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Abstract. This work investigates the empirical performance of the sparse
synthesis versus sparse analysis regularization for the ill-posed inverse

problem of audio declipping. We develop a versatile non-convex heuris-

tics which can be readily used with both data models. Based on this

algorithm, we report that, in most cases, the two models perform almost

similarly in terms of signal enhancement. However, the analysis version is

shown to be amenable for real time audio processing, when certain anal-

ysis operators are considered. Both versions outperform state-of-the-art

methods in the field, especially for the severely saturated signals.
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1 Introduction

Clipping, or magnitude saturation, is a well-known problem in signal processing,
from audio [1,13] to image processing [2,18] and digital communications [17].
The focus of this work is audio declipping, to restore clipped audio signals.
Audio signals become saturated usually during acquisition, reproduction or A/D
conversion. The perceptual manifestation of clipped audio depends on the level
of clipping degradation and the audio content. In case of mild to moderate
clipping, the listener may notice occasional “clicks and pops” during playback.
When clipping becomes severe, the audio content is usually perceived as if it
was contaminated with a high level of additive noise, which may be explained
by the introduction of a large number of harmonics caused by the discontinuities
in the degraded signal. In addition to audible artifacts, some recent studies have
shown that clipping has a negative impact on Automatic Speech Recognition
(ASR) performance [22,11].

In the following text, a sampled audio signal is represented by the vector
x € R" and its clipped version is denoted by y € R". The latter can be easily
deduced from x through the following nonlinear observation model, called hard

clipping:

KA for |x;| <, 1)
' )sign(z;)T otherwise.
* This work was supported in part by the European Research Council, PLEASE
project (ERC-StG-2011-277906).



2 Sparse and cosparse regularizations for audio declipping

While idealized, this clipping model is a convenient approximation allowing to
clearly distinguish the clipped parts of a signal by identifying the samples having
the highest absolute magnitude. Indices corresponding to “reliable” samples of
y (not affected by clipping) are indexed by 2., while 2} and (2, index the
clipped samples with positive and negative magnitude, respectively.

Our goal is to estimate the original signal  from its clipped version y, i.e.
to “declip” the signal y. Ideally, the estimated signal & should satisfy natural
magnitude constraints in order to be consistent with the clipped observations.
Thus, we seek an estimate & which fulfills the following criteria:

M,& =M,y MI&>Mly M. & <M_y, (2)

where the matrices M, M and M7 are restriction operators. These are simply
row-reduced identity matrices used to extract the vector elements indexed by the
sets 2., 27 and 2_, respectively. We write the constraints (2) as & € I'(y).

Obviously, consistency alone is not sufficient to ensure uniqueness of &, thus
one needs to further regularize the inverse problem. The declipping inverse prob-
lem is amenable to several regularization approaches proposed in the literature,
such as based on linear prediction [12], minimization of the energy of high order
derivatives [11], psychoacoustics [6], sparsity [1,15,21,6,23] and cosparsity [14]
(where we introduced a simplified version of the analysis-based algorithm pre-
sented in this paper). The last two priors, briefly explained in the next section,
enable some state-of-the-art methods in clipping restoration.

In this paper we empirically compare the performance of the two priors, by
means of a declipping algorithm which is easily adaptable to both cases. Our
findings are that the sparsity-based version of the algorithm marginally outper-
forms the cosparsity-based one, but this fact may be attributed to the choice of
the stopping criterion. On the other hand, for a class of analysis operators, the
cosparsity-based algorithm has very low complexity per iteration, which makes
it suitable for real-time audio processing.

2 The sparse synthesis and sparse analysis data models

It is well-known that the energy of audio signals is often concentrated either in
a small number of frequency components, or in short temporal bursts [20], i.e.
they are (approximately) time-frequency sparse. The traditional sparse synthesis
viewpoint [8,9] on this property is that audio signals are well approximated
by linearly combining few columns of a dictionary matrix D € C"*4 d >
n such as a Gabor dictionary, i.e. @ ~ Dz, where z € C9 is sparse. A less
explored alternative is the cosparse analysis perspective [19] asserting that Ax
is approximately sparse, with A € CP*" p > n and analysis operator. The two
data models are different [7,19], unless p =n and A = D' Finding the sparsest
(in the sense of synthesis or analysis) vector @ satisfying constraints such as (2) is
in general intractable, but convex or greedy heuristics provide efficient algorithms
with certain performance guarantees [8,9,19].
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3 Algorithms

Some empirical evidence [6,23] suggests that standard ¢; convex relaxation does
not perform well for sparse synthesis regularization of the declipping inverse
problem. Therefore, we developed an algorithmic framework based on non-convex
heuristics, that can be straightforwardly parametrized for use in both the syn-
thesis and the analysis setting. To allow for possible real-time implementation,
the algorithms operate on individual blocks (chunks) of audio data, which is
subsequently resynthesized by means of the overlap-add scheme.

The heuristics should approximate the solution of the following synthesis-
and analysis-regularized inverse problems':

minmirilize 1zllo + 1) (x) + 1< (x — D2) (3)

minairilize l1zllo + 1r)(x) + 1< (Ax — 2). (4)

The indicator function 1p(,) of the constraint set I'(y) forces the estimate x
to satisfy (2). The additional penalty 1,,<. is a coupling functional. Its role is
to enable the end-user to explicitly bound the distance between the estimate
and its sparse approximation. These are difficult optimization problems: besides
inherited NP-hardness, the two problems are also non-convex and non-smooth.

We can represent (3) and (4) in an equivalent form, using the indicator
function on the cardinality of z and an integer-valued unknown k:

minimize 1g,<k(2) + 1p(y)(x) + Fe(z, 2) (5)
x,z,
where F..(x, z) is the appropriate coupling functional. For a fixed k, problem (5)

can be seen as a variant of the regressor selection problem, which is (locally)
solvable by the Alternating Direction Method of Multipliers (ADMM) [5,3]:

Synthesis version Analysis version

20D =3, (20 4 o) 204D =71, (A2 + u)

204D argmin ||z — (D) u(i)H% &0+ =argmin | Az — i+ 4 u(i)||§
subject to Dz € I'(y) subject to « € I'(y)

u(i+1) :u(i) + 2(i+1) - 2(i+1) u(i+1) :u(i) + Aﬁ:(iJrl) o 2(i+1).

(6)

The operator Hy(v) performs hard thresholding, i.e. sets all but k highest in
magnitude components of v to zero. Unlike the standard regressor selection
algorithm, for which the ADMM multiplier [5] needs to be appropriately chosen
to avoid divergence, the above formulation is independent of its value.

In practice, it is difficult to guess the optimal value of k beforehand. An
adaptive estimation strategy is to periodically increase k (starting from some

! Observe that if D and A are unitary matrices, the two problems become identical.
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small value), perform several runs of (6) for a given k and repeat the procedure
until the constraint embodied by F, is satisfied. This corresponds to sparsity
relaxation: as k gets larger, the estimated z becomes less sparse.

The proposed algorithm, dubbed SParse Audio DEclipper (SPADE), comes
in two flavors. The pseudocodes for the synthesis version (“S-SPADE”) and for
the analysis version (“A-SPADE”) are given in Algorithm 1 and Algorithm 2.

Algorithm 1 S-SPADE Algorithm 2 A-SPADE

Require: D, y, M, , Mt M_,s,r, e Require: A,y, M, Mt M_,s,r ¢
1: 2 =D"y,u® =0,i=1,k=s 1: & =y,u® =0i=1k=s

2: 20 = 7 (309 1 ) 2: 3 =24, (420D + (=)

3: 20 —arg min, ||z — 20 + w7 V|3 3: 29 = arg ming||Az — 2D + V|3
st.e=Dzel st.xel’

4: if |29 — 20|, < ¢ then 4: if |Az® — 20|, < ¢ then

5: terminate 5: terminate

6: else 6: else

7. u® = 0D 4 50 _ 50 7. w® = 0= L 450 _ 30

8: i+—i+1 8: i+—i+1

9: if ¢ mod r = 0 then 9: if ¢ mod r = 0 then

10: k< k+s 10: k< k+s

11: end if 11: end if

12:  go to 2 12:  go to 2

13: end if 13: end if

14: return & = Dz® 14: return & = 2%

The relaxation rate and the relaxation stepsize are controlled by the integer-
valued parameters r > 0 and s > 0, while the parameter ¢ > 0 is the stopping
threshold.

Lemma 1 The SPADE algorithms terminate in no more than i = [dr/s + 1]
iterations.

Proof. Once k > d, the hard thresholding operation Hyi becomes an identity
mapping. Then, the minimizer of the constrained least squares step 3 is 2(-1)
(respectively, 207) and the distance measure in the step 4 is equal to [|u(=D][,.
But, in the subsequent iteration, wi=1 = 0 and the algorithm terminates.

This bound is quite pessimistic: in practice, we observed that the algorithm
terminates much sooner, which suggest that there might be a sharper upper
bound on the iteration count.

4 Computational aspects

The general form of the SPADE algorithms does not impose restrictions on the
choice of the dictionary nor the analysis operator. From a practical perspec-
tive, however, it is important that the complexity per iteration is kept low. The
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dominant cost of SPADE is in the evaluation of the linearly constrained least
squares minimizer step, whose computational complexity can be generally high.
Fortunately, for some choices of D and A this cost is dramatically reduced.

Namely, if the matrix A” forms a tight frame (AHA = (I), it is easy to show
that the step 3 of A-SPADE reduces to?:

. 1 . .
2V = Pp= (EAH(Z(‘) — u(‘_l))) , where:

E={z| [71\]/\[/{?} x < [71\1/\[4_:} yand M,z =M, y}.
The projection Pz(-) is straightforward and corresponds to component-wise
mappings, thus the per iteration cost of the algorithm is reduced to the cost
of evaluating matrix-vector products.

On the other hand, for S-SPADE this simplification is not possible and the
constrained minimization in step 3 needs to be computed iteratively. However, by
exploiting the tight frame property of D = A" and the Woodbury matrix iden-
tity, one can build an efficient algorithm that solves this optimization problem
with low complexity.

Finally, the computational cost can be further reduced if the matrix-vector
products with D and A can be computed with less than quadratic cost. Some
transforms that support both tight frame property and fast product computation
are also favorable in our audio (co)sparse context. Such well-known transforms
are Discrete Fourier Transform, (Modified) Discrete Cosine Transform, (Modi-
fied) Discrete Sine Transform and Discrete Wavelet Transform, for instance.

5 Experiments

The experiments are aimed to highlight differences in signal enhancement perfor-
mance between S-SPADE and A-SPADE, and implicitly, the sparse and cosparse
data models. Tt is noteworthy that in the formally equivalent setting (A = D™,
the two algorithms become identical. As a sanity-check, we include this setting
in the experiments. The relaxation parameters are set tor = 1 and s = 1, and
the stopping threshold is € = 0.1.

In addition to SPADE algorithms, we also include Consistent IHT [15] and
social sparsity declipping algorithm [21] as representatives of state-of-the-art.
The latter two algorithms use the sparse synthesis data model for regularizing
the declipping inverse problem. Consistent THT is a low-complexity algorithm
based on famous Iterative Hard Thresholding for Compressed Sensing [4], while
the social sparsity declipper is based on a structured sparsity prior [16].

As mentioned before, this work is not aimed towards investigating the appro-
priateness of various time-frequency transforms in the context of audio recovery,
which is why we choose traditional Short Time Fourier Transform (STFT) for
all experiments. We use sliding square-rooted Hamming window of size 1024

2 Recall that the matrices M,, MF and M are tight frames by design.
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samples with 75% overlap. The redundancy level of the involved frames (corre-
sponding to per-chunk inverse DFT for the dictionary and forward DFT for the
analysis operator) is 1 (no redundancy), 2 and 4. The social sparsity declipper,
based on Gabor dictionary, requires batch processing of the whole signal. We
adjusted the temporal shift, the window and the number of frequency bins in
accordance with previously mentioned STFT settings 3.

For a measure of performance, we use a simple difference between
signal-to-distortion ratios of clipped (SDR,) and processed (SDRg) signals:

I =l I[N =l
SDRy = 20log;y —— ar ] Mi /SDR; = 20log,) —— [Mc]Mi .
H[Mcc]m_ [MCC]y”2 ”[MCC]:B_ [MCC]:"BH2

Hence, only the samples corresponding to clipped indices are taken into account.
Concerning SPADE, this choice makes no difference, since the remainder of the
estimate & perfectly fits the observations y. However, it may favor the other two
algorithms that do not share this feature.

Audio examples consist of 10 music excerpts taken from RWC database [10],
which significantly differ in tonal and vocal content. The excerpts are of approxi-
mately similar duration (~ 10s), and are sampled at 16kHz with 16bit encoding.
The inputs are generated by artificially clipping the audio excerpts at five levels,
ranging from severe (SDR, = 1dB) towards mild (SDR, = 10dB).

According to the results presented in figure 1, the SPADE algorithms yield
highest improvement in SDR among the four considered approaches. As assumed,
S-SPADE and A-SPADE achieve similar results in a non-redundant setting, but
when the overcomplete frames are considered, the synthesis version performs
somewhat better. Interestingly, the overall best results for the analysis version are
obtained for the twice-redundant frame, while the performance slightly drops for
the redundancy four. This is probably due to the absolute choice of the parameter
€, and suggests that in the analysis setting, this value should be replaced by a
relative threshold instead. In the non-redundant case, declipping by A-SPADE
and Consistent THT took (on the average) 3min and 7min, respectively, while
the other two algorithms were much slower* (on the order of hours).

6 Conclusion

We presented a novel algorithm for non-convex regularization of the declipping
inverse problem. The algorithm is flexible in terms that it can easily accom-
modate sparse (S-SPADE) or cosparse (A-SPADE) prior, and as such has been
used to compare the recovery performance of the two data models. The empiri-
cal results are slightly in favor of the sparse synthesis data model. However, the
analysis version does not fall far behind, which makes it attractive for practical
applications. Indeed, due to the natural way of imposing clipping consistency

3 We use the implementation kindly provided by the authors.
4 All algorithms were implemented in Matlab®, and run in single-thread mode.
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constraints, it can be implemented in an extremely efficient way, even allowing
for a real-time signal processing. Benchmark on real audio data demonstrates
that both versions outperform considered state-of-the-art algorithms in the field.

Synthesis SPADE Analysis SPADE
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Fig. 1. Declipping performance in terms of the SDR improvement.

Future work will be dedicated to theoretical analysis of the algorithm, with
emphasis on convergence. A possible extension is envisioned by introducing
structured (co)sparsity priors in the presented algorithmic framework.
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