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Abstract

For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent
metastable states connected by transients, which together encode fundamental neural information processing. To
understand the system’s dynamics it is important to detect such recurrence domains, but it is challenging to extract
them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology
extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency
representations and computing recurrence plots based on instantaneous spectral power values in various frequency
bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding
surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by
applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized
ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability.
Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover,
α−activity is susceptible to pre-stimuli, while δ−activity is much less sensitive to pre-stimuli. This difference in
recurrence structures in different frequency bands indicates diverse underlying information processing steps in the
brain.

Keywords: Trial-to-trial variability, Time-frequency analysis, Local Field Potentials, Recurrence plot analysis, Statistical
inference, Surrogate data, Anaesthesia, Ferret

I. INTRODUCTION

Investigation of metastable states (MS) and transients of complex dynamical systems has become
increasingly important over the last decades. In this context, dynamical systems spend longer time intervals
in MSs than in transients between MSs. The large interest in studying such states comes from the belief
that a complex temporal behaviour of systems may be decomposed into a simple sequence of alternating
MSs and transients between them. This reduced description is a model that captures the essential dynamic
elements of rather complex underlying dynamics. Applications range from spin glasses [1] to molecular
configurations [2] and geoscientific applications [3]. In neuroscience, the related concept of sequential
metastable attractors has received increasing attention in the last years [4]–[9]. Primarily, works are
motivated by the experimental observation of signal features showing alternations of dynamical behaviour
at fast and slow time scales [10]–[13].

Originally the concept of metastability refers to slow relaxation dynamics in statistical physics [1], [14].
In a much wider sense, this notion is nowadays used for regions in the phase space of a dynamical system
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with relatively large dwell that are connected by transients [4], [5], [9]. Paradigmatic examples for those
MSs are almost invariant sets [15] and recurrence domains [16], such as saddles connected by heteroclinic
trajectories [17] or the “wings” of the Lorenz attractor [18]. For this attractor in particular, it is attractive
itself and has two recurrence domains centered around two unstable foci. Geometrically, these domains
are spatially separated and the system’s trajectory alternately approaches to and departs from the foci.
The system spends much longer time in the vicinity of a focus compared to transient intervals between
the two foci. Therefore, one may refer to a Lorenz wing as to a MS: the system remains for a longer
time in one partition cell of the phase space before it performs a rapid transition to another partition cell
of the phase space. A MS is thus identified with a recurrence domain, while non-recurrent portions of a
trajectory can be compared with transients.

In neuroscience, metastability assumed increasing experimental evidence over recent years. [19], [20]
observed sequences of metastable electroencephalogram (EEG) topographies, which they called brain
microstates. [10], [11], [21] argued that components of the event-related brain potentials (ERPs) reflecting
perceptional and cognitive processes could be identified with metastable brain states. Mazor and Laurent,
for instance, reported sequences of metastable states in a reconstructed activation space of the locust’s
neural odor circuit [12]. [13] were able to detect metastable states in epileptic EEG time series through
spectral clustering methods, and most recently, [6] revealed metastable transition networks in the recovery
from anesthesia. Consequently, to understand underlying neural mechanisms much better, it is necessary
to develop advanced techniques to detect these recurrence structures in experimental time series.

For the identification of metastability in time series, their characteristic slow time scales must be
separated from the fast dynamics of phase space trajectories. The method known as Perron clustering [2],
separates the system’s phase states into partitions that can approximate Markov chain states [1], [2], [13],
[15], [22]. Applying spectral clustering methods to the resulting transition matrix yields the time scales of
the process, while their corresponding (left-)eigenvectors allow the unification of cells into a partition of
metastable states [13], [22]. Another approach by [10] utilizes the slowing-down of the system’s trajectory
in the vicinity of saddles by means of phase space clustering. Most recently, beim Graben and Hutt
suggested to combine recurrence plot techniques and symbolic dynamics in order to partition a system’s
phase space into its recurrence domains [16], [21].The application of the latter method to experimental
event-related potentials has identified metastable attractors to so-called ERP-components, known to reflect
cognitive processing stages in neural information processing.

Developing novel analysis tools for representation and tracking of nonlinear transient patterns faces
numerous challenges, such as reducing the signal dimensionality while preserving the information sig-
nificant for the detection task or building methods robust to acquisition noise. Recurrence analysis has
been used for identifying transient patterns in experimental EEG [23], for classifying patients based on
EEG time series [24] and for prediction of responses during anaesthesia [25]. A key feature of recurrence
analysis is to identify sequential states in a multi-dimensional signal space, as shown in most previous
studies [16], [21]. If the experimental data under study is multi-dimensional, for instance a multi-channel
EEG recording, the data serves directly as the input to the recurrence analysis. However, it is not valid
to compute recurrence plots in the case of univariate time series and hence the data can not be analysed
directly. Therefore, it is necessary to transform the univariate signal to a multivariate (multi-dimensional)
signal. Typically this is done by delay-embedding techniques [26], [27] inspired by Takens’ theorem [28].
The corresponding embedding dimension and delay time in these techniques are chosen rather independent
from the dynamic features of the data since typically these are not known a priori.

In neuroscience, patterns occurring in certain frequency bands play distinct roles in neural information
processing [29], [30]. We argue that this additional knowledge can be taken into account and the present
work proposes a novel technique based on time-frequency representations of univariate signals. Here,
the signal is transformed into its time-frequency representation of spectral power which spans a new
phase space in which the signal trajectory evolves. Hence, one may call this transformation spectral
power embedding since the new phase space encodes instantaneous power in certain frequency bands.
The additional advantage of this approach is that it permits to analyse the recurrence structure of data in
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selected frequency bands. For completeness, we mention that a signal is fully defined by its instantaneous
amplitude and phase.

In this work we propose a new method for the detection of metastable states in univariate neural signals.
To obtain statistically significant evidence of recurrence structures in signals, we conduct a statistical test
over the set of novel, frequency-selective recurrence plots (RP). Below we describe methodologies for
building such frequency-selective RPs and performing statistical inference tests. These tests indicate how
stable the recurrence plots are with respect to trial-to-trial variability. This novel statistical evaluation
is necessary in the analysis of neurophysiological data, since trial-to-trial variability is a well-known
experimental finding in such signals. In our work we analyse synthetic transient oscillations and one state
variable of the Lorenz attractor involving acquisition noise to validate the methodology. Finally, the study
of experimental Local Field Potentials obtained in partially anesthetized ferrets (Mustela putorius furo)
during a visual stimulus experiment allows to extract new insights into neural information processing. For
instance, we show that temporal recurrence occurs in the α−frequency band but not in the δ−frequency
band. This result suggests that in the α-band the brain processes the information step-wise (state by state)
while no step-wise process is performed in the δ−band.

II. MATERIAL & METHODS

In this section we introduce the novel method for studying temporal recurrences common in recurrence
plots of different trials. Section II-A introduces classical recurrence plots and describes corresponding
parameters. Then, we provide a novel method to compute recurrence plots from their time-frequency
representations. In Sec. II-B we propose the statistical test method that analyses the similarity of RPs and
finds their statistically significant parts. Finally, in Sec. II-C we describe the datasets used in this work.

A. Recurrence plots and novel time-frequency representations
Recurrence is a fundamental property of dynamical systems which characterises the behaviour of the

system in phase space [31]. A recurrent signal instance is a moment in time when the trajectory returns
to a neigborhood of a location in phase space it has already visited previously.

Deterministic dynamical systems are described by their trajectory. A trajectory x(t) ∈ Rn, t ∈ R is
sampled at times t = i∆t, i ∈ {1, 2, . . . , N}, where ∆t is the sampling time interval and N is the total
number of samples. For notation simplicity, in this paper we denote the signal sample x(i∆t) by x(i).
Then, a recurrence plot (RP) is defined as the N ×N matrix R, whose elements ri,j take values ri,j = 1
when two trajectory samples lay within the open ball B(ε) of radius ε

ri,j =

{
1, if d(x(i),x(j)) < ε,
0, otherwise, (1)

where d(·, ·) is a distance function and i, j ∈ {1, . . . , N}. Hence, recurrence plots are two-dimensional
binary matrices obtained by distance based thresholding and its elements take values ri,j ∈ {0, 1}. In this
work, pixels in RPs will be color-coded white for values ri,j = 0 and black otherwise.

For an arbitrary chosen ε value we can not guarantee that some of the significant dynamic features are
not discarded by thresholding. To minimise such a thresholding error, we compute the optimal threshold
value ε∗ which maximises the symbolic entropy for a given distance function, as proposed in [16]. In
more detail, under the assumption that recurrence domains are uniformly distributed for a given recurrence
plot, the method constructs disjunct and transitive symbolic recurrence plot matrices from multivariate
data. This method permits to identify MSs in a recurrence plot and maps each state (and the transients
between the states) to a symbol. Consequently, one maps the high-dimensional dynamics of the system to
a sequence of symbols. Let pk be the probability of the occurrence of the state k, i.e., the number of the
occurrences of the symbol k divided by the total number of occurrences of all symbols. Then maximising
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Figure 1. Building frequency-selective recurrence plots from T time series. Processing blocks are
represented by arrows: (i) SSQ is a synchrosqueezing transform block used to obtain time-frequency
representations of signals; (ii) the MPS block computes mean values of the power spectrum for each of
the chosen frequency bands, which reduces the signal dimensionality; (iii) This signal is the basis for the
recurrence analysis leading to recurrence plots {RPk}Tk=1.

the entropy

H(ε) = − 1

Sk,ε

Sk,ε∑
k=1

pklog(pk), (2)

for a range of ε values yields that value of ε for which the distribution of occurrence probabilities {pk}
approaches uniformity, i.e., for which all states are equally probable. Here, Sk,ε is the number of states
for a given ε. Then the optimal value

ε∗ = arg max
ε
H(ε)

maximizes the entropy of the extracted symbolic sequence and hence the recurrence structure of the data.
This optimal value is computed for each dataset separately.

After defining conventional RPs and computation of the optimal parameter ε, the remaining part of this
section focusses on how to build frequency-selective recurrence plots. Many biophysiological signals have
characteristic frequency signatures. For example, the human heart beats about sixty times per minute in
average, i.e., at the frequency of 1Hz. Another example are eye blinks that induce signal changes in the α-
frequency band (frequencies in the interval 8Hz-12Hz) in EEG recordings. To take into account the distinct
signatures of spectral bands present in neural signals, we propose a novel concept for building recurrence
plots from time-frequency signal representations, instead of building them directly from univariate data
or constructing them by employing delay-embedding techniques. Such representations, in general adapted
for nonstationary signal analysis, give insights into frequency bands of importance and provide additional
flexibility to recurrence plot analysis that is not present in time-domain, for e.g., the possibility to weight
the importance of some frequency bands. In the literature there are several ways to choose values of
the frequency bands. We use the following frequency interval definitions: the δ-frequency band denotes
the interval [0.5Hz; 4Hz], the θ−frequency band the interval [4Hz; 8Hz], α-band [8Hz; 12Hz], β-band
[12Hz; 20Hz] and the γ-band denotes the interval [20Hz; 40Hz].

We build novel recurrence plots in three steps, as shown in Fig. 1: (i) we expand the set of T univariate
trials {x1,x2, . . . ,xT} to their corresponding time-frequency domains; (ii) we compute the mean power
of the spectrum over certain sets of frequencies. These mean power time series may be called yj(t) ∈
RS, j = 1, . . . , T , where S is the number of frequency bands; (iii) we compute recurrence plots by
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computing distances between vectors y(i) and y(j), i, j ∈ {1, . . . , N} as in Eq. (1). In the following
paragraphs we describe these blocks in more detail.

The first block in Fig. 1 provides a time-frequency representation of the signal. In classical spectrogram
calculations, the stronger (weaker) is the localisation of signals in time, the larger (smaller) are their
localisation windows in frequency. This effect is called the uncertainty principle implied in the Fourier
transform. A synchrosqueezing (SSQ) transform overcomes this deficiency by performing wavelet-based
filtering and signal power reassignment to the appropriate frequencies. In addition, [32], [33] show that
SSQ is superior for processing neural signals when compared to conventional spectral analysis methods,
such as continuous wavelet transform or spectrogram. Hence, we use the SSQ transform defined in Section
II-A.1 as the processing block (i) in Fig. 1.

The second block in Fig. 1 computes the mean value of the power spectrum (MPS) for sets of
frequencies, see Section II-A.2 for details. This is one of the basic features for studying neural signals.
We assume that the dynamics of the neural system encoded in frequencies is proportional to the power
spectrum in sets of frequencies. This analysis step provides multi-variate time series whose dimension is
equal to the resulting vector of averaged frequency bands.

Finally, in the third processing block in the figure we compute recurrence plots from the obtained
time-frequency dataset as in Eq. (1). If we do not explicitly mention otherwise, we use features from
all the frequency bands to compute recurrence plots. In the experimental ferret dataset, we additionally
present cases when recurrence plots are calculated from the single frequency band features such as δ- or
α-frequency bands, since these bands play an important role in the loss of consciousness under anesthesia.

To summarize, the proposed method for building recurrence plots from time-frequency representations
grasps band-related features and allows flexibility in the analysis of particular frequency bands, which is
not possible in the classical RP analysis. Our approach however requires additional computations of the
synchrosqueezing transform and mean power of the spectrum.

1) Synchrosqueezing transform: For completeness of this work, in this section we provide the math-
ematical definition of the synchrosqueezing transform [32], [33], that we use as a processing block in
the proposed algorithm, see Fig. 1. We presume that input signals are composed of several components
with time-varying oscillatory characteristics. In other words, we assume that signals f(t) can be well
approximated with K signal components, f(t) =

∑K
k=1 fk(t) + e(t), fk(t) = Ak(t)e

2πiφk(t), where Ak(t)
and φ

′

k(t) = 1
2π

dφk(t)
dt

denote the amplitude and the instantaneous frequency (IF) of each component and
e(t) represents a small error. We assume that the components fk have slowly time-varying amplitudes
Ak(t) and sufficiently smooth IFs. These conditions assure that signal components are well separated in
frequencies and the complete definition is available in [34], Def. II.1 (codes available online in [35]).

Let a wavelet ψ(t) be a square integrable and normalised function. Then, its scaled and time-shifted
variants ψ( t−b

a
) represent a set of scaled bandpass filters. In the following, we denote the frequency of

one signal component by ωk ≈ 2π dφk(t)
dt

. A Continuous wavelet transform (CWT) of the function f at
scale a and time shift b is defined by Wf (a, b) = 1√

a

∫∞
−∞ f(t)ψ( t−b

a
)dt, which represents a convolution of

scaled and band-passed filters with the signal. The shifts of wavelet function are driven by the scale value
a. For example, for the first signal component with frequency ω1, the value of the wavelet coefficient
Wf (a1, b) spreads around the scale factor a1 =

ωψ
ω1

, where ωψ is the central wavelet frequency. Therefore,
the estimated IF in the neighbourhood of this value of the scale is equal to the frequency ω1. The
synchrosqueezing transform T (ωq, b) uses estimates of the instantaneous frequency ωf (a, b), computed
for each scale-time pair (a, b) by ωf (a, b) = −iWf (a, b)

∂Wf (a,b)

∂b
to reallocate the energy of the wavelet

coefficients. Let ∆ap (∆ω) denote resolution steps in scale (frequency). Then, this transform, defined
by T (ωq, b) =

∑
ap:|ωf (ap,b)−ωq |≤∆ω/2Wf (ap, b)a

−3/2∆ap enhances frequency localisation of oscillating
components of the signal and provides more precise time-frequency representations of the signal. In
analogy to the spectrogram used in classical short-time Fourier analysis, we plot values

S(ωq, b) = |T (ωq, b)|2 (3)

for each pair (ωq, b) in time-frequency plots, see Figs. 5(a,e) and 6(a,c).
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Figure 2. (a) Surrogate set construction: for each of T time-frequency signal representations used for
computing the original set of RPs, one computes S surrogate RPs. The resulting S surrogate recurrence
plots have the same energy in time-frequency domain. In total, there are S · T surrogates. (b) Examples
of the RP (top) and the surrogate RP (bottom) for the transient oscillations dataset. (c) Illustration of the
pixel-wise χ2 statistical test, more details in the text.

2) Mean power spectrum: For each frequency band with Q components, the mean power spectrum
value is defined by

MPS(t) =
1

Q

Q∑
q=1

S(ωq, t), (4)

where S(ωq, t) is defined in Eq. (3), ωq are frequencies of one frequency band and t is time.

B. Statistical analysis
We study statistical properties of frequency-selective RPs obtained from time-frequency trial represen-

tations. By virtue of noise effects and an expected trial-to-trial variability, recurrence plot structures are
expected to vary from trial to trial. To evaluate the recurrence plots statistically, we perform a statistical
inference analysis based on a classical chi-squared test [36]. To this end, we construct surrogate recurrence
plots and employ an inference test.

Classically, surrogate sets of univariate signals [37] preserve some of the important features of the
original time series, for example the spectrum magnitude, while they replace the phase values by a random
sequence of values. The reasoning behind this randomisation is that time domain reshaping destroys non-
stationarities, so the local spectral components will vary while the global spectrum remains the same. As
a consequence, the mean and variance of the signal do not change [38], [39].

In this work, we build the surrogate dataset with the same power spectrum as in the original data,
where the information component encoded in time is randomized, cf. Fig. 2(a). For each time index of
the signal we randomly select a novel index value, such that all the index values are chosen exactly once
(permutations without repetition). Then, we rearrange the time-frequency representation of trials according
to the chosen index values and compute recurrence plots of surrogates by repeating steps (ii) and (iii)
shown in Fig. 1. This procedure is repeated S times per trial. Figure 2(a) illustrates how to obtain the
surrogate set from T trials. Examples of an original RP and a corresponding surrogate RP are provided
in Fig. 2(b).

We compare pixel-related statistical measures between the set of the original recurrence plots from
different trials and their surrogates to determine whether original RPs preserve the common underlying
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signal dynamics in statistically significant way. This comparison is illustrated in Fig. 2 (c). In detail, we
denote the set of T recurrence plots obtained from the original trial data by {RPk}Tk=1 and its surrogate
set by {SRPk}S·Tk=1. In our simulations, there are T = 10 trials in total, where the number of surrogates
generated per trial is S = 100. The full set of surrogates counts S · T = 1000 surrogate RPs. At first,
we perform pixel-wise statistical analysis tests between the corresponding pixels of the original and the
surrogate recurrence plots. Let B̄ = {r{k}i,j }Tk=1 be the vector that consists of the set of pixels with
same coordinates in the original RPs and B̂ = {r{k}i,j }S·Tk=1 is the corresponding vector of pixel values for
surrogates. Vectors B̄ and B̂ consist of values from the set {0, 1}, since RP elements ri,j by definition
take binary values, cf. Eq. (1). To perform a chi-square test for categorical data, we build a two-by-two
contingency table. For explanation, this tables first row takes values from the original RPs and the second
row contains values from surrogate RP. The first table column marks the number of values ri,j = 1
and the second column the number of elements ri,j = 0. The elements of this table (two rows and two
columns) have the coordinates (l,m), l,m ∈ {1, 2}. Then, the chi-square statistics for the pixel (i, j),
i, j ∈ {1, . . . , N} is computed by

χ2(i, j) =
∑
l∈{1,2}

∑
m∈{1,2}

(f
(i,j)
o (l,m)− f (i,j)

e (l,m))2

f
(i,j)
e (l,m)

.

Here, f (i,j)
o (l,m) is the observed table value at the coordinate (l,m) for the pixel (i, j) and f

(i,j)
e (l,m)

is its expected frequency. The latter value is computed as f (i,j)
e (l,m) = nr(l)nc(m)/q, where nr(l) is the

total number of elements in the row l, nc(m) is the number of elements in the column m and q is the
total number of elements in the two-by-two table. The calculated chi-square value is compared with the
result in the chi-square table for predefined values of the degree of freedom df = 1 and the significance
level αs = 0.05. If the calculated chi-square value is larger than the value in the table, the hypothesis
that signals share the same distribution is rejected, see [36] for more details. In this work, the outcomes
of chi-square tests are visually represented as matrices A = [ai,j], i, j ∈ {1, . . . , N} whose elements take
values

ai,j =

{
1, if distributions of trial and surrogate sets are different,
0, otherwise. (5)

In this work all the figures follow the same colour code as for illustrating recurrence plots, i.e., white
pixels denote values ai,j = 0 and black pixels stand for ai,j = 1.

Since single elements in RPs are correlated to neighbouring elements caused by the underlying dynam-
ics, the underlying assumption of independent recurrence matrix elements does not hold and corrections of
the significance test should be applied, such as the Bonferroni correction. To this end, in the examples of
artificial datasets, we have performed a t-test which is based on the hypothesis that original and surrogate
signals have the same distribution of mean values. The statistics are computed based on the pixels and
their mean values in a 5× 5 neighbourhood around each pixel. In addition, we have applied a Bonferonni
correction.

C. Datasets
To illustrate different analysis steps and to validate the power of the proposed method, we first apply the

proposed algorithm to two artificial datasets. Then, the methodology is applied to experimental datasets.
Single trials of these datasets are illustrated in Fig. 3 and their origin is described in detail below. For both
artificial datasets, we model the tria-to-trial variability by a temporal shift of the data in time combined
with additive measurement noise.
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Figure 3. Illustration of the first trial in each of the three time series under study. (a) Transient oscillations
(b) Lorenz attractor (c) Ferret dataset: trial from the set session one is recorded at a granular layer electrode.
The vertical solid lines denote the stimulus onsets and the set of dashed lines mark the stimulus offsets.

1) Transient oscillations: A modified Lotka-Volterra model with n = 3 interactive elements [5], [40]

dxi(t)

dt
= xi(t)

(
σi −

n∑
j=1

ρi,jxj(t)

)
, (6)

serves as an abstract model of event-related brain potentials [21]. Here xi(t) ≥ 0, i ∈ {1, 2, 3} is the
activity rate of the element i, σn is the growth rate of the n-th population and ρi define interactions
between elements. In our setup, σ1 = 1, σ2 = 1.2 and σ3 = 1.6, ρii = 1, ρ12 = 1.33, ρ13 = 1.125,
ρ21 = 0.7, ρ23 = 1.25, ρ31 = 2.1, and ρ32 = 0.83.
The output signal s(t) is a linear superposition of transient oscillations with frequencies ν1 =170Hz, ν2 =20Hz, ν3 =75Hz,
where at one time instance, only one of these three components is dominant, see more details below. We
point out that these frequencies are chosen rather arbitrarily for an optimal illustration. The activity rate
xi defines the amplitude of the component ai with frequency νi and the output signal obeys

s(t) =
3∑
i=1

ai(t) sin(2πνit) + ξ(t) , ai(t) = e−(xi−σi)2/2η2
i , (7)

with η1 = 0.5, η2 = 0.33, η3 = 0.4. By this construction, the amplitudes ai increase and decrease in a
certain time window outside of which they almost vanish. These windows of the three oscillation modes
i = 1, 2, 3 do not overlap and the transitions between them are rather rapid. The variable ξ(t) represents
measurement noise and its random values are i.i.d. Gaussian noise with zero mean and variance 0.5. The
sampling rate is 450Hz. We generate 10 trials which are time-jittered by shifting the trials by 1 sample to
later instances, while each trial is subject to additive noise different in each trial. A single trial is given
in Fig. 3(a).

2) Lorenz dataset: The Lorenz system [18] is a well-studied three-dimensional differential equation
system

dx

dt
= −σx+ σy ,

dy

dt
= ρx− y − xz , dz

dt
= −βz + xy
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Figure 4. Experimental paradigm of the ferret experiment. In the original recording protocol [43]–[45],
10 visual stimuli are interleaved by several types of different stimuli, represented by numbers in the figure.
Our dataset consists of the responses to sine-wave luminance gratings only. Other types of stimuli are
the black screen (intervals marked by {4, 6, 9}), checkerboard noise for {2, 7} or fox images stimuli. The
latter set consists of the weakly spatially filtered image of foxes in the intervals marked by {3, 5} and
strongly spatially filtered image of foxes in the interval set {1, 5, 10}.

with σ = 10, ρ = 28, β = 8/3. Its solutions show non-trivial transient dynamics and their wings
represent metastable states as explained above, cf. [16]. We study the univariate time series x(t), which
is the solution of the above given system of equations. This time series may represent a macroscopic
measured signal such as EEG recording [41], [42], capturing activity from different metastable sources.
The sampling rate is equal to 2100Hz. We generate ten signal trials time-jittered by shifting the signal
by 1 sample to later instances and add i.i.d. zero mean Gaussian noise with unity variance to the signals.
One trial signal is illustrated in Fig. 3(b).

3) Ferret dataset: The experimental dataset under study in the present work are Local Field Potential
(LFP) measurements collected as described in [43]–[45]. Briefly, female ferrets were anesthetized,
intubated, and underwent surgery to gain access to primary visual cortex (V1, ∼ 3mm anterior to lambda
and 9mm lateral to the midline). Anesthesia induction was achieved with an intramuscular injection of
ketamine (30mg/kg) and xylazine (1 − 2mg/kg), and anesthesia maintenance was achieved with 1.0%
isoflurane (10 − 11cc, 50bpm, 100% medical grade oxygen), with continuous IV infusion of xylazine
(1.5 mg/kg/hr xylazine with 4.25 mL/hr 5% dextrose lactated ringer‘s). Animals were head-fixed in front
of the presentation screen and a 32-channel depth probe was acutely inserted into cortex (50 microns
contact spacing along the z-axis, NeuroNexus, Ann Arbor, MI) and was positioned to cover all cortical
layers. The reference electrode was located on the same shank (0.5mm above the top recording site)
and was positioned in 4% agar in saline above the brain. The full-field visual stimulus was presented on
a 52 × 29 cm monitor with 120Hz refresh rate and full high-definition resolution (1920 × 1080 pixels,
GD235Hz, Acer Inc, New Taipei City, Taiwan) at 47 cm distance from the animal. Each trial was 30
seconds long and consisted of three parts: (i) recording interval [0−10)s is a baseline (screen is black); (ii)
ts ∈ [10− 20)s is the presentation of the sine-wave luminance gratings; (iii) [20− 30)s is ‘post-baseline’
(screen is again black). Visual stimuli were interleaved with other types of stimuli (all in randomized
order), for instance with a black screen or with a strongly spatially filtered image of foxes (foxes are
natural enemies of ferrets), see Fig. 4. The sine-wave luminance grating was presented at a rate of 1Hz
for 10 seconds (during each 1s period, progressive frames transitioned from black to white to black and
all the screen pixels had the same color for any given frame). In the subsequent analysis, we consider a
subset of recordings. The dataset under study starts 0.5s before stimulus onset and lasts until 3s at the end
of the third stimulus cycle. This stimulus is a black screen at t = 0s, t = 2s and t = 3s with luminance
maxima at t = 0.5s, t = 1.5s and t = 2.5s. A single trial is illustrated in Fig. 3(c).

Electrophysiological recordings were conducted during stimulus presentation. Unfiltered signals were
first amplified with MPA8I head-stages with gain 10 (Multichannel Systems, Reutlingen, Germany), then
further amplified with gain 500 (Model 3500, A-M Systems, Carlsborg, WA), digitized at 20kHz (Power
1401, Cambridge Electronic Design, Cambridge, UK), downsampled to 1kHz afterwards, and digitally
stored using Spike2 software (Cambridge Electronic Design). In total, 20 trials across two sessions
conducted on different days were analysed, the session sets of 10 trials are called session one and session
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two in the following. Datasets are downsampled to the sampling rate equal to 100Hz.
All procedures were approved by the University of North Carolina-Chapel Hill Institutional Animal Care
and Use Committee (UNC-CH IACUC) and exceed guidelines set forth by the National Institutes of
Health and U.S. Department of Agriculture.

III. RESULTS

In this section, we first apply the proposed method to two artificial datasets to verify if it reveals
dynamics given the noisy set of trials. After validation of the method, we apply it on the experimental
dataset (ferret dataset) and study whether it well extracts the dynamics from the recorded trials.

To understand the results, we first shortly describe recurrence plots for several simple test signals. As
previously mentioned, black pixels denote recurrence events and white ones its absence. All recurrence
plots have a black diagonal line, by definition (see Eq. 1). Signals without any recurrence have a white
square RP with a black diagonal line. Random noise signals have a random distribution of black pixels
in the plot, with the exception of the black diagonal line. A simple periodic signal has a recurrence plot
that consists of the black diagonal line and other black lines that are parallel to the diagonal, where the
distance between them will reveal the period of the signal. More complex signals that have recurrent
states may show different structures in RPs, for example, checkerboard-like patterns. These black colored
fields, to which we refer as to recurrence domains, may have different sizes and shapes. For two artificial
datasets we expect to observe repetitive black patterns that correspond to repetitive states within signal
components. For the experimental dataset, we expect to observe recurrence patterns that are directed by
the onset of the visual stimulus.

A. Artificial datasets

Figure 5. Illustration of time-frequency (a,e), optimal recurrence plot (b,f) for the trials of two artificial
datasets shown in Fig. 3(a,b), statistically significant recurrence plots (c,g) based on 10 trials and classical
t-test results (d,h). Values plotted in black represent areas where the original and the surrogate set differ
significantly (rejected test). (a-d) transient oscillations; (e-h) Lorenz attractor. The red boxes mark recurrent
metastable states.

We demonstrate our methodology in Fig. 5, which shows the analysis steps for the examples of transient
oscillations (Fig. 5(a-d)) and the Lorenz attractor (Fig. 5(e-h)).
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The time-frequency representation of one transient oscillation trial is shown in Fig. 5(a). As previously
mentioned in Sec. II-C.1, the corresponding signal exhibits three periodic components. We visually
inspect the figure and observe high power spectrum values around the following time windows: (i)
{(0, 11), (42, 54), (85, 97)}ms around ν1 = 170 Hz (dark red horizontal line segments); (ii) {(19, 26), (64, 72)}
ms around ν2 = 20 Hz (broad orange areas); (iii) {(24, 38), (74, 87)} ms around ν3 = 75 Hz (dark red
horizontal line segments). Note that for other trials these values may fluctuate because the frequency
and time window of the current active component vary due to noise that models trial-to-trial variability.
Figure 5(b) shows recurrent blocks (in black) in a single trial which correspond well to the dynamics
observed in the data, cf.Fig. 5(a) and Fig. 3(a). For explanation, these recurrence blocks correspond to
MSs and the white parts represent transients between them.

The time-frequency representation of one Lorenz attractor trial is given in Fig. 5(e). The approximate
time intervals during which the system stays in each of the two wings are visually inspected from the
power spectrum values. For the wing in time intervals {(0, 30), (90, 100)} ms, Fig. 5(e) shows a peak at
∼ 30Hz corresponding to the oscillation frequency in the Lorenz wing, see Fig. 3(b). The other wing
is reached in the time intervals {(40, 60), (65, 80)} ms in accordance to the power peak at about 40Hz.
Note that for other trials time intervals may be different due to varying trials in the set. Figure 5(f) shows
recurrent blocks in a single trajectory. The recurrence blocks repeat in the correct time windows and
represent the different wings, i.e., the MSs.

Time-frequency representations of single trials are the basis for the recurrence analysis leading to
recurrence plots given in Fig. 5(b,f) for the respective datasets. These plots show the metastable dynamics
of the transient oscillations and the Lorenz trajectories in the corresponding time windows as recurrent
structures. The recurrent, i.e., repetitive, structure is visible in the illustrated trial of the corresponding
data. Now, considering several trials these recurrent structures may vary due to the trial-to-trial variability.
Nevertheless, to study the recurrent structure common to all trials, we employ the statistical inference
method and extract statistically significant areas of recurrence plots, as shown in Fig. 5(c,d,g,h). The
recurrent structure is obvious in these plots, reflecting the underlying recurrence structure in the artificial
signals. In addition, these results demonstrate that the methodology extracts recurrence structures common
in several trials, although the recurrent structure is less obvious in single trials, Fig. 5(b,c). Figure 5(d,h)
show the multiple comparison-test results for both artificial datasets. The white area increases and the
black areas are more focussed on the red squares, i.e. spurious recurrences (black dots) are removed
and and separated well from transient (white areas). Hence the multiple-comparison test improves the
statistical inference.

We point out again, that the extraction of the recurrent structure from the univariate data shown in
Fig. 5 is possible only by the spectral power embedding, i.e., the transformation of the univariate data
into multivariate data. The subsequent preliminary statistical inference allows to identify the recurrent MSs
which are common in all trials with a confidence of 0.95. By virtue of the spectral power embedding, the
method permits to select certain frequency bands to study recurrence structure in specific frequency bands.
This new element renders the spectral power embedding more flexible and hence superior to previous
embedding techniques, such as the delay embedding based on Takens theorem. To illustrate this, the
subsequent section shows results from experimental data in different frequency bands.

B. Experimental data
After studying artificially generated trials and verifying that the proposed method extracts well the

dynamics features given by repetitive black structures, we now investigate whether such structures can be
found in the experimental data as well.

Figure 6 provides the time-frequency representations of two single trials of the same session (a,c) and
the corresponding recurrence plots (b,d). We observe a high trial-to-trial variability between both trials.
This can be observed both in the time-frequency representations and the resulting recurrence plots. For
instance, panel (b) shows a single recurrent state in the data except in the time window during the first
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Figure 6. Illustration of trial variability for the experimental dataset session one. (a,c) The logarithm
values of the power spectrum for two trials measured at an electrode in the granular layer; (b,d) the
corresponding recurrence plots. Non-zero values of recurrence plots are encoded in black. Red boxes
denote recurrent metastable states.

stimulus at t ∈ [0.25s; 1s]. Hence the system remains close to the resting state (t < 0) during the first
stimulus. Conversely, Figure 6(d) reveals that the baseline activity, i.e., activity before stimulation in
the time interval [−0.5s; 0s], recurres in the interval [2.5s; 3s]. In addition, the activity at about t = 2s
resembles the activity just after t = 2.5s. These different findings for two trials are surprising since the
experimental presentation of the visual stimulus is well-controlled and the stimulus is simple enough to
expect almost identical neural responses.

To reveal the recurrent structure that is common in all trials, we now study the trial-to-trial variability
of recurrence plots and aim to reveal whether the signal trials preserve the same dynamical behaviour,
cf. Fig. 7. Applying the statistical method, we investigate the similarities of the results obtained from
ten trials measured by a single granular sensor and from the set of ten averaged signal trials, where the
average is taken over 8 granular layer sensors. This analysis is done for both ferret datasets. Moreover,
we detail the analysis considering particular frequency bands which are of interest for anaesthesia. To this
end, we compute recurrence plots using the values of the power spectrum coefficients in the corresponding
frequency bands as illustrated in Fig. 1.

Figure 7 shows the statistically significant parts of the recurrence plots for the δ- and the α-frequency
band and for all frequencies (chi-square and t-test results). The figure reveals that there is no statistically
significant recurrent structure in the δ frequency band in signals under study. Conversely, the α-frequency
band exhibits significant recurrent structures in the single granular electrode in both datasets, cf. Fig. 7(a,b).
For instance, in session one the first response to the stimulus at t = 0s returns at t = 1s. Results for all
frequency bands differ to results obtained in the α frequency band. The differences are dependent on the
experimental sessions suggesting the presence of strong recurrences in bands different to α and δ or strong
noise artefacts. To gain further insights into the dependence on frequency bands, we consider single trials
which represent spatial averages of time series from adjacent granular layers. This average denoises the
time series. Figure 7(c,d) shows the corresponding results. Figure 7(c,d) show results from data in both
experimental sessions revealing a similar recurrence structure now. Considering all frequency bands yields
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Figure 7. Statistically significant parts of recurrence plots for different ferret datasets. (a) Results from a
dataset of session one that consists of 10 trial recordings of the single granular sensor s10. (b) Same as
in (a) for the dataset session two. (c) Results are calculated based on 10 averaged trials in dataset session
one, where each trial is averaged over 8 granular layer time series. (d) Same as in (c) for dataset session
two. Red boxes indicate MSs, blue boxes in (b) indicate a prominent lack of recurrence in the α−band.

recurrences similar to the one obtained in the α−band. Specifically, the prominent cross-shaped structure
located at t = 0.5s indicates a MS common to all data with t ≥ 0.5s. Additional recurrences occur in
the time intervals [−0.5; 0]ms, [1.7; 2.2]ms and [2.7; 3.0]ms. These results are consistent in the chi-square
significance tests and the t-test involving corrections for multiple comparison. At last, we mention the
prominent lack of recurrence in the baseline time interval observed in a single electrode in session one, cf.
Fig. 7(b). Since it does neither occur in session one nor in the spatially averaged data shown in Fig. 7(c,d),
it appears to be spurious and is neglected.

The experimental paradigm includes visual presentations of stimulus types in a randomised order. The
previous paragraphs show neurophysiological responses to the sine-wave stimulus only. To gain further
insight into the trial-to-trial variability subject to various pre-stimuli, we have selected two subsets of
sine-wave trials that have two different preceding stimuli, namely the ’black screen’ subset denoted by
subset one and the subset of ’strongly spatially filtered version of foxes’ denoted by subset two. Subset
one includes the trials {4, 6, 9}, while subset two is composed of the trials {1, 5, 10} of datasets session
one and session two. The comparison of various pre-stimuli data is done by the chi-squared difference
measure based on recurrence plots of both subsets. Figure 8 shows the statistically significant recurrences
that are common in stimulus responses on both types of pre-stimuli. The diagonal lines are absent from
figures, which suggests that at each time instance two comparison signals differ. Poor but visible recurrent
structures in δ-band are grouped into two distinct blocks which distinguish the activity before the stimuli
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Figure 8. Illustration of the influence of different visual pre-stimuli on resulting plots in experimental
dataset. Statistically significant areas of recurrence plots are obtained by (a) pixel-wise chi-square tests
and (b) t-test between trials with pre-stimulus black screen and those whose pre-stimulus is fox image.
The data is taken from a single granular layer electrode in datasets session one and session two together.
Both the pre-stimulus black screen and fox image have occurred three times among the 10 trials in each
dataset. Significantly different values are coded as white pixels, statistically similar values are coded as
black pixels.

(around t = 0s) and during the stimuli, for t ∈ (1, 3)s. In α-band, the figure shows more prominent
recurrences, such as the patterns around t = 1.5s and t = 2.7s. We point out that recurrences within
δ- and α-bands do not overlap, except in the pre-stimuli period, for t ∈ {−0.5, 0}s. Finally, considering
all the frequency bands together does not reveal significant similarities of two pre-stimuli. Results from
the chi-square test and the t-test involving multiple comparison correction are similar. However, it is
interesting to note that the t-test reveals more significant common recurrences than obtained with the
naive chi-square test.

IV. DISCUSSION

The present work introduces a new recurrence analysis methodology for univariate time series. The
first new element is the transformation to a time-frequency representation leading to a multivariate time
series of spectral power. This new technique generates a new high-dimensional phase space in which
the instantaneous power of the signal evolves. This high-dimensional phase space is mandatory to apply
recurrence analysis. In addition, it permits to compute recurrence plots for specific frequency bands.
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The second new element is the statistical analysis of recurrence plots that takes into account spurious
recurrence structures and allows to suppress them. The combination of the two methods permits to extract
temporal recurrence structures in data which may reflect underlying transient dynamics in a certain range
of frequencies that would have been hidden in conventional methods. To our best knowledge these two
techniques have not been considered before.
The first results for two artificial datasets illustrate the methodology and indicate that method detects
recurrences in a variable dataset (noise-induced trial variability) by the statistical analysis as seen in
Fig. 5. These results on artificial datasets prove that the method reveals underlying recurrences in a set
of trials if they are present in these trials.

The subsequent analysis of single Local Field Potentials measured experimentally in ferret visual cortex
reveals a high trial-to-trial variability, cf. Fig. 6. The trial-to-trial variability is surprising due to the well-
controlled experiment revealing an intrinsic ongoing activity [46]. This result demonstrates that it is
mandatory to take into account recurrence variability in several trials. This is done by the methodology
proposed. Detailed recurrence analysis of specific frequency bands in Fig. 7 reveals missing recurrences
in the δ band whereas α−activity exhibits statistically significant temporal recurrence. This important
finding reflects a fundamental difference of the nature of δ− and α−activity which has been shown in
previous experimental studies on the neural origin of both signal features [47]–[49]. Our results suggest
that the brain may decode information processing steps in different frequency bands. This might be of
importance in previous studies and may shed some new light on neural processes, such as on metastable
states in EEG during the emergence from unconsciousness [6] and metastable states in bird songs [7].

The effects of pre-stimuli have been hypothesized [50], [51] and we have investigated the effect of pre-
stimuli. The performed analysis is based on a rather small set of trials reflecting the responses to identical
stimuli. To have sufficiently large dataset for tests, we merged trials coming from two recording sessions.
We note that trials coming from two sessions may not be independent, which may introduce errors. We
found negligible effects in the δ frequency bands but differences in the temporal recurrence structure in the
α frequency band. This result indicates that α−activity is more sensitive to pre-stimuli than δ−activity
in the experimental setup under study. This finding is in full line with previous theoretical [50] and
experimental [52] studies on the importance of phase and power of prestimulus α−activity. In addition,
we notice the absence of the diagonal line and other strong recurrence patterns visible in Fig. 7. This
may be the result of merging trials from different sessions, which was necessary to obtain larger test set
for the analysis.

The present work shows that trial-to-trial variability in neurophysiological data occurs in spite of well-
controlled and simple response-driven experimental conditions and demonstrate how to extract recurrent
structures nevertheless. The methodology proposed makes it necessary to choose a well-adapted technique
to transform the univariate times series to a multivariate time frequency signal. In addition to our current
choice of a spectral reassignment technique, we have employed a conventional wavelet technique using
complex Morlet mother wavelets and performed the same recurrence analysis (results are not shown).
It turns out that this conventional method does not provide high-quality extraction of transient recurrent
structures, given by the reassignment method. This may result from the worse time-frequency resolution of
conventional Morlet wavelets. Future work will further investigate the best choice of multi-resolution time-
frequency methods. Moreover, the methodology considers surrogate data generated by a temporal random
shuffling of data and hence destructing all temporal structure. Future work may include the destruction
of the recurrence structure by phase randomisation in certain frequency bands [53].

To conclude, in this work we propose a novel analysis method for trial-to-trial variability of recurrence
plots in univariate time series applying a novel statistical analysis technique. This extension of recurrence
analysis by a statistical technique is motivated by the fact that many physiological datasets have a limited
number of trials but posses the intrinsic recurrence property of patterns of interest. Inspired by the fact
that particular physiological patterns very often occur in specific frequency bands, we first build novel
recurrence plots from a time-frequency signal representation. A low dimensional time-frequency signal
that is built by the band median filter is then used to obtain original trial recurrence plots. Next, we use a
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chi-squared statistics to obtain statistically important areas of recurrence plots. The work reveals a strong
trial-to-trial variability of recurrences in experimental data in spite of the well-controlled experimental
paradigm. Moreover, it turns out that recurrences occur in the α−frequency band, whereas activity in
the δ−frequency band does not exhibit a temporal recurrent structure indicating frequency-dependent
metastable states.

V. DATA SHARING

We provide the time-series of the transient oscillation dataset and Lorenz dataset on the webpage of
the corresponding author (https://sites.google.com/site/tamtos/datasets).
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