
ness by reducing it to the soundness of the rl proof system showed that one step
of our procedure corresponds to several (many) steps of the rl proof system.
Thus, the soundness of several nontrivial derived rules of the rl proof system
would have to be proved first before attempting to prove the soundness of our
procedure. We thus opted for a direct proof.

Theorem 1 (Soundness). Let prove be the procedure given in Figure 1. As-
sume that S is total. Let G0 be such that for each ϕc ⇒ ϕ′c ∈ G0, ϕc is S-
derivable and satisfies FreeVars(ϕ′c) ⊆ FreeVars(ϕc). If prove(S, G0, ∆S(G0))
returns success then ⇒S |= G0.

Example 11. Let S be the rl specification defined in Example 5 and G0 ,
{ϕ0 ⇒ ϕ′0}, where ϕ0 ⇒ ϕ′0 is

〈x, y〉 ∧ y ≥ 0⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y).

We illustrate in a step-by-step manner the procedure call prove(S, G0, G), where
G is initially ∆S(G0) = {ϕ1 ⇒ ϕ′0, ϕ2 ⇒ ϕ′0}, and

ϕ1 , (∃k)〈y, x− k ∗ y〉 ∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0⇒ ϕ′0,

ϕ2 , 〈y, x〉 ∧ y ≥ x ∧ y ≥ 0⇒ ϕ′0}.
Let us consider that ϕ1 ⇒ ϕ′0 is the current chosen goal from G. Obviously,

M |= ϕ1 −→ ϕ′0 does not hold. Since M |= x ≥ k ∗y −→ x−k ∗y ≥ 0, we obtain
M |= ϕ1 −→ (∃x′, y′)〈x′, y′〉 ∧ y′ ≥ 0 (i.e. the condition of the if statement at
line 4 holds) and hence the goal ϕ1 ⇒ ϕ′0 is replaced with ϕ11 ⇒ ϕ′0 by the
statement in line 5, where



ϕ0 ⇒ ϕ′
0

ϕ1 ⇒ ϕ′
0 ϕ2 ⇒ ϕ′

0

ϕ11 ⇒ ϕ′
0

ϕ21 ⇒ ϕ′
0 ϕ22 ⇒ ϕ′

0

ϕ211 ⇒ ϕ′
0 ϕ221 ⇒ ϕ′

0

Fig. 2. The graph G corresponding to the prove procedure call for Example 11

ϕ11 , (∃x1, y1, x′1, y′1, k)〈x′1, y′1〉 ∧ gcd(x′1, x1, y1) ∧ 〈y, x− k ∗ y〉 = 〈x1, y1〉
∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0

Since M |= (gcd(x′, y, x − k ∗ y) ∧ k > 0 ∧ x ≥ k ∗ y) −→ gcd(x′, x, y), it
follows that M |= ϕ11 −→ ϕ′0 and the goal ϕ11 ⇒ ϕ′0 is removed from G by the
if statement in line 2.

Now the only goal in G is ϕ2 ⇒ ϕ′0. It is easy to see that M 6|= ϕ2 −→ ϕ′0
and M 6|= ϕ2 −→ (∃FreeVars(ϕ′0))ϕ′0, i.e. the conditions on then lines 3 and 4
do not hold. We have ∆S(ϕ2 ⇒ ϕ′0) = {ϕ21 ⇒ ϕ′0, ϕ22 ⇒ ϕ′0}, where

ϕ21 , (∃k)〈x, y − k ∗ x〉 ∧ x > 0 ∧ y ≥ k ∗ x ∧ k > 0 ∧ y > x⇒ ϕ′0,

ϕ22 , 〈x, y〉 ∧ x ≥ y ∧ y ≥ x ∧ y ≥ 0⇒ ϕ′0}.
The ϕ21 ⇒ ϕ′0 is processed in the same way like ϕ1 ⇒ ϕ′0. Since M |= ϕ22 −→
(∃x′, y′)〈x′, y′〉∧y′ ≥ 0 and hence the goal ϕ22 ⇒ ϕ′0 is replaced with ϕ221 ⇒ ϕ′0
by the if statement in line 4, where

ϕ221 , (∃x1, y1, x′1, y′1, k)〈x′1, y′1〉 ∧ gcd(x′1, x1, y1) ∧ 〈x, y〉 = 〈x1, y1〉
∧ x ≥ y ∧ y ≥ x ∧ y ≥ 0

.

It is easy to see that M |= ϕ221 −→ ϕ′0 and hence the goal ϕ221 ⇒ ϕ′0 is
removed from G by the if statement in line 2.

Now the set of current goals G is empty and the execution of the proce-
dure call prove(S, G0, ∆S(G0)) returns success. The execution of the proce-
dure prove corresponding to this call is graphically represented in Figure 2: the
sinks correspond to the implications on line 3, the forward arrows correspond to
the calls on line 7, and the backward arrows correspond to the calls on line 5 in
the procedure. This graph covers the symbolic executions starting from ϕ0.

Remark 1. A sound approximated check for validity statements M |= ϕ is a pro-
cedure that, when presented with M and ϕ, if it answers true then M |= ϕ.
We conjecture that Theorem 1 still holds when one uses sound approximated
checks for the various validity statements occurring in the procedure (includ-
ing S-derivability and totality of S, which amount to validity, cf. the previous



section). Approximated checks, such as those implemented in smt solvers, are
required here since exact checks do not exist due to undecidability issues.

Remark 2. Theorem 1 says nothing about executions of the procedure that
return failure or that do not terminate. Such outcomes may mean either
⇒S 6|= G0, or⇒S |= G0 but the information contained in the goals G0 is not suffi-
cient for proving them, or, again, that the approximation induced by the validity
checkers was too coarse. It is the user’s burden to come up with a set of goals
containing enough information such that the procedure terminates successfully.

This is similar to proving loop invariants in imperative programs, which re-
quires users to provide a strong-enough invariant (i.e., one that can be proved).

Remark 3. Unlike the original proof system [6] we do not aim at (relative) com-
pleteness for our procedure. The relative completeness result is a very nice but
essentially theoretical construction, which is based on strong assumptions (an
oracle for deciding first-order theories) and is essentially of no practical use (it
does not actually help in finding proofs).

5 Reachability Properties for Rewrite Theories

In this section we show that rl formulas can be used to specify properties of
transition systems defined by rwl theories. This is achieved by extending the
signature of an rwl theory R to an ml-signature, which includes predicates that
can be used to define rl properties of the transition system defined by R.

We also show how the verification procedure in Section 4 can be adapted in
order to take advantage of rwl-specific operations such as matching. More pre-
cisely, we prove that, under reasonable assumptions, a complete set of derivatives
of an rl formula can be computed using standard matching-modulo algorithms.

We note that rl properties for rewrite theories are different from the reacha-
bility properties that can be checked in Maude using the search command. The
difference is given by the possibility of using fol for constraining the initial and
the final state terms, and by the interpretation of rl formulas.

Definition 13 (ml Extension of a Rewrite Theory). Consider a rewrite
theory R = (Σ,E ∪A,R) with a distinguished sort State such that R is topmost
w.r.t. State. An ml extension of R consists of an ml signature (Σ,Π,State)
together with an interpretation (TΣ,E∪A)p ⊆ TΣ,E∪A,s1 × · · · × TΣ,E∪A,sn for
each predicate symbol p ∈ Πs1,...,sn . In this way, TΣ,E∪A is a model of the ml
extension of R.

The above definition allows one to see the operations bop ∈ Σs1...sn,Bool as
predicates bop ∈ Πs1...sn with the interpretation ([t1], . . . , [tn]) ∈ (TΣ,E∪A)bop iff
bop(t1, . . . , tn) =E∪A true. Consequently, each term b of sort Bool defines a fol
formula such that, if ρ : Var → TΣ,E∪A, then ρ |= b iff ρ(b) =E∪A true.

Any rewrite rule l → r if b can be viewed as an rl formula l ∧ b ⇒ r and
the transition relation⇒R is exactly the same with the one-step topmost rewrit-
ing relation →R. This allows one to naturally define when rl formulas specify
properties for rwl theories.



Definition 14 (rl Properties for rwl Theories). An rl property for R =
(Σ,E∪A,R) is an rl formula ϕ⇒ ϕ′, where ϕ and ϕ′ are ml formulas defined
over an ml extension of R (cf. Definition 13). We say that R satisfies ϕ ⇒ ϕ′

iff →R |= ϕ⇒ ϕ′ (cf. Definition 7).

We next focus on adapting the prove procedure for verifying rl properties of
rwl theories. Specifically, we show the derivatives can be computed using match-
ing algorithms (under certain assumptions). We give first a technical definition.

Definition 15 (Ground (E ∪ A)-unifier). Consider a rewrite theory R =
(Σ,E ∪ A,R). Two Σ-terms t and t′ are ground (E ∪ A)-unifiable if there is
σ : FreeVars(t, t′)→ TΣ such that σ(t) =E∪A σ(t′). The substitution σ is called
(E ∪A)-unifier of t and t′.

The following assumptions are required for computing derivatives using match-
ing. The first assumption restricts the class of rl formulas that can be used as
properties to those that are useful in practice (i.e., having more than one pattern,
or having negations of patterns, in either side of formulas is not really useful).

Assumption 2 We assume that FreeVars(b) ⊆ FreeVars(l, r) for each rule l→
r if b in R. In this paper we also assume that the rl properties of rwl theories
R are of particular form (∃X)(π ∧ φ) ⇒ (∃X ′)(π′ ∧ φ′) with FreeVars(φ) ⊆
FreeVars(π) (and hence X ⊆ FreeVars(π)).

The second assumption relates ground unifiers to matching substitutions.

Assumption 3 We assume that for each l → r if b in R with l and π ground
(E ∪A)-unifiable, there is a set of matching substitutions match(l, π) such that

– σ0(l) = π for each σ0 ∈ match(l, π), and
– for each ground E ∪ A-unifier σ of l and π there are σ0 ∈ match(l, π) and
σ′ : FreeVars(π)→ TΣ satisfying σ =E∪A σ

′ ◦ σ06.

Assumption 3 holds under reasonable constraints, cf. the Matching Lemma [21].
In a nutshell, the constraints distinguish a builtin subtheory for the equational
subtheory of the rewrite theory R, with corresponding builtin equations and
axioms, assumed to be manageable by an smt solver; there are no non-builtin
equations, while non-builtin axioms may include the usual combinations of as-
sociativity, commutativity, and unity. The next results show that the matching
substitutions can be used to compute the derivatives of ml formulas and, con-
sequently, the derivatives of rl formulas.

Lemma 4 (Computing ml Derivatives by Matching). Let ϕ ⇒ ϕ′ be an
rl property for R = (Σ,E ∪ A,R), where ϕ , (∃X)π ∧ φ. Then, for each
derivative ϕ1 ∈ ∆R(ϕ) there exists a rewrite rule l→ r if b in R such that

TΣ,E∪A |= ϕ1 ←→
∨

σ0∈match(l,π)

(∃X ∪ FreeVars(r) \ FreeVars(l))σ0(r) ∧ σ0(b) ∧ φ.

6 σ1 =E∪A σ2 iff dom(σ1) = dom(σ2) and (∀x ∈ dom(σ1))σ1(x) =E∪A σ2(x).



The following theorem directly follows from Lemma 4:

Theorem 2 (Computing rl Derivatives by Matching). For each ϕ1 ⇒
ϕ′ ∈ ∆R(ϕ⇒ ϕ′) with ϕ , (∃X)π ∧ φ, there is l→ r if b ∈ R such that

[[ϕ1 ⇒ ϕ′]] = [[
∨

σ0∈match(l,π)

(∃X ∪ FreeVars(r) \ FreeVars(l))σ0(r) ∧ σ0(b) ∧ φ⇒ ϕ′]].

Symbolic Rewrite Rules. We now show that Theorem 2 enables the use of sym-
bolic rewrite rules to efficiently compute derivatives and hence to implement the
procedure prove in rwl. For ϕ , (∃X)(π ∧ φ), let ∆match

R (ϕ⇒ ϕ′) be the set

{(∃X ∪ FreeVars(r) \ FreeVars(l))σ0(r) ∧ σ0(b) ∧ φ⇒ ϕ′

| l→ r if b ∈ R, σ0 ∈ match(l, π)} (1)

We have [[∆match
R (ϕ ⇒ ϕ′)]] = [[∆R(ϕ ⇒ ϕ′)]] by Theorem 2, which implies

that ∆match
R (ϕ⇒ ϕ′) is a complete set of R-derivatives. This allows us to use of

∆match
R in the procedure prove instead of ∆R. Next, we note that formulas ϕ1 ⇒

ϕ′ in ∆match
R (ϕ ⇒ ϕ′) (where ϕ , (∃X)(π ∧ φ)) can be computed by applying

a symbolic rewrite rule of the form l ∧ ψ ⇒ r ∧ b ∧ ψ to the left-hand side of
ϕ ⇒ ϕ′, where ψ is a fresh variable of sort Bool , with a matching substitution
σ0 such that σ0(ψ) = φ. Moreover, ϕ is R-derivable iff there are a rule l→ r if b
in R and σ0 ∈ match(l, π) such that (∃X ∪ FreeVars(r) \ FreeVars(l))σ0(b) ∧ φ
is satisfiable, by Lemma 4. This is equivalent to saying that ϕ is R-derivable iff
the symbolic rewrite rule l ∧ ψ ⇒ r ∧ b ∧ ψ is applicable to ϕ.

Overall, R-derivatives of rl formulas ϕ ⇒ ϕ′ (where ϕ , (∃X)(π ∧ φ)) can
be computed by transforming each rule l → r if b ∈ R into a symbolic rewrite
rule l ∧ ψ ⇒ r ∧ b ∧ ψ and by applying the symbolic rewrite rule. This is how
derivatives are computed in our rwl adaptation of the prove procedure.

6 Verifying rl Properties of a Communication Protocol

We illustrate the theory on a simple communication protocol described in Maude.

Protocol Description. The protocol transmits a file between a sender and a
receiver. The file is a sequence of records. The sender and receiver communicate
through unidirectional, lossy channels, one of which carries messages (a record in
the file, together with a sequence number) from send to receiver, while the other
one carries retransmission requests (natural numbers) from receiver to sender.

Both the sender and the receiver maintain a counter in order to keep track of
the next record to be sent, respectively received. The sender transmits the next
record in the file together with the current value of its counter, which then is
incremented by one. The receiver accepts a message only if the sequence number
of the message is equal to the receiver’s counter; if this is the case, the counter is
incremented and the record from the message is saved. The receiver discards all
other messages (i.e., whose sequence number is not the expected one). It may also
(nondeterministically) request a retransmission, by sending the current value of



--- sender
crl [send_to_R] :
< n, R, L, m, recv > => < s(n),(< fileToSend(n),n >: R), L, m, recv >
if n <= Max .

crl [update_request_from_L] :
< n, R, (resend : L), m, recv > => < resend, R, L, m, recv >
if resend < n .

crl [ignore_request_from_L] :
< n, R, (resend : L), m, recv > => < n, R, L, m, recv >
if resend >= n .

--- receiver
crl [accept_element_from_R] :
< n, (R : < e, nb >), L, m, recv > => < n, R, L, (s m), (recv : e) >

if m == nb .

crl [ignore_element_from_R] :
< n, (R : < e, nb >), L, m, recv > => < n, R, L, m, recv >

if m =/= nb .

crl [send_request_to_L] :
< n, R, L, m, recv > => < n, R, L : m, m, recv>
if m <= Max .

Fig. 3. : Communication Protocol (excerpt).

its counter over the retransmission request channel. This nondeterminism can be
seen as an abstraction of a timeout mechanism, not modeled here for simplicity.

Upon reception of a retransmission request, the sender ignores it if it is greater
than or equal to its counter (indicating a wrong retransmission request). Other-
wise the sender updates its counter to the number it received on retransmission
request channel, in order to start resending messages from that number on.

The protocol’s State structure is given as a constructor with five arguments:

<_,_,_,_,_> : Nat List{Pair} List{Nat} Nat List{Element} -> State,

where Pair is a sort of pairs consisting of an Element and a natural number, and
List{} are parameterised lists. They respectively denote: the index of the next
record to be sent, the sender-to-receiver channel, the receiver-to-sender channel,
the next expected record on the receiver side, and the list of records currently
accepted and stored by the receiver.

The file to be sent is modelled by a function fileToSend : Nat -> Elements,
of size Max. The sender and receiver’s rules are shown in Fig. 3. There are also
rules for the channels losing elements, not shown here due to lack of space.

Reachability Properties. The protocol’s initial state is <0,nil,nil,0,nil>. Its
expected reachability property states that all terminating executions starting
from the initial state should end up in a state of the form

< (s Max),nil,nil,(s Max),file:List{Element}>
where file should satisfy (∀j) 0 ≤ j ≤ Max −→ fileToSend(j) = file[j],
where _[_] is a function returning an element at a given position in a list. (That
is, the file received is the same as the file sent.) In order to specify the constraints



on the final states we defined in Maude a subset of rl, so that the reachability
property specifying the protocol is written as the following Maude rewrite rule:

< 0,nil,nil,0,nil > //\\ True =>
Exists file : < (s Max),nil,nil,(s Max),file >
//\\ Forall j : ((0 <=? j And (j <=? Max)

Implies (fileToSend(j) === file[j]))

The operation _//\\_ is the constructor for our defined subset of ml, which
takes a term of sort State and term of sort FOL and builds a term of sort ML.
Note that the Maude search command cannot be used to prove this RL formula:
to do so it would have to explore all terminating executions starting from the
initial state, which are infinitely many (and can be arbitrarily long).

Thus, we use our verification procedure. Unsurprisingly, the above rl formula
is not enough by itself for our procedure to succeed. For this to happen, a
"helper" rl formula is required, whose right-hand side is the same as for the
one above, but whose left-hand side describes an invariant (to hold for all states
reachable from the initial states):

< n, R, L, m, file > //\\
(Forall j : ((0 <=? j And j <? m)

Implies (fileToSend(j) === file[j]))) And
(Forall e :

Forall nb : (< e, nb > In? R
Implies e === fileToSend(nb))) And

size(file) + 1 === m
=>
Exists file : < (s Max),nil,nil,(s Max),file > //\\
Forall j : ((0 <=? j And (j <=? Max)

Implies (fileToSend(j) === file[j]))

This formula says that the currently received file (whose size is m -1) equals the
portion of the file being sent (up to that size); and that all messages currently
in transition from sender to receiver are records in the fileToSend file. It was
obtained by trial-and-error, while applying the following verification technique.

Verification. We have implemented key functionality from our verification pro-
cedure at Maude’s metalevel. A first transformation is applied to rewrite rules as
described in the Symbolic rewrite rules paragraph of Section 5. This reduces the
application of rules with unification to application with matching. Derivatives
are computed based on matching and rewriting as described in Section 5. We
also use Maude’s metalevel to achieve the following executions of our verification
procedure:

– for the first rl formula (the protocol’s specification): deriving it with respect
to the protocol’s rules S, then applying the second formula as a circularity;

– for the second rl formula (designated above as the "helper" formula): deriv-
ing it with respect to the protocol’s rules, then applying itself as a circularity.

By requiring that these two executions return success, Maude generates several
proof obligations: essentially, that the condition for applying circularities holds
(at line 4 in our verification procedure), and that the condition for returning



success (line 3) also holds. Several of those proof obligations are discharged au-
tomatically by simplification rules we included in Maude (e.g., that fol disjunc-
tion is commutative). The remaining ones are axioms satisfied by the assumed
model for the various elements in our problem domain (e.g., lossy channels, files
consisting on records, and natural numbers). For example, one proof obligation
says that if all messages in a channel contain records from the fileToSend file,
then by losing a message all the remaining messages satisfy the same property.

There are four such proof obligations left after automatic simplification. We
have (manually) checked that they hold (in the assumed model for our problem
domain). The trial-and-error process for finding the helper rl formula consisted
in examining the generated proof obligations, and noting that some do not hold
unless more information is added about the problem domain.

7 Conclusion and Future Work

In this paper we propose a procedure for verifying reachability properties on
symbolic transition systems. While the reachability properties are stated as rl
formulas, we allow symbolic transition systems to be described by either rl
specifications or by rwl specifications. We prove that our procedure is sound.
We show with a concrete example that our procedure works in practice.

The paper also contributes to establishing connections between rl and rwl.
In [22] it is shown how rl specifications can be encoded as rwl theories. Here, we
take an alternative approach, which consists in using rl as a property language
for rwl. The proposed procedure adapted for rwl can be implemented in Maude,
using reflection and the recently added support for sat checking and one-step
rewriting modulo smt using the CVC4 library (http://cvc4.cs.nyu.edu/).

In terms of future work there are several directions to follow. First, starting
from our prototype, we shall develop a tool in the Maude environment that will
efficiently implement our procedure; we envision that the tool will generate proof
obligations to be discharged by Maude’s inductive theorem prover itp [23]. We
also intend to formalise in the Coq proof assistant our procedure and its sound-
ness proof in order to be able not only to verify properties but also to generate
certificates. Finally, we will use the extraction mechanism of Coq to obtain cer-
tified OCaml code for our procedure and use it as a reference implementation.
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Proofs of Technical Results

Proof of Proposition 1, Page 5. We use the notation convention from Def. 3.
⇐. If (γ, ρ) |= ϕ then we consider ρ′ such that ρ′(z) = γ and ρ′(x) = ρ(x) for all
x 6= z. We obtain ρ′ |= ϕ=, which implies ρ |= (∃z)ϕ=.
⇒. Let � be a fresh variable (� 6∈ Var) of sort State and ϕ� defined in the same
way like ϕ=, but using � instead of z. Note that ϕ� is defined on a extended
signature. If ρ : Var →M and γ ∈MState , then let ργ : Var ∪ {�} →M denote
the extension of ρ with ρ(�) = γ. By Proposition 1 in [3] we have ργ |= ϕ�

iff (γ, ρ) |= ϕ. Assume that ρ |= ϕ=?. It follows that for any extension ρ′ of
ρ to Var ∪ {�} we have ρ′ |= ϕ=?. Since ϕ=? can be obtained from (∃�)ϕ�

by alpha conversion, we obtain ρ′ |= (∃�)ϕ�. It follows that there exists ρ′′ :
Var ∪ {�} → M such that ρ′′(x) = ρ′(x) for x 6= � and ρ′′ |= ϕ�. Since ρ′
extends ρ, we obtain ρ′′(x) = ρ(x) for x ∈ Var . If we take γ = ρ′′(�), then
ρ′′ = ργ and hence (γ, ρ) |= ϕ. ut

Proof of Proposition 2, Page 2. The fol formula φ=? is the same as φ because
φ has no basic patterns, and hence φ=? is equivalent to φ because the existential
variable z does not occur in φ. It follows that (φ ∧ ϕ)=? , (∃z)(φ ∧ ϕ)= is
equivalent (∃z)(φ= ∧ ϕ=), which in turn is equivalent to φ ∧ (∃z)ϕ=, which is
the same as φ ∧ ϕ=?.

We now prove the second part of the proposition. By Proposition 1 and
(γ, ρ) |= ϕ we obtain ρ |= ϕ=?. By applying the definition of the fol satisfaction
relation to ρ |= φ and ρ |= ϕ=? we obtain ρ |= φ ∧ ϕ=?, which, by the first part
of this proposition, is equivalent to ρ |= (φ ∧ ϕ)=?. Then, using Proposition 1
and its proof we obtain that (γ, ρ) |= φ ∧ ϕ, which concludes the proof. ut

Proof of Lemma 1, Page 8. Assume that ϕ1 is (∃FreeVars(ϕl, ϕr))(ϕl∧ϕ)=?∧ϕr
for some ϕl ⇒ ϕr ∈ S. If [[ϕ1]] = ∅ then ϕ1 ⇒ ϕ′ is an S-derivative of ϕ⇒ ϕ′ by
Definition 8. Assume [[ϕ1]] 6= ∅, i.e. there exists (τ1, ρ1) starting from ϕ1, with



τ1 , γ1 ⇒S · · · . Then

(γ1, ρ1) |= ϕ1 ←→
(∃ρ)(γ1, ρ) |= ((ϕl ∧ ϕ)=? ∧ ϕr) ←→
(∃ρ)(ρ |= (ϕl ∧ ϕ)=? ∧ (γ1, ρ) |= ϕr) ←→
(∃ρ)((∃γ0)(γ0, ρ) |= (ϕl ∧ ϕ) ∧ (γ1, ρ) |= ϕr) ←→
(∃ρ)((∃γ0)((γ0, ρ1) |= ϕ ∧ (γ0, ρ) |= ϕl) ∧ (γ1, ρ) |= ϕr) ←→
(∃γ0)(γ0, ρ1) |= ϕ ∧ (∃ρ)((γ0, ρ) |= ϕl ∧ (γ1, ρ) |= ϕr) −→
(∃γ0)(γ0, ρ1) |= ϕ ∧ γ0 ⇒S γ1

where, by Assumption 1, we may w.l.o.g. choose ρ such that ρ(x) = ρ1(x) for all
x 6∈ FreeVars(ϕl, ϕr). Hence there is τ = γ0 ⇒S γ1 ⇒S · · · such that τ |1.. = τ1
and (γ0, ρ1) |= ϕ. If τ1 is infinite then τ is infinite. If (∃i ≥ 1)(γi, ρ1) |= ϕ′ then
(∃i ≥ 0)(γi, ρ1) |= ϕ′. So, finally, we obtain that (τ1, ρ1) |= ϕ1 ⇒ ϕ′ implies
(τ, ρ1) |= ϕ⇒ ϕ′. Since γ1 and ρ1 have been chosen arbitrarily we conclude that
ϕ1 ⇒ ϕ′ is an S-derivative of ϕ⇒ ϕ′. ut

Proof of Lemma 2, Page 8. Suppose that (τ1, ρ) |= ϕ1 ⇒ ϕ′ and τ1 , γ1 ⇒S · · · .
Then (τ1, ρ) starts from ϕ and one of the following two claims holds: a) there
exists i ≥ 1 such that (γi, ρ) |= ϕ′ or b) τ is infinite. So, to prove that (τ1, ρ) |=
ϕ′1 ⇒ ϕ′ it is enough to prove that (τ1, ρ) starts from some ϕ′1 ∈ ∆S(ϕ). The
pair (τ1, ρ) can be extended to (τ, ρ) such that τ |1.. = τ1 and (τ, ρ) |= ϕ⇒ ϕ′ by
the definition of the S-derivative. It follows that there is γ0 such that τ , γ0 ⇒S
γ1 ⇒S · · · , (γ0, ρ) |= ϕ, and (γ1, ρ) |= ϕ1. There is ϕl ⇒ ϕr ∈ S and ρ′ such
that (γ0, ρ′) |= ϕl and (γ1, ρ

′) |= ϕr by the definition of ⇒S . By Assumption 1,
we may w.l.o.g. choose ρ′ such that ρ′(x) = ρ(x) for all x /∈ FreeVars(ϕl, ϕr).
Hence (γ0, ρ

′) |= ϕ ∧ ϕl. We take ϕ′1 , (∃FreeVars(ϕl, ϕr))(ϕ ∧ ϕl)=? ∧ ϕr. We
obviously have ϕ′1 ∈ ∆S(ϕ) and (γ1, ρ) |= ϕ′1 because there exists ρ′ (defined
above) such that (γ1, ρ′) |= (ϕ∧ϕl)=?∧ϕr. Since τ1 = γ1 ⇒S · · · , it follows that
(τ1, ρ) starts from ϕ′1 ∈ ∆S(ϕ), which implies (τ1, ρ) |= ϕ′1 ⇒ ϕ′. Since (τ1, ρ)
has been chosen arbitrary, the conclusion of the lemma follows. ut

Proof of Lemma 3, Page 9. The following equivalences hold:

∨
ϕ1∈∆S(ϕ)

ϕ=?
1 is satisfiable ←→

(∃ρ1)ρ1 |=
∨

ϕ1∈∆S(ϕ)

ϕ=?
1 ←→

(∃ρ1)(∃ϕ1 ∈ ∆S(ϕ))ρ1 |= ϕ=?
1 ←→

(∃ρ1)(∃ϕl ⇒ ϕr ∈ S)ρ1 |= ((∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr)=? ←→
(∃ρ1)(∃ϕl ⇒ ϕr ∈ S)(∃γ1)(γ1, ρ1) |= (∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr



Then, we have:

(γ1, ρ1) |= (∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr ←→
(∃ρ)(γ1, ρ) |= (ϕl ∧ ϕ)=? ∧ ϕr ←→
(∃ρ)ρ |= (ϕl ∧ ϕ)=? ∧ (γ1, ρ) |= ϕr ←→
(∃ρ)(∃γ)(γ, ρ) |= (ϕl ∧ ϕ) ∧ (γ1, ρ) |= ϕr ←→
(∃ρ)(∃γ)(γ, ρ) |= ϕ ∧ (γ, ρ) |= ϕl ∧ (γ1, ρ) |= ϕr ←→
(∃(γ, ρ))(γ, ρ) |= ϕ ∧ γ ⇒S γ1

where, by the definition of |=, ρ satisfies ρ(x) = ρ1(x) for all x 6∈ FreeVars(ϕl, ϕr).
We obtained that

∨
ϕ1∈∆S(ϕ) ϕ

=?
1 is satisfiable iff there exists (γ, ρ) such that

(γ, ρ) |= ϕ and there exists γ1 such that γ ⇒S γ1, i.e., iff ϕ is S-derivable. ut

Proof of Proposition 4, Page 9. We use the notation convention in Definition 3.

M |= ϕ=? −→
∨

ϕ1∈∆S(ϕ)

ϕ=?
1 ←→

(∀ρ)ρ |= ϕ=? −→ ρ |=
∨

ϕ1∈∆S(ϕ)

ϕ=?
1 ←→

(∀ρ)(∃γ)(γ, ρ) |= ϕ −→
(∃ϕl ⇒ ϕr ∈ S)ρ |= (∃FreeVars(ϕl, ϕr))((ϕl ∧ ϕ)=? ∧ ϕr)=? ←→

(∀ρ)(∃γ)(γ, ρ) |= ϕ −→
(∃ϕl ⇒ ϕr ∈ S)ρ |= (∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕ=?

r ←→ (2)
(∀ρ)(∃γ)(γ, ρ) |= ϕ −→

(∃ϕl ⇒ ϕr ∈ S)(∃ρ′)ρ′ |= (ϕl ∧ ϕ)=? ∧ (∃γ1)(γ1, ρ′) |= ϕr ←→ (3)
(∀ρ)(∃γ)(γ, ρ) |= ϕ −→

(∃ϕl ⇒ ϕr ∈ S)(∃ρ′)(γ, ρ′) |= (ϕl ∧ ϕ) ∧ (∃γ1)(γ1, ρ′) |= ϕr ←→ (4)
(∀ρ)(∃γ)(γ, ρ) |= ϕ −→ (∃γ1)γ ⇒S γ1

where, by Assumption 1, we may w.l.o.g. choose ρ′ such that ρ′(x) = ρ(x) for
all x 6∈ FreeVars(ϕl, ϕr), which implies (γ′, ρ′) |= ϕ iff γ′ = γ and (γ, ρ) |= ϕ.
Therefore in the equivalence (3) ←→ (4) we could take (γ, ρ′) |= (ϕl ∧ ϕ). The
equivalence (2) follows by Proposition 2. ut

Proof of Theorem 1, Page 10. The following lemmas are needed in the proof.

Lemma 5 (Coverage Step). Let γ, γ′, ρ, ϕ, and α , ϕl ⇒ ϕr ∈ S such that
γ ⇒{α} γ

′ and (γ, ρ) |= ϕ. Then, (γ′, ρ) |= ∆{α}(ϕ).

Proof. From γ ⇒{α} γ
′ we obtain a valuation ρ′ such that (γ, ρ′) |= ϕl and

(γ′, ρ′) |= ϕr. By Assumption 1, FreeVars(ϕl, ϕr) ∩ FreeVars(ϕ) = ∅. Hence we



can choose ρ′ such that ρ′(x) = ρ(x) for all x ∈ FreeVars(ϕ). Thus, (γ, ρ′) |= ϕ.
From the latter and (γ, ρ′) |= ϕl we obtain (γ, ρ′) |= ϕ ∧ ϕl, and using Propo-
sition 1 we have ρ′ |= (ϕ ∧ ϕl)=?. Using Proposition 2 we obtain (γ′, ρ′) |=
(ϕ ∧ ϕl)=? ∧ ϕr which implies (γ′, ρ) |= (∃FreeVars(ϕl, ϕr))(ϕ ∧ ϕl)=? ∧ ϕr (us-
ing Assumption 1). By Definition 10 (∃FreeVars(ϕl, ϕr))(ϕ ∧ ϕl)=? ∧ ϕr is just
∆{α}(ϕ), which ends the proof. ut

Lemma 6 (Coverage by Derivatives). Any computation τ , γ0 ⇒S γ1 ⇒S
· · · with (τ, ρ) starting from ϕ is "covered" by derivatives, i.e., there exists a
sequence ϕ0, ϕ1, . . . of ml formulas such that
1. ϕ0 = ϕ
2. ϕi+1 ∈ ∆S(ϕi), i = 0, 1, . . .
3. (γi, ρ) |= ϕi, i = 0, 1, . . .

Proof. By induction on i using Lemma 5 in the induction step. ut

A successful execution of prove(S, G0, ∆S(G0)) consists of a sequence of calls
prove(S, G0,G1), . . . , prove(S, G0,Gn)

such that

– G0 = G0,
– G1 = ∆S(G0),
– Gn = ∅,
– for all i ∈ 0 . . . n− 1, Gi+1 = Gi \ {ϕ⇒ ϕ′} ∪ Gϕ⇒ϕ′ , for some ϕ⇒ ϕ′ ∈ Gi,

where

Gϕ⇒ϕ′ =


∅ , ifM |= ϕ −→ ϕ′

∆ϕc⇒ϕ′
c
(ϕ⇒ ϕ′) , if there is ϕc ⇒ ϕ′c ∈ G0, s.t.M |= ϕ −→ ϕc,

∆S(ϕ⇒ ϕ′c) , if ϕ S-derivable

In the following we let F =
⋃n
i=0 Gi.

Lemma 7. Let ϕ⇒ ϕ′ ∈ F . Then M |= ϕ −→ ϕ′ or ϕ is S-derivabile.

Proof. Let ϕ⇒ ϕ′ ∈ F . If ϕ⇒ ϕ′ ∈ G0 = G0 then ϕ is S-derivabile (any formula
in G0 has the lhs S-derivable). Otherwise, there is i such that ϕ⇒ ϕ′ ∈ Gi\Gi+1.
By the definition of Gi+1 the formula ϕ ⇒ ϕ′ was eliminated from Gi in one of
the three situations:

1. M |= ϕ −→ ϕ′

2. M |= ϕ −→ ϕc for some ϕc ⇒ ϕ′c ∈ G0

3. ϕ is S-derivable.

In the first and the third cases we obtain directly the conclusion of our lemma.
The only case we have to discuss is the second one. Note that there are γ and
ρ such that (γ, ρ) |= ϕ. Otherwise, we have M |= ϕ −→ ϕ′ which corresponds
to the first case. From (γ, ρ) |= ϕ and M |= ϕ −→ ϕc we have (γ, ρ) |= ϕc. By
Definition 2, there is ρ′ such that (γ, ρ′) |= ϕc. Since ϕc is derivable (because
ϕc ⇒ ϕ′c ∈ G0 and S is total, there exists a transition γ ⇒S γ1, which, by
Definition 11, implies that ϕ is S-derivable. ut



Lemma 8. For all τ , for all ρ, for all ϕ⇒ ϕ′ ∈ F , if τ is finite and complete,
and (τ, ρ) starts from ϕ then (τ, ρ) |= ϕ⇒ ϕ′.

Proof. We proceed by induction on the length of τ . We an consider arbitrary
ϕ⇒ ϕ′ ∈ F and ρ satisfying the hypotheses of the lemma.

Base case. Assume that τ = γ0 and that (γ0, ρ) |= ϕ. Since τ is complete then
there is no γ1 such that γ0 ⇒S γ1. Therefore, any ϕ′ such that (γ0, ρ) |= ϕ′, is not
S-derivable (otherwise, it contradicts Definition 11). Thus, ϕ is not S-derivable.

By Lemma 7 we have M |= ϕ −→ ϕ′, and using the fact that (γ0, ρ) |= ϕ we
obtain (γ0, ρ) |= ϕ′, i.e. (τ, ρ) |= ϕ⇒ ϕ′.

Induction step. Assume that τ = γ0 ⇒S γ1 · · · , and (γ0, ρ) |= ϕ. In this case
ϕ is S-derivable (by Definition 11). Since ϕ ⇒ ϕ′ ∈ F then ϕ ⇒ ϕ′ has been
eliminated at some point, so there is i such that ϕ⇒ ϕ′ ∈ Gi \ Gi+1.

Again, by the definition of Gi+1, we have three possible cases:

1. M |= ϕ −→ ϕ′. Since (γ0, ρ) |= ϕ we obtain (γ0, ρ) |= ϕ′, which implies
(τ, ρ) |= ϕ⇒ ϕ′.

2. M |= ϕ −→ ϕc. From (γ0, ρ) |= ϕ we obtain (γ0, ρ) |= ϕc, and, by Defi-
nition 2, there is ρ′ with ρ′(x) = ρ(x) for all x 6∈ FreeVars(ϕc) such that
(γ0, ρ

′) |= ϕc. If γ0 ⇒S γ1 then there is a rule α , ϕl ⇒ ϕr ∈ S such
that γ0 ⇒{α} γ1 (Definition 5). From (γ0, ρ

′) |= ϕc and Lemma 5 we obtain
ϕ1 ∈ ∆{α}(ϕc) ⊆ ∆S(ϕc) such that (γ1, ρ

′) |= ϕ1. Since ϕ1 ∈ ∆S(ϕc) and
ϕc ⇒ ϕ′c ∈ G0 = G0 then ϕ1 ⇒ ϕ′c ∈ ∆S(ϕc ⇒ ϕ′c) ⊆ G1 ⊆ F . Now, the
inductive hypothesis holds for ϕ1 ⇒ ϕ′c, and we have (τ |1.., ρ′) |= ϕ1 ⇒ ϕ′c.
Since τ is finite, there exists j ≥ 1 such that (γj , ρ′) |= ϕ′c.
Next, we want show that (γj , ρ) |= (∃FreeVars(ϕc, ϕ′c))((ϕc ∧ ϕ)=? ∧ ϕ′c).
This is equivalent (by Definition 2) to showing that there is a valuation ρ′′
with ρ′′(x) = ρ(x) for all x 6∈ FreeVars(ϕc′) such that (γj , ρ

′′) |= (ϕc ∧
ϕ)=? ∧ ϕ′c. Let us consider ρ′′ = ρ′. From the hypothesis of Theorem 1 we
have FreeVars(ϕ′c) ⊆ FreeVars(ϕc), which implies that FreeVars(ϕc, ϕ

′
c) ⊆

FreeVars(ϕc). Also, note that ρ′(x) = ρ(x), for all x 6∈ FreeVars(ϕc). Using
Assumption 1, i.e. FreeVars(ϕ)∩FreeVars(ϕc) = ∅, and (γ0, ρ) |= ϕ we obtain
(γ0, ρ

′) |= ϕ. Given the fact that (γ0, ρ
′) |= ϕc, by Definition 2, (γ0, ρ′) |=

ϕc ∧ ϕ. By Proposition 1, from (γ0, ρ
′) |= ϕc ∧ ϕ we obtain ρ′ |= (ϕc ∧

ϕ)=?. Moreover, by Proposition 2 and the fact that (γj , ρ′) |= ϕ′c we obtain
(γj , ρ

′) |= (ϕc ∧ ϕ)=? ∧ ϕ′c. Therefore, there is ρ′′ = ρ′, such that (γj , ρ′′) |=
(ϕc∧ϕ)=?∧ϕ′c, and we can conclude that (γj , ρ) |= (∃FreeVars(ϕc, ϕ′c))((ϕc∧
ϕ)=? ∧ ϕ′c).
Note that the set Gi+1 includes∆ϕc⇒ϕ′

c
(ϕ⇒ ϕ′c), and we can apply again the

inductive hypothesis: (τ |j.., ρ) |= (∃FreeVars(ϕc, ϕ′c))((ϕc ∧ ϕ)=? ∧ ϕ′c) ⇒
ϕ′, i.e. there is k ≥ j such that (γk, ρ) |= ϕ′, which implies (τ, ρ) |= ϕ⇒ ϕ′.

3. ϕ is S-derivable. Then ∆S(ϕ ⇒ ϕ′) ⊆ Gi+1 ⊆ F . If γ0 ⇒S γ1 then there is
a rule α , ϕl ⇒ ϕr ∈ S s. t. γ0 ⇒{α} γ1 (Definition 5). Since (γ1, ρ) |= ϕ1,
then, by Lemma 5, there is ϕ1 ∈ ∆{α}(ϕ) ⊆ ∆S(ϕ) such that (γ1, ρ) |= ϕ1.
We obtain (τ |1.., ρ) |= ϕ1 ⇒ ϕ′ by the inductive hypothesis, which implies
that there is j ≥ 1 s. t. (γj , ρ) |= ϕ′. Hence (τ, ρ) |= ϕ⇒ ϕ′. ut



Proof (of Theorem 1). Let τ , γ0 ⇒S γ1 ⇒S · · · be a complete execution path,
and let the valuation ρ be such that (τ, ρ) starts from ϕ0 with ϕ0 ⇒ ϕ′0 ∈ G0. If
τ is finite then (τ, ρ) |= ϕ⇒ ϕ′c by Lemma 8. If τ is infinite then (τ, ρ) |= ϕ⇒ ϕ′c
by Definition 7. ut

Proof of Lemma 4, Page 13. By definition of ∆R(ϕ), ϕ1 is (∃FreeVars(l, r))(l∧
b ∧ (∃X)(π ∧ φ))=? ∧ r for some rewrite rule l → r if b ∈ R. By Assumption 1,
FreeVars(l, r) ∩X = ∅ and hence ϕ1 is equivalent to (∃X ∪ FreeVars(l, r))(l =
π) ∧ b ∧ φ ∧ r. We have:

(γ1, ρ1) |= ϕ1 ←→
(γ1, ρ1) |= (∃X ∪ FreeVars(l, r))(l = π) ∧ b ∧ φ ∧ r ←→
(∃ρ)(ρ(l) = ρ(π)) ∧ ρ |= (b ∧ φ) ∧ (ρ(r) = γ1) ←→
(∃σ)(σ(l) =E∪A σ(π)) ∧ ρ |= b ∧ ρ1 |= φ ∧ (σ(r) ∈ γ1) ←→
(∃σ0)(∃σ′′)(σ0(l) =E∪A π) ∧ ρ |= b ∧ ρ1 |= φ ∧ (σ′′(σ′(σ0(r))) ∈ γ1) ←→
(∃σ0 ∈ match(l, π))(∃σ′′)ρ |= b ∧ ρ1 |= φ ∧ (σ′′ ] σ′(σ0(r)) ∈ γ1) ←→∨
σ0∈match(l,π)

(∃σ′′)ρ |= b ∧ ρ1 |= φ ∧ (σ′′ ] σ′(σ0(r)) ∈ γ1) ←→

∨
σ0∈match(l,π)

(∃ρ0)ρ0 |= σ0(b) ∧ ρ0 |= φ ∧ ρ0(σ0(r)) = γ1) ←→

∨
σ0∈match(l,π)

(∃ρ0)(γ1, ρ0) |= (σ0(b) ∧ φ ∧ σ0(r)) ←→

∨
σ0∈match(l,π)

(γ1, ρ1) |= (∃X ∪ FreeVars(r) \ FreeVars(l))(σ0(b) ∧ φ ∧ σ0(r)) ←→

(γ1, ρ1) |=
∨

σ0∈match(l,π)

(∃X ∪ FreeVars(r) \ FreeVars(l))(σ0(b) ∧ φ ∧ σ0(r))

where
– γ1 ∈ TΣ,E∪A of sort State, i.e., γ1 is an (E ∪ A)-equivalence class [t] with
t ∈ TΣ,State ;

– by Assumption 1, we may assume w.l.o.g. that ρ(x) = ρ1(x) for all x 6∈
X ∪ FreeVars(l, r);

– σ : FreeVars(l, r, φ)→ TΣ with [σ(x)] = ρ(x);
– the substitutions σ0 : FreeVars(l) → FreeVars(π) and σ′ : FreeVars(π) →
TΣ are given by Assumption 3, i.e., σ|FreeVars(l,π) = σ′ ◦ σ0; note that σ′ is
uniquely determined by σ and σ0;

– σ′′ = σ|FreeVars(r)\FreeVars(l);
– σ′′ ] σ′(x) = σ′′(x) if x ∈ FreeVars(r) \ FreeVars(l), and σ′′ ] σ′(x) = σ′(x)

if x ∈ FreeVars(σ0(l));
– ρ0(x) = [σ′(x)], for x ∈ FreeVars(π), ρ0(x) = [σ′′(x)], for x ∈ FreeVars(r) \

FreeVars(l), and ρ0(x) = ρ(x) in the rest (hence ρ0(x) = ρ1(x) for x 6∈
X ∪ FreeVars(r) \ FreeVars(l)); and

– ρ |= b iff σ′′(σ0(b)) =E∪A true iff ρ0 |= σ0(b). ut
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