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Abstract: Comparing two sets of multivariate samples is a central problem in data analysis.
From a statistical standpoint, the simplest way to perform such a comparison is to resort to a
non-parametric two-sample test (TST), which checks whether the two sets can be seen as i.i.d.
samples of an identical unknown distribution (the null hypothesis). If the null is rejected, one
wishes to identify regions accounting for this di erence. This paper presents a two-stage method
providing feedbackon this di erence, based upon a combination of statistical learning (regression)
and computational topology methods.

Consider two populations, each given as a point cloud irRY. In the rst step, we assign a label
to each set and we compute, for each sample point, a discrepancy measure based on comparing an
estimate of the conditional probability distribution of the label given a position versus the global
unconditional label distribution. In the second step, we study the height function de ned at each
point by the aforementioned estimated discrepancy. Topological persistence is used to identify
persistent local minima of this height function, their basins de ning regions of points with high
discrepancy and in spatial proximity.

Experiments are reported both on synthetic and real data (satellite images and handwritten digit
images), ranging in dimension fromd = 2 to d = 784, illustrating the ability of our method to
localize discrepancies.

On a general perspective, the ability to provide feedback downstream TST may prove of ubiquitous
interest in exploratory statistics and data science.
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Sur la localisation de la discrépance dans les espaces de
grande dimension

Résumé : Comparer deux ensembles de données multivariées est un probléme central en
analyse de données. D'un point de vue statistique, les tests non-paramétriques d’homogénéité
permettent de décider si les données peuvent étre considérées comme émanant d'une méme
distribution (I'hypothése nulle). Si celle-ci est rejetée, la question se posant est de localiser les
régions rendant compte de la di érence. Ce travail présente une méthode en deux étapes pour
ce faire, combinant des outils d'analyse statistique (régression) et de topologique (persistance).

Considérons deux populations, chacune donnée comme une ensemble de points d&fs
Dans la premiére étape, un label est donné a chaque population, et on calcule pour chaque
point une mesure de discrépance basée sur la comparaison d'une estimation de la probabilité
conditionnelle du label étant donnée la position, et de la probabilité non conditionnelle du label.
Dans la deuxiéme étape, on étudie la fonction hauteur dé nie en chaque point par la valeur de
la discrépance. La persistance topologique est utilisée pour identi er les minima persistants de
cette fonction, leurs bassins dé nissant des ensembles de points de forte discrépance voisins les
uns des autres.

Des résultats expérimentaux sont présentés sur des données synthétiques et des images (satel-
litaires et de chi res), allant de la dimension d = 2 ad = 784, illustrant la pertinence de l'approche
pour localiser la discrépance.

Dans une perspective plus large, le complément d'information apporté aux tests a deux échan-
tillons devrait s'avérer de grande importance en analyse exploratoire de données.

Mots-clés : Statistique, Théorie de l'information, Divergence de Jensen-Shannon, Analyse
de données, Comparaison de données, Nuages de points, Test non-paramétrique d'homogénéité,
Taille d'e et, Estimation de la divergence, Estimation de probabilités conditionnelles, Régression,
Persistance topologique.
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4 Cazals and Lhéritier

1 Introduction

1.1 Comparing Datasets in High Dimensional Spaces

Datasets represented as point clouds are ubiquitous in science and engineering, used for appli-
cations in 2D and 3D space (e.g. to represent laser scans in mock-up design) as well as in high
dimensional spaces (e.g. to represent images and documents, physical or biological phenomena,
etc). In manipulating such data, several classes of questions are faced, such as matching, topo-
logical inference, or comparison. This latter endeavor, which is the topic of this paper, calls
for a discussion in three directions, namely statistics (two-sample tests), information theory and
learning (divergence estimation), and geometry-topology.

From a statistical standpoint, a broad class of comparison methods, requiring tame assump-
tions on the data are nonparametric two-sample tests (TST), see, e.9.[ [13] and the references
therein. In a nutshell, a TST is a statistical hypothesis test checking whether the two sets can
be seen as i.i.d. samples of an identical unknown distribution (the null hypothesis). In accepting
or rejecting the null hypothesis, under a level of statistical signi cance , a TST summarizes the
body of information encoded in the points' coordinates into a single boolean valu¢[11]. However,
this boolean information is in general of limited interest, for several reasons. First, it is unlikely
that two real life datasets come from exactly the same distribution. Since consistent TST detect
any kind of di erence of any size if enough samples are given, the rejection of the null is expected.
Second, the magnitude (and the nature) of the di erences, known a% ect size, usually conveys
more information than the mere presence of a di erence. Therefore, a reject decision should be
just a signal to examine further the data in order to understand. Developing a notion of e ect
size for non-parametric two-sample tests in high dimensions has not been explored yet, and is
the goal of this work.

From an information theoretical and probabilistic standpoint, the comparison can be phrased
as the problem of estimating the global Kullback-Leibler divergence between unknown distribu-
tions using the samples in hand. For example, a di erence between images has been proposed
[1Q], by coupling a univariate Kullback-Leibler estimate (per pixel) and a decomposition of the
discrepancy map thus de ned using a watershed transform in image space. In a more general
setting, there exist techniques to estimate this quantity that avoid density estimation in high
dimensions (see, e.g.[[22,283,719,120]) and that could be amenable to decomposition, so as to
determine a contribution of individual points or of groups of points. Nevertheless, this diver-
gence lacks important properties (symmetry and boundedness), which makes it more di cult to
further process it.

Finally, the comparison can also be tackled from the geometric and topological perspectives.
In geometric terms, one may compute some distance or matching (one-to-one, one-to-many,
many-to-many) between the data, see[[7] and the references therein. While this procedure is
informative for the two datasets in hand, the main di culty consists in accommodating a proba-
bilistic setting. In a more topological perspective, persistence theory[8], which aims at assessing
the stability of topological features generators of persistent homology groups, was recently used
to compare persistence landscapef3]. Such comparisons are clearly important since oblivious to
geometric transformations, but our focus is clearly on geometry dependent features.

1.2 Contribution and Paper Overview

This paper proposes, to the best of our knowledge, the rst attempt to model the di erences
(the e ect size, see above), between two datasets for which one has rejected the null hypothesis
stipulating that they share the same underlying distribution. In a nutshell, we aim at clustering

Inria
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samples, based on two criteria, namely samples within a cluster should (i) contribute signi cantly
to the dierence between the two clouds, and (ii) form a connected region. Matching these
goals yields a two-stage procedure. In the rst stage, we model pointwise di erences, which we
call discrepancies using the Jensen-Shannon divergence (JSD), which is symmetric and can be
decomposed in terms of the conditional probability of belonging to one of the populations given a
space location. This conditional probability can be naturally estimated using known techniques
of non-parametric regression like the one based ok, nearest neighbours, which possesses strong
asymptotic guarantees of consistency. In the second stage, using a nearest neighbor graph de ned
over the samples, we study the height function de ned by the estimated discrepancy, and design
a clustering procedure based upon topological persistence. We note in passing that the second
step is optional, as the JSD is of interest on its own to compare images, for example.

The paper is organized as follows. Sectiorlg 2 and 3 respectively present the two steps. Section
[4 summarizes the various pieces of information provided by our analysis. Finally, sectiori§ 5 and
present experiments.

2 Estimating the Discrepancy between Datasets

two unknown densitiesfx and fy with corresponding cumulative distributions functions Fx and
Fy.

2.1 Jensen-Shannon Divergence Decomposition using Conditional Dis-
tributions

Let Dk (f kg) be the Kullback-Leibler divergence (KLD) between two densitiesf and g de ned

as Z 1
Dk (f kg) f (x)log mdx @)
* . g(x)
with the conventions 0log0 =0 and Ologg =0.
The Jensen-Shannon divergence (JSD) de ned i [16], allows to symmetrize and smooth the
KLD by taking the average KLD of fyx and fy to the average densityf  (fx +fv)=, that is:

JS(fx kfy) %(DKL (fx kf)+ Die (fvkf)) @)

In addition to being symmetric, the JSD is bounded between 0 and 1 and its square root
yields a metric. Note also that by taking the average, two random variables are implicity de ned:
a position variable Z with density f; f and a binary label L that indicates from which
original density (i.e. fx or fy) an instance ofZ is obtained. Formally, considering the alphabet
A=f01gand X Fx;Y Fy, the following pair of random variables is de ned:

(0; X))  with prob.

(L;z)= :
(1;Y)  with prob.

®)

NI NI

In the sequel, we will consider the conditional and unconditional mass functionsP(ljz) =
P(L=Iljz=2z)and P(l) = P(L=1) = % respectively, as well as the joint probability den-

sity fi.z . We will also use the notation f| to denote fx (resp.fy) when!| =0 (resp.| =1).
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6 Cazals and Lhéritier

Before establishing lemmd |1, a key property for our comparison problem, we recall the de nition
of the Kullback-Leibler divergence between two discrete distributionsP and Q over A :

X P(l)
k Nlog —=
Du (PKQ)  P()log gy 4)
Lemma. 1. One has: 7
JS(fx kfy)= Rde(Z)DKL (P(j2)kP()) dz 5)

Proof of lemma[]. Recall that the JSD can be expressed as follows:

l(DKL (fx kfz)+ Dke (fykfz))
Z
fx (2)

IS(fx kfy)

dz

ro fx (2)log ,(2)
fv(2)

fz(2) dz

NI N~ N

fv(z)log
Rd

By linearity of integration and by Bayes' Theorem, and noting that the conditional densities
f (ziL=0)= fx(2) andf (zjL =1) = fv(z) we have then
Z

JS(fx kfy) = N P(O)f (ziL = 1)log %dz
z |
_ fLz (bz),  fuz (1;2)
T P00 R0 0%
_ X e PZ)
= Rdfz(z) | P (ljz) log 0] dz

z

N fz(2)Dkw (P(j2)kP()) dz

O

The previous lemma shows that the JSD can be seen as the average, owe2 RY, of the KLD
between the conditional and unconditional distribution of labels. More formally, we de ne:

De nition. 1.  The discrepancy at locationz is de ned as the KL divergence:
(z2)  Dw (P(j2)kP()): (6)

Note that (z) ranges between 0 and 1 and is 0 ifx (z) = fy (z). Note also that sinceP(l)
is known but P (ljz) is not, the problem we consider now is the one of estimating® (ljz) at each
given location z.

2.2 Conditional Probability Estimation via Non-parametric Regres-
sion

In order to estimate the conditional distributions, we can use random desigf non-parametric
regression.

LIn contrast to xed design regression, where [14, Bec. 1.9]: one observes values of some function at some xed
(given) points with additive random errors, and wants to recover the true value of the function at these points.

Inria
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2.2.1 Generic Framework
First, we de ne the basic concepts (see, e.g.. [14] for more details).

De nition. 2.  Given a random vector(Z;R), where Z 2 RY and the response variableR 2 R,
the regression functionis de ned as

m(x) = E[RjZ = 2]: )

In the regression problem, the goal is to build an estimatorm,(x) of m(x) using a set ofn
i.i.d. realizations of (Z; R).

With respect to the guarantees that are provided for regressors, usually, the. , risk or mean
squared error is considered, i.e.,

Z
RdJ'mn(X) m(x)j* (dx)

where denotes the distribution of Z. Nevertheless, since our goal is to estimate the discrepancy
(z), we seek pointwise guarantees for regressors. In particular, we will consider a strong form
of consistency which is de ned as follows.

De nition. 3.  Denoting the distribution of Z, a sequence of regression function estimates
fmy,g is strongly pointwise consistent (s.p.c.) if for -almost all x 2 RY

ma )" m(x) as. 8)

In [14, Sec. 25.6], some s.p.c. regression estimates are presented. For example, regression
estimates based on partitioning, kernel and nearest neighbors are s.p.c under certain conditions
for their parameters, when the absolute valugiRj <M , for someM .

Now we describe the s.p.ck, -nearest neighbor regression function estimate (see 14, Ch.6&25]
response value corresponding té-th nearest neighbor (with some tie-breaking rule) ofx in Z".
Then, the k,-nearest neighbor k,-NN) regression function estimate is de ned by

%o
Rin ) (X): 9
i=1

Mp (X) = k.

Then we have the following theorem|[[14, Thm. 25.17]:

Theorem. 1 (Strong pointwise consistency ofk-NN). If jRj < C for someC < 1,

n 11 andk—"! o;
logn n

then the k,-NN estimate using Euclidean distance is strongly pointwise consistent.

2.2.2 Application to Conditional Probability and Discrepancy Estimation

In order to apply this framework to our problem, note that the correspondenceR = L yields

m(z) = P(ljz): (10)
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Figure 1 Random multiplexer generating pairs (label, position).

X | B ()

B: Bernoulli
distribution

— (L;Z)

Y

Then, we can use the following estimator forP (1jz)
Po(liz) 11 1 ma(2i: (11)

Note that it is required that 0 m,(z) 1, since we aim at estimating a conditional probability,
and that it is satis ed by the k,-nearest neighbor regressor.
Using Eq. (11), we nally obtain an estimator for (z) :

"2 Dk Pn(i)kP() (12)

Theorem. 2 (Consistency). Let B, be based on a s.p.c. sequence of regression estimates for
(L;Z). Then,
™ (2) as.

for f -almost all z 2 RY.

Proof. Let us write ", (2) = a(mp(2)), with g(x) = xlogx=(1=2) + (1 x)log(1 x)=(1=2).
It is easy to see thatg(x) is a continuous function (composition, sum and product of contin-
uous functions). Then, we apply the continuous mapping theorem[]2], on every 2 RY where
mn(2) " m(z) to complete the proof. O

2.3 Joint Distribution Compatible Sampling

In the regression framework, the samples must be i.i.d. from a joint distributionf .z . In our
original problem, we have two sets of samples drawn independently fromix and fy. In order
to ensure this condition, we will use the random multiplexer depicted in Fig.[]. On each input
it receives i.i.d. samples from each of the populations. Then, it generates an instandeof L.
According to the value of | (0 or 1), it consumes the corresponding input ;Y resp.) and
outputs it along with 1.

The following lemma shows that the output has the desired joint density.

Lemma. 2. An output pair from the random multiplexer has joint density f .z .
Proof. The joint density of an output pair (I;z) is
9(l;z) = g(ziL = HP(I):
Sincez is distributed as f|, g(zjL = |) = f,(z). Thereforeg(l;z) = fL.z (I;2). O

Remark 1. In practice, there is a nite set of i.i.d. samples of X and Y available. Then, at
some point the multiplexer can have no more data to consume on one of the inputs while there is
still data available on the other one. Therefore, some samples of the original sets would not be
used and, thus, some loss of information is to be expected. This can be alleviated by resampling
B times as follows:

Inria



Localizing Data Discrepancies 9

1. For b2 1::B do:

2. Dene no(z) median1:s ("0o(2))

Notice that ,0(z) is also a consistent estimator.

3 Localizing the Discrepancy

3.1 Overview

Goals. We wish to identify groups of samples, calledclusters, intuitively characterized by two
properties: rst, the discrepancy of such samples should be signi cant; second, samples within
a cluster should be associated with regions where the discrepancy peaks. To meet the rst goal,
we assume the existence of a valuenay stipulating that below .« , the discrepancy is not
signi cant. As we shall see in Experiments, while this value is not unique in general, fevelusters
typically stand out from our persistence diagrams.

To meet the second goal, we resort tanode clustering a general clustering strategy consisting
of de ning a cluster from the attraction basin of a local maximum of a density estimate [€,[5].
We therefore de ne alandscapeconsisting of the samples, their elevation being the value of the
estimated discrepancy”’, (z), see Eq. ). Practically though, we study the landscape whose
elevation is ", (z) rather than ", (z), which yields a more natural terminology since birth dates
occur before death dates. In doing so, our clusters shall be de ned from local minima and their
attraction basin, i.e., stable manifolds (SM).

Varying the threshold max . Ohe versus many. Assigning samples of the landscape to
persistent local minima is straightforward, and merely requires running a union- nd algorithm

[5]. The clusters obtained can then be Itered out so as to retain samples whose discrepancy is
larger than nax . However, this procedure must be repeated upon changing the valugnax . In

the sequel, we present instead a procedure pre-processing the landscape so as to accommodate
queries for multiple values of nay .

In a nutshell, our algorithm runs through three stages. First, critical points of the landscapes
are identi ed using a k-nearest neighbor graph k-NNG) [5]. The connections between these
points de ne the Morse-Smale-Witten (MSW) complex restricted to local minima and index one
saddles, from which we compute the persistence diagram (PD) of local minima]9]. (We note
in passing that similarly to [5], our procedure shall be e ective in high dimension since we only
focus on index 0 and 1 critical points.) The PD is used to identify persistent minima whose
critical value is at most 2« , and we denote the corresponding sublevel set of the landscape
D .. .- Second, the sublevel set of the landscape is recursively simpli ed to retain persistent
minima only [4]. We note in passing that this simpli cation requires more information than that
de ning the persistence pairs (Fig. @). Third, the samples whose discrepancy is less thannax
are removed from the stable manifolds of the remaining minima.

Output. The previous construction exploits a partition of the PD into ve regions de ned by
three lines (Fig. [J), so that a local minimum m of the landscape (and its SM) gets quali ed with
respect to three criteria:

" Selected/rejected: m is selected provided that its birth date occurs before max -

RR n° 8734
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Figure 2 Partition of the persistence diagram exploited to de ne clusters. The parti-
tion of the domainy  x is induced by three lines: ()y = x + which speci es the persistence
threshold (ii,iii)) x = max ;Y = max » With  max the threshold on the signi cance of the
discrepancy. See text for the speci cation of regionR; to Rs.

Death y=Xx+ y =X

-

R

1 Birth

"~ Persistent/canceled: m is persistent if its persistence is , a user de ned threshold.

Filtered/un- Itered: the SM of m is Itered if the death date of m is larger than the
threshold  max -

The possible combinations, illustrated on Fig.[2, are:

" m 2 Rj: rejected. Such a local minimum is rejected, since its discrepancy is less thapy -
No point of the SM of m is found in a cluster reported.

m 2 Rj: selected / canceled / un- Itered. Such a local minimum is selected, yet canceled
by persistence. Becausen dies before 4« , all samples found in its SM shall be part of
a cluster reported.

m 2 Rg3: selected / canceled / Itered. A local minimum which is selected, yet canceled by
persistence. However, because dies after 2« , only the portion of its SM belonging to
the sublevel setD shall be found in a cluster reported.

max

m 2 Ry: selected / persistent / un- ltered. Such a local minimum is selected, and is not
canceled by persistence. Becauga dies before nax , all the samples found in its SM are
found in a cluster reported.

m 2 Rs: selected / persistent / ltered. This combination is similar to the previous case,

except that samples whose discrepancy is less than,,x are discarded. Note that the
cluster associated with the global minimum belongs to this region even though it is not
found on the PD since the global minimum never dies.

3.2 Algorithm

We now detail the three steps just outlined.

Step 1: Computing the MSW complex of the landscape. Morse theory is concerned with
the study of a function de ned on a manifold, and Morse homology with the homology of sublevel
sets of this function. In particular, the Morse homology theorem stipulates that the homology

Inria
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of a sublevel set can be computed from the Morse-Smale-Witten (MSW) complex, namely the
incidence diagram between the critical points of the function [[1].

A natural strategy to study a height function de ned over a point cloud consists in using a
k-NNG connecting the samples. One de nes a negative pseudo-gradient from the star of each
vertex, and a ow operator descending the pseudo-gradient until a xed point is found [5]. Note
that the set of all samples owing to a local minimum makes up its stable manifold (SM). Given
this pseudo-gradient, samples behaving like index 0 and index 1 critical points in the smooth
setting are easily identi ed, and abusing terminology, we call such samplesritical points in the
sequel. An index O critical point is a sample having all its neighbors above it. An index 1 critical
point is a samplep owing to a local minimum, but having a neighbor q in the k-NNG owing
to a di erent local minimum. This latter situation is called a bifurcation, since intuitively, the
line-segment [p; d intersects transversely the stable manifold of an indexd 1 critical point.
Amidst all pairs p; qassociated with the same two local minima, the sample with least elevation
is termed a saddle (Note that we do not make any claim on the relative position of that point
and the real saddle, in case the landscape is associated with a di erentiable height function.)
If the landscape containsng critical points and is connected, ng 1 index one points su ce
to compute the persistence of order 0. The process indeed boils down to running a Union- nd
algorithm, to infer merge events between the stable manifolds of local minima (Fig[]S(A,B,C)).

We de ne our MSW complex in a similar spirit. However, instead of collecting only incidences
involving one of the aforementionedny 1 index one saddles, we collect incidences involving all
index one saddles. The process yields a bipartite graph between index 0 and index 1 critical
points (Fig. EKD,E)), together with the stable manifolds of the local minima. Using this graph,
we also compute the persistence diagram (PD) of sublevel sets. Note that in our case all pairs lie
in the upper triangle of [ 1;0] [ 1,;0], since the function value, namely the negative discrepancy,
lies in the range[ 1;0].

Step 2: Simplifying the landscape. The general procedure to recursively simplify a land-
scape using the MSW complex has already been presented in the context of non manifold shape
reconstruction [4]. In a nutshell, the cancellation of a pair of critical points (a;b) whose indices
di er by one consists of rerouting the connections ofa and b in the MSW complex, and of redis-
tributing the stable manifold of a [4]. Note in particular that each remaining local minimum is
endowed with two types of samples: those from its own SM and those from SM inherited from
canceled local minima.

Step 3: Sub-level set extraction. The previous simpli cation yields a partition of the

landscape into the SM of the persistent minima. We remove from these SM the samples whose

discrepancy is less than s , a task carried out in two steps. First, the samples from its own SM

are ltered out. Second, the samples of basins inherited from the simpli cation are also Itered

out, provided that such a basin was born before 5« . In particular, inherited basins born after
max are ruled out in constant time. The persistent local minima and their remaining samples,

if any, form the clusters.

Remark 2. The ltering step cannot be carried out before the construction of the nearest neighbor
graph. Indeed, in doing so, one could deplete the neighborhood of samples whose height is close
to  max, possibly forcing connections to samples located further away, thus jeopardizing the
identi cation of critical points.
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Figure 3 Morse-Smale-Witten (MSW) complex versus disconnectivity graph (DG)

in recursive landscape simpli cation. (A,B) Two landscapes, with critical points of indices

0 (disks) and 1 (squares). (C) The DG of both landscapes, which depicts the evolution of
connected components of sublevel sets. Despite the di erences between their MSW complexes,
both landscapes share the same DG: upon passing the critical poirg, the stable manifold of ¢
merges with that born at a. (D,E) The MSW complexes of(A,B) , respectively. In cancelling
the pair of critical points (c;€), one does not know from the DG with which (a or b) the basin

of ¢ should be merged. But the required information is found in the MSW complex: on the
landscape (A), ¢ is merged with a; on the landscape (B),c is merged with b.

(A) (B) ©)
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4 Combining Discrepancy Estimation and Localization

4.1 Qualifying the Clusters

We decompose the JSD by clusters of points that are de ned by the method described in Section
[3. Then, the contribution of a cluster C reads as:

X
3Sc (Fxkty) " (@): (13)

z2z"\ C

Combining the analysis of sectiong P andl]3 yields the work ow of Fig[}.

4.2 Plots

The previous analysis are best exploited using the following plots:

Raw data embedding:For samples embedded in 2D or 3D space, a plot of the points with a
color to indicate the label (blue: 0; red: 1). For samples embedded in a higher dimensional
space, a 2D embedding of these samples obtained using multi-dimensional scaling (MDS).
In any case, the goal of this plot is to intuitively visualize the distributions of the two
populations.

Discrepancy shaded data embedding aka discrepancy plotA plot similar to the raw data
plot, except that each sample is color coded using a heat palette from fully transparent
white to red across yellow, as a function of the value of the estimated discrepanc’;)n(z).
That is, a point with ",(z) equal to zero (resp. one) is colored fully transparent white
(resp. non transparent red).

Persistence diagram: A plot showing for each minima a red cross with coordinategx;y)
corresponding to its birth and death dates respectively, while analyzing the landscape whose
elevation is the negative estimated discrepancy.

Clusters. A plot similar to the raw data plot, with one color per cluster. The points not
belonging to any cluster are colored in gray.

JSD decomposition plot A 1D plot presenting a synthetic view without relying on the
MDS embedding. Thex coordinate represents the sample space and always ranges from 0
to 1. The total estimated JSD is represented by the area under the dashed line. And the
maximum possible JSD which is always 1 is represented by the area under the continuous
line. One bar is depicted for each cluster plus another one (the last one) for the points not
belonging to any cluster. The area of each bar represents the contribution of the corre-
sponding cluster to the total JSD and its color corresponds to the proportion of sample®

in the cluster.

4.3 Implementation

The random multiplexer was implemented in R. The discrepancy estimator was implemented in
R using knn3 from the caret package[[12]. The persistence based analysis of the height function
de ned by the estimated discrepancy was implemented in C++.
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In blue: the parameters.

Figure 4 Work ow of the whole method.
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Figure 5 Comparing images: interpolated color scale (Eq. (14)) u to represent
the local discrepancy "n(z) 2 [0;1] of Eq. ( The interpolation is illustrated on
pixels of color black, gray or white.

0
90
80
oL

g e
=} (%)

5 Experiments: Using the Discrepancy for Statistical Image
Comparison

When processing real images, two-sample testes are of mild interested since the null hypothesis
is likely to be rejected. However, the JSD decomposition is still of interest to quantify the
di erences on a statistical basis.

Consider a digital image whose pixels usé€ color channels. For example,C = 1 in the
monochrome case andC = 3 in the RGB color case (where the components of each vector
correspond to the red/blue/green intensities). A digital image is ar ¢ matrix of pixels, such
that each pixel takes values in[0; 1]°. (For a pixel, a value of 0 (resp. 1) represents the minimum
(resp. the maximum) intensity for the corresponding color channel.) We follow the construction
of [21] to build our samples, that is, by taking b b pixel blocks yielding (r b)(c b) samples,
each being a vector of dimensiorCk?. Then, a discrepancy estimate”,, (z) is computed on each
samplez and assigned to the pixel located in the upper left corner of the corresponding block.
(NB: two bands of width b 1 on the right and bottom side of the image are not assessed.)

Using the satellite color images of([2[1] shown in FigurE|6 and using the same block sike 2,
. . N . . .
we compute the estimated discrepancy ,,(z) for each sample. Then, in order to visualize the
result, we rst convert the original image to grayscale by assigning to each pixeli with color
vector ¢ =[ri;g; ] the new color vectorc? = [a;; & ; a;] wherea; = (ri+gi+b)=3. Then, we obtain
the nal color vector c®=[r% g% P by superimposing the corresponding discrepancy; via red
interpolation as follows (Fig. |§[)

8

2r0 =1 Da+

>9i00 =1 Dy : (14)
=1 )a

The results, usingk, = n*3, are shown in FigureD’. The methods evaluated in[[21] aim at
nding novelty in the second image with respect to the rst one. Although in a di erent setting,
our results are visually quite good in comparison to theirs: only scattered red points are shown
in the rst gure (which is consistent to their idea of background) and, in the second one, both
the oval and the rectangular elds are clearly marked as divergent while none of the methods
evaluated in [21] mark them both entirely.
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Figure 6 Original satellite color images from [21]. []

o™l i SRR T EL T O e

Figure 7 Comparison between the images of Fig. 6. [] Results shown on grayscale converted
image using the interpolation scheme of Eq.[(14), illustrated on Fig[5.

d i =
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6 Experiments: Localizing Data Discrepancies

We present results on three datasets featuring various di culties: low intrinsic dimension (crenels),
varying intensity of discrepancy (mixture of Gaussians) , and real data embedded in high di-
mension (handwritten digits). For the sake of convenience, we refer to the two datasets to be
compared as the blue and the red datasets. The number of neighbors was setkg = n?=3. Note
that the Maximum Mean Discrepancy two-sample test of [13] rejects the null hypothesis in all
the cases for a signi cance level lower than 1%.

6.1 Model: Crenels

Speci cation. The goal is to assess the ability of the method to spot local di erences, and to
cope with data of low intrinsic dimension (one) in a high dimensional space. We create two one
dimensional datasets, which di er by two crenels.

More precisely, in this dataset, each point corresponds to a vector iR™ ™ encoding the
pixels of a square grayscale image (0 = black, 1 = white) of size m m. The samples are
the result of rotating the grayscale imagei (supp. Fig. [12). Therefore, takingm = 11 yields a
dataset of intrinsic dimension one embedded in dimension = 121.

Each sample of the blue population is an instance of a RVX obtained by rotating i with a
random uniformly distributed angle Ay, that is:

X = rotate(i;Ax);Ax U (s;t): (15)

where the function rotate applies a bilinear Iter to smooth the result (details in [L8]).

For the red population, consider two Bernoulli random variablesB; B (p1) andB, B (p2),
and two uniform variables U; U (a;b) and U; U (c;d). Each sample of the red population is
an instance of a RVY de ned as:

Y = rotate(i;Av);Ay = B1(BoUp +(1  By)U)+(1 B1)Ax: (16)

Note that the rotation used to obtain Y comes from the uniform distribution U(s;t) with prob-
ability 1 ps, and that the discrepancy between both distributions are high in the angle ranges
[a; b and [c; d] (i.e. the crenels) and low everywhere else on the support, since, loosely speaking,
points that are added to the crenels are missing from the rest of the support.

Practically, we used the following values: m = 11, ng = 2000, n; = 2000, s= 15t = 15,
a= 4,b= 2,¢=9;d=10,p;=0:3, p.=0:5.

Practically, we used:

"m=11

" ng =2000, n; =2000

" s= 15t=15

“a= 4b= 2¢c=9;d=10

T pr=0:3,p2=05
Results. Figure[§ shows the result of our method when applied to this dataset. The linear shape
of the 2D MDS embedding illustrates the one dimensional nature of the data. The discrepancy

plot hints at the crenels created by the two uniform distributions in Eq. ({L6). On the persistence
diagram (built with k = 30), we see a group of low discrepancy minima that are removed by
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Itering out with  ax (dashed vertical line). One also identi es one persistent local minimum
corresponding to the longer and, thus, the less red-concentrated crengh; bl. The other crenel
corresponds to the global minimum which does not appear in the plot since it death date is
in nite. The clusters yielded by the simpli cation and Itering steps correspond to the crenels. In

the divergence decomposition plot, we observe these two crenels with high discrepancy produced
by a high proportion of red points and also a non negligible total discrepancy given by the rest
of the points, which has a higher proportion of blue points.

6.2 Model: Gaussian Mixture

Speci cation. The goal is to assess the ability of the method to spot regions of di erent intensity
of discrepancy.

Two Gaussian mixture models where randomly generated using MixSim R package[17]. The
distributions for X and Y consist in two mixtures of four di erent two-dimensional Gaussians
with equal weight and with some degree of overlap. In this exampleng = n; = 2000.

Results. The results are presented on Fig[ P andl 10 corresponding respectively to thresholds
max, = 0:1and max, = 0:24. The discrepancy plot clearly shows regions of di erent intensities.
The persistence diagram (built with k = 6) highlights four persistent minima plus the global one,
calling for simpli cation. On the other hand, the critical values associated with the local minima
of the elevation are quite scattered. Visually, three groups emerge, so that we investigate the
clusters using two thresholds max, = 0:1< max, = 0:24, yielding di erent compositions for the
ve clusters. Consider, e.g., the cluster 1 associated with max ,. This cluster contains a high
proportion of red points, whence a high contribution to the JSD. In moving from max, with
max ,» MOre points get discarded, the remaining points revealing thecore of the clusters.
In any case, note that the regions do not necessarily coincide with original components of the

mixture, i.e., they are a result of the comparison only.

6.3 Model: Mixture of Handwritten Digits

Speci cation.  The goal is assess the ability of the method to spot local di erences, and to cope
with real life high dimensional data (d = 784).

This dataset is based on the MNIST dataset[[15] that contains examples of handwritten digits.
For our experiment, we used the digits 3,6 and 8 and we built our populations by sampling with
replacement from these three populations. The following table summarizes the number of samples
taken from each digit set for each population:

[ digit || blue [ red |
3 100 | 1000
6 500 | 500
8 1000 | 100

Results. The results are presented on Fig[ I1. The triangle shape of MDS embedding clearly
shows the regions corresponding to each digits and the JSD decomposition plot highlights two of
them as expected. Then, the persistence diagram (built withk = 30) hints at one persistent local
minima plus the global one, yielding two clusters corresponding to digits 3 and 8 as expected.

Inria
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Figure 8 Model: Crenels.  Figs, from top to bottom: Raw data embedding, Discrepancy plot,
Persistence diagram, Clusters plot, Divergence decomposition

Raw data embedding Discrepancy plot

Persistence diagram
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Figure 9 Model: Gaussian mixture. Figs, from top to bottom: Raw data embedding,
Discrepancy plot, Persistence diagram, Clusters plot, Divergence decomposition

Raw data embedding Discrepancy plot

Persistence diagram
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Figure 10 Model: Gaussian mixture. Figs, from top to bottom: Raw data embedding,
Discrepancy plot, Persistence diagram, Clusters plot, Divergence decomposition

Raw data embedding Discrepancy plot

Persistence diagram
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Figure 11 Model: Handwritten digits. Figs, from top to bottom: Raw data embedding,
Discrepancy plot, Persistence diagram, Clusters plot, Divergence decomposition

Raw data embedding Discrepancy plot

Persistence diagram
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7 Conclusion

This paper proposes the rst method to model the di erence between datasets given as point
clouds, for which there is evidence showing that they do not have the same underlying distribu-
tion. The method relies on a pointwise estimation of an integrand related to the Jensen-Shannon
divergence (JSD), a symmetric version of the Kullback-Leibler divergence. An estimate of the
JSD is obtained for each sample using a hon-parametric regression method relying & nearest
neighbors estimates. Topological persistence is then used to gather samples in groups associated
with local maxima of the JSD. All in all, our method delivers groups of samples withsigni cant
contribution to the JSD, and associated with local maxima of the JSD.

On the theoretical side, several questions are of major interest. A rst goal will be to char-
acterize the clusters returned by our procedure, based upon assumptions on the distributions
underlying the data. This problem is related to the robustness of a recent clustering method
combining mode seeking and topological persistencel[5], since under suitable conditions, persis-
tent modes of the density and those de ning clusters have been shown to match. Coming up with
a similar line of argumentation is more challenging in our case since two densities are involved,
and the magnitude of the JSD and those of these densities are independent quantities. A second
goal will consist of generalizing the method to data associated with a (non Euclidean) metric
space.

On the practical side, we believe that our method goes well beyond statistical analysis based
on two-sample tests, which essentially summarizes the information contained in all coordinates
into a single boolean value (accept or reject the null hypothesis). It should therefore prove of
interest wherever two-sample tests are used.

Acknowledgments.  The authors with to thank Tom Dreyfus for implementing the landscape
analysis method.
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8 Supplemental: Data Sets

8.1 Crenels
Summary:
" ng = ny =2000
~d=121

" Rationale: A dataset to assess the ability of the method to spot local di erences, and to
cope with data of low intrinsic dimension in a high dimensional space.

Figure 12 Rotated images (a) Orignal image (b,c,d,e) Example rotated images

@) (b) (©) (d) (e)

8.2 Gaussian mixture
Summary:
" ng = ny =2000
“d=2

" Rationale: A simple and easy to visualize dataset with regions of di erent intensities of
divergence

The rst model is a mixture of four spherical gaussians with equal probability, i.e.,
x4
X = lii=ugNoli]
i=1

where U is a uniform discrete RV which takes values inf 1::4g and

Nolil N ( ofil; ofil)

The randomly generated parameters by MixSim R Package were:

o[1] = (0:95567150:3617815)
o[2] = (0:62075390:8498296)
o[3] = (0:30771660:2886823)
o[4] = (0:14969650:9773699)
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o[1] = 0:04771839,; o[2] = 0:02111844,; o[3] = 0:03342965,; o[4] = 0:07551961,

wherel; is the 2 2 identity matrix.
The second model is a mixture of four non-spherical gaussians with equal probability de ned
by the following randomly generated parameters (using analogous notation):

1[1] = (0:006771180:07022882)
1[2] = (0:218642330:46602229)
1[3] = (0:990209500:20540745)
1[4] = (0:297653340:80943535)

[1] = 0:1522406  0:1031709 2] = 0:006279164  0:001738228
1A 01031709 01509098 YT 0:001738228 032324880

005161954 @2275865 ., 0:11359079 (02248852
1B1= 002275865 5600142 U7 002248852 2819918
8.3 Mixture of Handwritten Digits
Summary:
" ng = n; =1600
" d=784

Rationale: A dataset to assess the ability of the method to spot local di erences, and to
cope with real life high dimensional data.

Figure 13 Subsets of handwritten digits used. Images cropped frorittp://www.cs.nyu.edu/
~roweis/data.html
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