J. Wolpaw and E. Wolpaw, Brain-computer interfaces: principles and practice, 2012.

G. Fabiani, D. Mcfarland, J. Wolpaw, and G. Pfurtscheller, Conversion of EEG Activity Into Cursor Movement by a Brain???Computer Interface (BCI), IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.12, issue.3, pp.331-338, 2004.
DOI : 10.1109/TNSRE.2004.834627

J. R. Wolpaw, D. J. Mcfarland, G. W. Neat, and C. A. Forneris, An EEG-based brain-computer interface for cursor control, Electroencephalography and Clinical Neurophysiology, vol.78, issue.3, pp.252-259, 1991.
DOI : 10.1016/0013-4694(91)90040-B

G. Pfurtscheller, G. M-¨-uller-putz, R. Scherer, and C. Neuper, Rehabilitation with Brain-Computer Interface Systems, Computer, vol.41, issue.10, pp.58-65, 2008.
DOI : 10.1109/MC.2008.432

A. Lécuyer, F. Lotte, R. Reilly, R. Leeb, M. Hirose et al., Brain-Computer Interfaces, Virtual Reality, and Videogames, Computer, vol.41, issue.10, pp.66-72, 2008.
DOI : 10.1109/MC.2008.410

A. Nijholt, D. Plass-oude-bos, and B. Reuderink, Turning shortcomings into challenges: Brain???computer interfaces for games, Entertainment Computing, vol.1, issue.2, pp.85-94, 2009.
DOI : 10.1016/j.entcom.2009.09.007

T. Zander and C. Kothe, Towards passive braincomputer interfaces: applying brain-computer interface technology to human-machine systems in general, Journal of Neural Engineering, vol.8, 2011.

J. Van-erp, F. Lotte, and M. Tangermann, Brain-Computer Interfaces: Beyond Medical Applications, Computer, vol.45, issue.4, pp.26-34, 2012.
DOI : 10.1109/MC.2012.107

URL : https://hal.archives-ouvertes.fr/hal-00688344

B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli et al., The Berlin Brain???Computer Interface: Non-Medical Uses of BCI Technology, Frontiers in Neuroscience, vol.4, 2010.
DOI : 10.3389/fnins.2010.00198

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain???computer interfaces, Journal of Neural Engineering, vol.4, issue.2, pp.1-13, 2007.
DOI : 10.1088/1741-2560/4/2/R01

URL : https://hal.archives-ouvertes.fr/inria-00134950

B. Blankertz, G. Dornhege, M. Krauledat, G. Curio, and K. Uller, The non-invasive Berlin Brain???Computer Interface: Fast acquisition of effective performance in untrained subjects, NeuroImage, vol.37, issue.2, pp.539-550, 2007.
DOI : 10.1016/j.neuroimage.2007.01.051

H. Cecotti, Spelling with non-invasive Brain???Computer Interfaces ??? Current and future trends, Journal of Physiology-Paris, vol.105, issue.1-3, 2011.
DOI : 10.1016/j.jphysparis.2011.08.003

URL : https://hal.archives-ouvertes.fr/hal-00655510

J. Elshout and G. G. Molina, Review of brain-computer interfaces based on the P300 evoked potential Koninklijke Philips Electronics, 2009.

R. Fazel-rezai, B. Allison, C. Guger, E. Sellers, S. Kleih et al., P300 brain computer interface: current challenges and emerging trends, Frontiers in Neuroengineering, vol.5, issue.14, 2012.
DOI : 10.3389/fneng.2012.00014

URL : http://doi.org/10.3389/fneng.2012.00014

P. Kindermans, D. Verstraeten, and B. Schrauwen, A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI, PLoS ONE, vol.39, issue.4, p.33758, 2012.
DOI : 10.1371/journal.pone.0033758.s002

P. Kindermans, M. Tangermann, K. , and B. Schrauwen, Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller, Journal of Neural Engineering, vol.11, issue.3, p.35005, 2014.
DOI : 10.1088/1741-2560/11/3/035005

URL : http://hdl.handle.net/1854/LU-4425479

S. Lu and C. Guan, Boosting-based subject-independent brain computer interface, Proc. ICPR, 2008.

S. Lu, C. Guan, and H. Zhang, Unsupervised brain computer interface based on inter-subject information and online adaptation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.17, issue.2, pp.135-145, 2009.

F. Lotte and C. Guan, An efficient P300-based braincomputer interface with minimal calibration time, Assistive Machine Learning for People with Disabilities symposium (NIPS'09 Symposium), 2009.
URL : https://hal.archives-ouvertes.fr/inria-00430563

J. H. Metzen, S. K. Kim, and E. A. Kirchner, Minimizing Calibration Time for Brain Reading, Pattern Recognition, pp.366-375, 2011.
DOI : 10.1007/978-3-642-23123-0_37

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Li, C. Guan, H. Li, and Z. Chin, A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system, Pattern Recognition Letters, vol.29, issue.9, pp.1285-1294, 2008.
DOI : 10.1016/j.patrec.2008.01.030

M. Spülersp¨spüler, W. Rosenstiel, and M. Bogdan, Online Adaptation of a c-VEP Brain-Computer Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning, PLoS ONE, vol.7, issue.12, p.51077, 2012.
DOI : 10.1371/journal.pone.0051077.t007

R. Scherer, A. Schloegl, F. Lee, H. Bischof, J. Jan¨sajan¨sa et al., The Self-Paced Graz Brain-Computer Interface: Methods and Applications, Computational Intelligence and Neuroscience, vol.2007, 2007.
DOI : 10.1109/TBME.2004.827078

F. Lotte, H. Mouchère, and A. Lécuyer, Pattern rejection strategies for the design of self-paced EEG-based braincomputer interfaces, International Conference on Pattern Recognition (ICPR), pp.1-5, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00310878

A. Ramos-murguialday, D. Broetz, M. Rea, L. Läer, ¨. O. Yilmaz et al., Brain-machine interface in chronic stroke rehabilitation: A controlled study, Annals of Neurology, vol.10, issue.1, pp.100-108, 2013.
DOI : 10.1002/ana.23879

K. K. Ang, C. Guan27, ]. Uhl, C. Jeunet, F. J. Lotte et al., Brain-computer interface in stroke rehabilitation EEG-based workload estimation across affective contexts Review of the use of electroencephalography as an evaluation method for human-computer interaction, Proc. of PhyCS, pp.139-146, 2013.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. Uller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Processing Magazine, vol.25, issue.1, pp.41-56, 2008.
DOI : 10.1109/MSP.2008.4408441

G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication, Proceedings of the IEEE, vol.89, issue.7, pp.1123-1134, 2001.
DOI : 10.1109/5.939829

B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio et al., The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects, IEEE Transactions on Biomedical Engineering, vol.55, issue.10, pp.2452-2462, 2008.
DOI : 10.1109/TBME.2008.923152

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

URL : http://doi.org/10.1016/s0047-259x(03)00096-4

F. Lotte and C. Guan, Learning from other subjects helps reducing Brain-Computer Interface calibration time, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.614-617, 2010.
DOI : 10.1109/ICASSP.2010.5495183

URL : https://hal.archives-ouvertes.fr/inria-00441670

C. Sannelli, C. Vidaurre, K. , and B. Blankertz, CSP patches: an ensemble of optimized spatial filters. An evaluation study, Journal of Neural Engineering, vol.8, issue.2, 2011.
DOI : 10.1088/1741-2560/8/2/025012

H. Lu, H. Eng, C. Guan, K. Plataniotis, and A. Venetsanopoulos, Regularized common spatial pattern with aggregation for EEG classification in small-sample setting, IEEE Transactions on Biomedical Engineering, vol.57, issue.12, pp.2936-2946, 2010.

H. Kang, Y. Nam, and S. Choi, Composite Common Spatial Pattern for Subject-to-Subject Transfer, IEEE Signal Processing Letters, vol.16, issue.8, pp.683-686, 2009.
DOI : 10.1109/LSP.2009.2022557

R. Caruana, Multitask Learning, Machine Learning, pp.41-75, 1997.
DOI : 10.1007/978-1-4615-5529-2_5

M. Alamgir, M. Grosse-wentrup, and Y. Altun, Multitask learning for brain-computer interfaces, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp.17-24, 2010.

D. Devlaminck, B. Wyns, M. Grosse-wentrup, G. Otte, and P. Santens, Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI, Computational Intelligence and Neuroscience, vol.6, issue.6, 2011.
DOI : 10.1016/j.cam.2008.01.003

H. Kang and S. Choi, Bayesian common spatial patterns for multi-subject EEG classification, Neural Networks, vol.57, 2014.
DOI : 10.1016/j.neunet.2014.05.012

W. Samek, M. Kawanabe, and K. Muller, Divergencebased framework for common spatial patterns algorithms, IEEE Reviews in Biomedical Engineering, 2014.
DOI : 10.1109/rbme.2013.2290621

W. Tu and S. Sun, A subject transfer framework for EEG classification, Neurocomputing, vol.82, pp.109-116, 2012.
DOI : 10.1016/j.neucom.2011.10.024

D. Heger, F. Putze, C. Herff, and T. Schultz, Subjectto-subject transfer for CSP based BCIs: Feature space transformation and decision-level fusion, Proc. EMBC. IEEE, pp.5614-5617, 2013.

M. Arvaneh, I. Robertson, and T. E. Ward, Subject-tosubject adaptation to reduce calibration time in motor imagery-based brain-computer interface, Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, pp.6501-6504, 2014.

S. Dalhoumi, G. Dray, and J. Montmain, Knowledge Transfer for Reducing Calibration Time in Brain-Computer Interfacing, 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, 2014.
DOI : 10.1109/ICTAI.2014.100

C. Vidaurre, M. Kawanabe, P. V. Bunau, B. Blankertz, and K. Muller, Toward Unsupervised Adaptation of LDA for Brain–Computer Interfaces, IEEE Transactions on Biomedical Engineering, vol.58, issue.3, pp.587-597, 2011.
DOI : 10.1109/TBME.2010.2093133

P. Shenoy, M. Krauledat, B. Blankertz, R. Rao, and K. Uller, Towards adaptive classification for BCI, Journal of Neural Engineering, vol.3, issue.1, p.13, 2006.
DOI : 10.1088/1741-2560/3/1/R02

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Zhu, Semi-supervised learning literature survey, Computer Sciences, 2005.

J. Meng, X. Sheng, D. Zhang, and X. Zhu, Improved semi-supervised adaptation for small training data set in brain-computer interface, IEEE Journal of Biomedical and Health Informatics, vol.18, issue.4, 2014.

W. Tu and S. Sun, Semi-supervised feature extraction for EEG classification, Pattern Analysis and Applications, vol.12, issue.5, pp.213-222, 2013.
DOI : 10.1007/s10044-012-0298-2

Y. Li and C. Guan, Joint feature re-extraction and classification??using an??iterative??semi-supervised support vector machine algorithm, Machine Learning, pp.33-53, 2008.
DOI : 10.1007/s10994-007-5039-1

X. Song, S. Yoon, and V. Perera, Adaptive Common Spatial Pattern for single-trial EEG classification in multisubject BCI, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp.411-414, 2013.
DOI : 10.1109/NER.2013.6695959

M. Grosse-wentrup, C. Liefhold, K. Gramann, and M. Buss, Beamforming in Noninvasive Brain–Computer Interfaces, IEEE Transactions on Biomedical Engineering, vol.56, issue.4, pp.1209-1219, 2009.
DOI : 10.1109/TBME.2008.2009768

M. Ahn, H. Cho, and S. C. Jun, Calibration time reduction through source imaging in brain computer interface (BCI), " in HCI International 2011?Posters Extended Abstracts, pp.269-273, 2011.

F. Lotte and C. Guan, Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, pp.355-362, 2011.
DOI : 10.1109/TBME.2010.2082539

URL : https://hal.archives-ouvertes.fr/inria-00476820

F. Lotte, C. Guan, and K. Ang, Comparison of designs towards a subject-independent brain-computer interface based on motor imagery, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4543-4546, 2009.
DOI : 10.1109/IEMBS.2009.5334126

URL : https://hal.archives-ouvertes.fr/inria-00396399

J. Cantillo-negrete, J. Gutierrez-martinez, R. I. Carino-escobar, P. Carrillo-mora, and D. Elias-vinas, An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender, BioMedical Engineering OnLine, vol.13, issue.1, p.158, 2014.
DOI : 10.1016/j.apmr.2013.06.031

B. Reuderink, J. Farquhar, M. Poel, and A. Nijholt, A subject-independent brain-computer interface based on smoothed, second-order baselining, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011.
DOI : 10.1109/IEMBS.2011.6091139

URL : http://eprints.eemcs.utwente.nl/secure2/00020919/01/embc2011.pdf

M. Krauledat, M. Tangermann, B. Blankertz, and K. Uller, Towards Zero Training for Brain-Computer Interfacing, PLoS ONE, vol.12, issue.6, p.2967, 2008.
DOI : 10.1371/journal.pone.0002967.t002

URL : http://doi.org/10.1371/journal.pone.0002967

S. Fazli, F. Popescu, M. Danóczydan´danóczy, B. Blankertz, K. et al., Subject-independent mental state classification in single trials, Neural Networks, vol.22, issue.9, pp.1305-1312, 2009.
DOI : 10.1016/j.neunet.2009.06.003

S. Fazli, M. Danóczydan´danóczy, J. Schelldorfer, and K. Uller, ???1-penalized linear mixed-effects models for high dimensional data with application to BCI, NeuroImage, vol.56, issue.4, pp.2100-2108, 2011.
DOI : 10.1016/j.neuroimage.2011.03.061

W. Tu and S. Sun, Dynamical ensemble learning with model-friendly classifiers for domain adaptation, Proc. ICPR. IEEE, pp.1181-1184, 2012.

R. Chakraborty and U. Garain, Role of synthetically generated samples on speech recognition in a resourcescarce language, Proc. ICPR, pp.1618-1621, 2010.

H. Mouchère, S. Bayoudh, E. Anquetil, and L. Miclet, Synthetic on-line handwriting generation by distortions and analogy, Proc. IGS, pp.10-13, 2007.

F. Lotte, Generating artificial EEG signals to reduce BCI calibration time, 5th International Brain-Computer Interface Conference, pp.176-179, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00599325

S. Bayoudh, L. Miclet, H. Mouchère, and E. Anquetil, Learning a Classifier with Very Few Examples: Analogy Based and Knowledge Based Generation of New Examples for Character Recognition, Proc. ECML, 2007.
DOI : 10.1007/978-3-540-74958-5_49

L. Smith, A tutorial on principal components analysis, 2002.

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass Brain–Computer Interface Classification by Riemannian Geometry, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.920-928, 2012.
DOI : 10.1109/TBME.2011.2172210

M. Congedo, A. Barachant, and A. Andreev, A new generation of brain-computer interface based on riemannian geometry, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879050

M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller, Seperability of four-class motor imagery data using independent components analysis, Journal of Neural Engineering, vol.3, issue.3, pp.208-216, 2006.
DOI : 10.1088/1741-2560/3/3/003

C. Jeunet, F. Lotte, and C. , Design and validation of a mental and social stress induction protocol: Towards load-invariant physiology-based detection, Proc. PhyCS, pp.98-106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00879966

C. Jeunet, F. Lotte, M. Hachet, and B. N. Kaoua, Impact of cognitive and personality profiles on mental-imagery based brain???computer interface-control performance, International Journal of Psychophysiology, vol.94, issue.2, 2014.
DOI : 10.1016/j.ijpsycho.2014.08.789

E. V. Friedrich, C. Neuper, and R. Scherer, Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually, PLoS ONE, vol.127, issue.9, p.76214, 2013.
DOI : 10.1371/journal.pone.0076214.t002

B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K. Uller, Single-trial analysis and classification of ERP components ??? A tutorial, NeuroImage, vol.56, issue.2, 2010.
DOI : 10.1016/j.neuroimage.2010.06.048

K. Ang, Z. Chin, C. Wang, C. Guan, and H. Zhang, Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b, Frontiers in Neuroscience, vol.6, 2012.
DOI : 10.3389/fnins.2012.00039

K. Thomas, C. Guan, T. Chiew, V. Prasad, and K. Ang, A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain–Computer Interfaces, IEEE Transactions on Biomedical Engineering, vol.56, issue.11, 2009.
DOI : 10.1109/TBME.2009.2026181

G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio et al., Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing, IEEE Transactions on Biomedical Engineering, vol.53, issue.11, pp.2274-2281, 2006.
DOI : 10.1109/TBME.2006.883649

W. Wu, X. Gao, B. Hong, and S. Gao, Classifying Single-Trial EEG During Motor Imagery by Iterative Spatio-Spectral Patterns Learning (ISSPL), IEEE Transactions on Biomedical Engineering, vol.55, issue.6, pp.1733-1743, 2008.
DOI : 10.1109/TBME.2008.919125

H. Zhang, Z. Y. Chin, K. K. Ang, C. Guan, and C. Wang, Optimum Spatio-Spectral Filtering Network for Brain–Computer Interface, IEEE Transactions on Neural Networks, vol.22, issue.1, pp.52-63, 2011.
DOI : 10.1109/TNN.2010.2084099

H. Suk and S. Lee, Subject and class specific frequency bands selection for multiclass motor imagery classification, International Journal of Imaging Systems and Technology, vol.16, issue.2, pp.123-130, 2011.
DOI : 10.1002/ima.20283

M. Fatourechi, A. Bashashati, R. Ward, and G. Birch, EMG and EOG artifacts in brain computer interface systems: A survey, Clinical Neurophysiology, vol.118, issue.3, pp.480-494, 2007.
DOI : 10.1016/j.clinph.2006.10.019

C. Vidaurre, C. Sannelli, K. , and B. Blankertz, Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces, Neural Computation, vol.8, issue.3, pp.791-816, 2011.
DOI : 10.1016/S1388-2457(02)00057-3

F. Lotte, F. Larrue, and C. , Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design, Frontiers in Human Neuroscience, vol.7, issue.568, 2013.
DOI : 10.3389/fnhum.2013.00568

URL : https://hal.archives-ouvertes.fr/hal-00862716