Sparsity and cosparsity for audio declipping: a flexible non-convex approach

Srđan Kitić 1 Nancy Bertin 1 Rémi Gribonval 1
1 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This work investigates the empirical performance of the sparse synthesis versus sparse analysis regularization for the ill-posed inverse problem of audio declipping. We develop a versatile non-convex heuristics which can be readily used with both data models. Based on this algorithm, we report that, in most cases, the two models perform almost similarly in terms of signal enhancement. However, the analysis version is shown to be amenable for real time audio processing, when certain analysis operators are considered. Both versions outperform state-of-the-art methods in the field, especially for the severely saturated signals.
Type de document :
Communication dans un congrès
LVA/ICA 2015 - The 12th International Conference on Latent Variable Analysis and Signal Separation, Aug 2015, Liberec, Czech Republic. pp.8
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01159700
Contributeur : Srdan Kitic <>
Soumis le : lundi 8 juin 2015 - 12:53:40
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : mardi 15 septembre 2015 - 12:11:23

Fichiers

Declipping.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01159700, version 2
  • ARXIV : 1506.01830

Citation

Srđan Kitić, Nancy Bertin, Rémi Gribonval. Sparsity and cosparsity for audio declipping: a flexible non-convex approach. LVA/ICA 2015 - The 12th International Conference on Latent Variable Analysis and Signal Separation, Aug 2015, Liberec, Czech Republic. pp.8. 〈hal-01159700v2〉

Partager

Métriques

Consultations de la notice

1340

Téléchargements de fichiers

564