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Implicit Lyapunov-Krasovski Functionals For
Stability Analysis and Control Design of

Time-Delay Systems
A. Polyakov, D. Efimov, W. Perruquetti, J.-P. Richard

Abstract—The method of Implicit Lyapunov-Krasovski Func-
tional (ILKF) for stability analysis of time-delay systems is
introduced. Theorems on Lyapunov, asymptotic, (hyper) expo-
nential, finite-time and fixed-time stability analysis using ILKF
are presented. The hyper exponential stabilization algorithm for a
time-delay system is presented. The theoretical result is supported
by numerical simulation.

I. INTRODUCTION

The celebrated Second Lyapunov Method was originally
founded on the so-called energetic approach to stability anal-
ysis. It considers any positive definite function as possible
energetic characteristic (”energy”) of a dynamic system and
the evolution of this ”energy” in time is studied. If a dynamic
system has an energetic function, which is decreasing (or
strictly decreasing) along any trajectory of the system, then
this system has some stability property and the corresponding
energetic function is called a Lyapunov function.

The Lyapunov function method is one of the main the-
oretical tools for stability analysis and control synthesis of
nonlinear systems ([2], [21]). This method allows the stability
properties of the system to be studied without finding its
solutions. The extension of the Lyapunov’s ideas to the case
of time-delay systems is given by Lyapunov-Razumikhin and
Lyapunov-Krasovski theorems, see, for example, [15], [10],
[25], [9], [17]. The corresponding energetic function becomes
a functional in the last case. Finding the appropriate Lyapunov
(-Krasovski) functions is a difficult problem in general case.

In addition to qualitative analysis of stability, control theory
is also interested in quantitative analysis of the convergence
rate. In linear case the concept of exponential stability can
be utilized for this purpose. Nonlinear control systems may
demonstrate faster (e.g. hyper exponential) convergence. In
particular, nonlinear systems can be finite-time [26] and fixed-
time stable [22]. Finite-time control problem is a subject of
intensive research in the last years; e.g., see [11], [3], [13],
[19], [21]. The method of Lyapunov(-Krasovski) functions
helps to estimate the rate of convergence and to adjust the
control parameters in order to provide the desired rate.
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Recently [23], the Implicit Lyapunov Function (ILF) method
has been developed for non-asymptotic (finite-time and fixed-
time) analysis. This method allows the control to be designed
together with a Lyapunov function of the closed-loop system.
A simple procedure for parameter tuning based on Linear
Matrix Inequalities (LMIs) was developed for linear plants.

The ideas, which underline the ILF method, were ini-
tially introduced for control synthesis problems in [16]. The
corresponding design methodology was called controllability
function method. In order to be more precise we follow more
recent terminology of [1]. The ILF method uses Lyapunov
function defined in the implicit form by some algebraic equa-
tions. Stability analysis in this case does not require solution
of this equation, since the Implicit function theorem (see,
for example, [6]) helps to check all stability conditions by
analyzing the algebraic equation directly.

This technical note extends the concept of ILF to the case
of time-delay systems. The stability theorems presented in the
paper introduce the ILKF method for Lyapunov, asymptotic,
(hyper) exponential and non-asymptotic (finite-time and fixed-
time) stability analysis of time-delay systems. They allow us
to define the Lyapunov-Krasovski functionals in the implicit
form. The developed method is demonstrated on the control
design problem for hyper exponential stabilization of a special
time-delay linear system. The procedure to design of control
parameters is presented in the LMI form.

II. NOTATION

Through the paper the following notation will be used:
• R is the field of real numbers, R+ = {x ∈ R : x > 0};
• ‖ · ‖ is the Euclidian norm in Rn;
• diag{λi}ni=1 is the diagonal matrix with the elements λi

on the main diagonal;
• a positive definite continuous function σ : R → R

belongs to the class K if it is strictly increasing on R+

and σ(0) = 0; if additionally it is radially unbounded
then σ belongs to K∞;

• Ch is the space of continuous functions [−h, 0] →
Rn with the norm ‖ · ‖h defined as follows ‖ϕ‖h =

max
t∈[−h,0]

‖ϕ(t)‖ for ϕ ∈ Ch;

• C0
h := {ϕ ∈ Ch : ϕ(0) = 0} is a subspace of Ch.

• for P > 0 the matrix P 1/2 := B is such that B2 = P
and P−1/2 =

[
P 1/2

]−1
;

• λmin(P ) and λmax(P ) are minimal and maximal eigen-
values of symmetric matrix P ∈ Rn×n, respectively.
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• if P ∈ Rn×n is symmetric then the inequalities P > 0
(P < 0) and P ≥ 0 (P ≤ 0) means that P is positive
(negative) definite and semidefinite, respectively;

III. STABILITY DEFINITIONS

Consider the system of the form

ẋ(t) = f(t, xh(t)), t ∈ R+

x(t) = ϕ(t) ∈ Ch, t ∈ [−h, 0]
(1)

where x ∈ Rn, xh(t) ∈ Ch is the state function defined by
means of the formula xh(t) := x(t+τ) with τ ∈ [−h, 0] with
h ∈ R+ (time delay) and f : R+ ×Ch → Rn is a continuous
operator. Note that the continuity of f implies, at least, local
existence of solutions of the system (1) due to Theorem 2.1,
page 41 from [12]. The advanced detailed analysis of the
existence or uniqueness properties of the solutions goes out
of the scope of this paper. Assume that the origin is an
equilibrium point of the system (1), i.e. f(t, 0) = 0 for all
t ∈ R+. A solution of the system (4) with the initial function
ϕ ∈ Ch is denoted by x(t, ϕ).

The definitions of Lyapunov, asymptotic and exponential
stability are well-known, we refer the reader, for example, to
[12]. Interested in quantitative analysis of stability character-
ized by rate of convergence, we briefly discuss some related
notions. Note that this paper deals only with strong uniform
stability properties of the system (1). The words ”strong
uniform” are omitted below for simplicity of presentation.

Let us introduce the functions ρr : R→ R by the following
recursive formula

ρ0(z) = z, ρr(z) = eρr−1(z),

where r ≥ 1 is integer number. The next definition presents
hyper exponential asymptotic stability [24]. It follows the ideas
of hyperpower (see, [18]).

Definition 1: The origin of the system (1) is said to be
hyper exponentially stable of degree r ≥ 1, if it is asymp-
totically stable, ∃σ ∈ K∞ and ∃α ∈ R+ such that the
inequality ‖x(t, ϕ)‖ ≤ σ(‖ϕ‖h)e−ρr(αt), t ∈ R+ holds for
all ϕ ∈ Ch : ‖ϕ‖h < δ. If δ = +∞ then the origin of the
system (1) is said to be globally hyper exponentially stable.

For r = 0 the hyper exponential stability becomes exponen-
tial one [12]. The number α is called the decay rate of hyper
exponential convergence. For example, the following delay-
free system ẋ(t) = −(1 − ln(|x(t)|))x(t), x ∈ R is locally
hyper exponentially stable with the rate α = 1 and degree
r = 1, i.e. ‖x(t)‖ ≤ σ(|x0|)e−ρ1(t), where ρ1(t) = et.

The next two definitions present a stability with non-
asymptotic reaching phase.

Definition 2 ([19]): The origin of the system (1) is said to
be finite-time stable, if it is Lyapunov stable and for any
ϕ ∈ Ch : ‖ϕ‖h < δ there exists 0 ≤ T0(ϕ) < +∞,
such that ‖x(t, ϕ)‖ = 0 for t ≥ T0(ϕ). If δ = +∞ then
the origin of the system (1) is said to be globally finite-
time stable. The functional T : C[−h,0] → R+ defined as
T (ϕ) = inf{T0(ϕ) ≥ 0 : x(t, ϕ) = 0,∀t > T (ϕ)} is called
the settling-time functional [19] of the system (1).

Examples of finite-time stable systems of the form (1) are
given in [19]. Note that the Lyapunov-Razumikhin approach

to finite-time stability analysis is inconsistent in the general
case [8].

The next definition extends the concept of fixed-time sta-
bility [22] to time-delay systems.

Definition 3: The origin of the system (1) is said to be
fixed-time stable, if it is finite-time stable and the settling-
time functional T : Ch → R+ is bounded, i.e. there exists
Tmax ∈ R+ such that sup

ϕ∈Ch:‖ϕ‖h<δ
T (ϕ) = Tmax for some

δ ∈ R+. If δ = +∞ then the origin of the system (1) is said
to be globally fixed-time stable.

The right-hand sides of finite-time and fixed-time stable
systems are non-Lipschitz continuous [20] or even discontin-
uous [22]. Such models appear for mechanical systems with
dry friction (see, for example, [4]). The phyper exponentially
stable system presented above is also non-Lipschitz at the
origin.

IV. STABILITY ANALYSIS OF TIME-DELAY SYSTEMS
USING IMPLICIT LYAPUNOV-KRASOVSKI FUNCTIONAL

A. Implicit functions and operators

Below we utilize a special class of functions introduced by
the following definition.

Definition 4: The function q : R2
+ → R, (σ, s) → q(σ, s)

is said to be of the class IK∞ iff 1) q is continuous on R2
+; 2)

for any s ∈ R+ there exists σ ∈ R+ such that q(σ, s) = 0; 3)
for any fixed s ∈ R+ the function q(·, s) is strictly decreasing
on R+; 4) for any fixed σ ∈ R+ the function q(σ, ·) is strictly
increasing on R+; 5) lim

s→0+

(σ,s)∈Γ

σ= 0, lim
σ→0+

(σ,s)∈Γ

s= 0, lim
s→+∞

(σ,s)∈Γ

σ= +∞,

where Γ =
{

(σ, s) ∈ R2
+ : q(σ, s) = 0

}
.

If q ∈ IK∞ then there exists a unique function σ ∈ K∞,
such that q(σ(s), s) = 0 for all s ∈ R+. Indeed, the condition
2) claims that there exists a function σ : R+ → R+ such that
q(σ(s), s) = 0 for any s ∈ R+. The condition 3) implies
the uniqueness of this function. The implicit function theorem
[14] and the conditions 1) - 4) guarantee continuity of σ in
R+. In order to show that σ is strictly increasing let us take
two arbitrary numbers s1, s2 ∈ R+ such that s1 < s2 and
denote σ1 = σ(s1) and σ2 = σ(s2). The condition 4) implies
q(σ1, s1) = 0 < q(σ1, s2). Hence, q(σ2, s2) = 0 < q(σ1, s2)
and due to the condition 3) we have σ1 < σ2. Finally, the
condition 5) guarantees that σ(s) → +∞ as s → +∞ and
the function σ can be prolonged by continuity to the origin as
follows σ(0) = 0

Recall that the operator g : Z → Y, where Z and Y are
Banach spaces, is called F-differentiable (Frèchet differen-
tiable) at z0 ∈ Z if there exists a linear bounded operator
Dgz0 : Z→ Y

‖g(z)−g(z0)−Dgz0 (z−z0)‖Y
‖z−z0‖Z → 0 as ‖z − z0‖Z → 0

where ‖ · ‖Z and ‖ · ‖Y are norms in the Banach spaces Z and
Y, respectively.

Theorem 1 ([7]): Let Z, Y and Q be Banach spaces. Let g :
Z×Y→ Q be a continuous operator such that 1) g(z0, y0) = 0
for some z0 ∈ Z and y0 ∈ Y; 2) g is F-differentiable in
the neighborhood of the point (z0, y0); 3) Dg′z0 is invertible,
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where g′(z) := g(z, y0). Then there exists a unique operator
f : Y→ Z defined in an open neighborhood U0 of y0 such that
g(f(y), y) = 0 for all y ∈ U0. Moreover, if g is continuously
F-differentiable at a neighborhood of (z0, y0) then f is also
continuously differentiable at some neighborhood of y0.

B. Theorems on Implicit Lyapunov-Krasovski Functional

The next theorem provides a background for stability anal-
ysis of time-delay systems using ILKF.

Theorem 2: If there exists a continuous functional Q : R+×
Ch → R such that:
C1) Q is continuously F-differentiable on R+ × Ch;
C2) for any y ∈ Ch there exists V ∈ R+ such that Q(V, y) =
0;
C3) ∂Q(V,y)

∂V < 0 for all V ∈ R+ and y ∈ Ch;
C4) there exist qi ∈ IK∞, i = 1, 2 such that for all V ∈ R+

q1(V, ‖y(0)‖) ≤ Q(V, y), ∀y ∈ Ch\C0
h,

Q(V, y) ≤ q2(V, ‖y‖h), ∀y ∈ Ch\{0},

C5) for all (V, xh(t)) ∈ Ω such that x(t) satisfies (1) we have
∂Q(V,xh(t))

∂t ≤ −σ(‖x(t)‖), ∀t ∈ R+,

where σ : R→ R and

Ω = {(V, y) ∈ R+ × Ch : Q(V, y) = 0} . (2)

Then the origin of the system (1) is Lyapunov stable if σ is a
nonnegative function and asymptotically stable if σ ∈ K.

Proof: In order to prove the theorem let us show that there
exists a functional V : Ch → R+ ∪ {0} that satisfies condi-
tions of classical stability theorem for functional-differential
equations (for example, Theorem 2.1 on page 105 from [12]).

I. Given ỹ ∈ Ch let us consider the scalar function Q(·, ỹ)
and show that it has exactly one zero on R+. The condition
C2) claims that there exists at least one Ṽ ∈ R+ such that
Q(Ṽ , ỹ) = 0. The conditions C1) and C3) imply that the
function Q(·, ỹ) is monotone, i.e. Ṽ is the unique zero in R+.
Therefore, there exists a unique functional V : Ch\{0} →
R+ such that Q(V (y), y) = 0 for any y ∈ Ch. Theorem 1
guarantee that V is continuously F-differentiable functional
on Ch\{0}.

II. Since q1, q2 ∈ IK∞ then there exists σ1, σ2 ∈ K∞
such that q1(σ1(s), s) = 0 and q2(σ2(s), s) = 0 for all s ∈
R+. Note that the functions σ1 and σ2 can be extended by
continuity to R+ ∪ {0} as follows σ1(0) = 0 and σ2(0) = 0.

The condition C4) implies q1(V (y), ‖y(0)‖) ≤
Q(V (y), y) = 0 = q1 (σ1(‖y(0)‖), ‖y(0)‖) for all
y ∈ Ch\C0

h and q2 (σ2(‖y‖h), ‖y‖h) = 0 = Q(V (y), y) ≤
q2(V (y), ‖y‖h) for all y ∈ Ch\{0}. Due to the condition
3) of Definition 4 the obtained inequalities guarantee
σ1(‖y(0)‖) ≤ V (y) for all y ∈ Ch\C0

h and V (y) ≤ σ2(‖y‖h)
for all y ∈ Ch\{0}. Hence, the functional V can be
extended by continuity to Ch as follows V (0) = 0. Taking
into account V (y) ∈ R+ for any y ∈ C0

h\{0} we derive
σ1(‖y(0)‖) ≤ V (y) ≤ σ2(‖y‖h) for all y ∈ Ch.

III. Let x(t) be a solution of (1) and xh(t) ∈ Ch be defined
by xh(t) := x(t + τ) with τ ∈ [−h, 0]. Let us consider the
functions Ṽ (t) := V (xh(t)) and Q̃(V, t) := Q(V, xh(t)) for

t ∈ R+. Obviously, Q̃(Ṽ (t), t) = 0 for all t ∈ R+ such
that xh(t) 6= 0, and the classical implicit function theorem [6]

for Euclidean spaces implies d
dt Ṽ (t) = −

[
∂Q̃
∂V

]−1
∂Q̃
∂t . Taking

into account continuity of the functional V at 0 ∈ Ch and the
condition C5) we derive

V̇ (xh(t)) = −
[
∂Q(V,xh(t))

∂V

]−1
∂Q(V,xh(t))

∂t ≤ −σ̃(‖x(t)‖),

where σ̃ =
[
−∂Q∂V

]−1

σ and t ∈ R+. Finally, applying
Theorem 2.1, page 105 from [12] we finish the proof.

Theorem 2 introduces an additional flexibility to the design
of Lyapunov-Krasovski functionals provided the possibility of
their implicit definition. However, the implicit design requires
a more complicated analysis based on conditions C1)-C5).

Note that the condition C3) can be relaxed as follows
∂Q(V,y)
∂V < 0 for all (V, y) ∈ Ω. It is worth stressing out

that, similarly to the classical method of Lyapunov-Krasovski
functionals, the condition C5) can be checked using the right-
hand side of the equation (1) only (see the next section).

Theorem 3: If there exists a continuous functional Q :
R+ × Ch → R, which satisfies the conditions C1)-C4) of
Theorem 2 and the condition:
C5bis) for all (V, xh(t)) ∈ Ω such that 0 < V < V max and
xh(t) satisfies (1) we have

∂Q(V,xh(t))
∂t ≤ αV 1−µ ∂Q(V,xh(t))

∂V , t ∈ R+,

where α, V max ∈ R+, µ ∈ (0, 1] and Ω is defined by (2).
Then the origin of system (1) is finite-time stable (globally
finite-time stable if V max = +∞) with the following settling
time estimate:

T (ϕ) ≤ V µ0
αµ , V0 ∈ R+ : Q(V0, ϕ) = 0. (3)

Proof: Repeating the proof of Theorem 2 we show
existence of a proper Lyapunov-Krasovski functional V :
Ch → R+∪{0} implicitly defined by the equation Q(V, y) =
0. The condition C5bis) and the implicit function theorem

[6] provide V̇ (xh(t)) = −
[
∂Q(V,xh(t))

∂V

]−1
∂Q(V,xh(t))

∂t ≤
−αV 1−µ(xh(t))). Hence, Proposition 4 presented in [19]
implies finite-time stability of the origin of the system (1)
with the settling time estimate (3).

Theorem 4: Let there exist two continuous functionals Q1 :
R+ × Ch → R and Q2 : R+ × Ch → R, which satisfy the
conditions C1)-C4) of Theorem 2. If the functional Q1 satisfies
the condition C5bis) of Theorem 3 with σ(V ) = αV 1−µ, α ∈
R+, µ ∈ (0, 1], V max = 1, and
C6) Q1(1, y) = Q2(1, y) for all y ∈ Ch : ‖y‖ < δ, where
δ ∈ R+ is some constant;
C7) for all (V, xh(t)) ∈ Ω2 such that V ≥ 1 and xh(t) satisfies
(1) we have

∂Q2(V,xh(t))
∂t ≤ βV 1+ν ∂Q2(V,xh(t))

∂V , t ∈ R+

where β, ν ∈ R+ and Ω2 is defined by (2) with Q = Q2,
then the origin of system (1) is (globally) fixed-time stable (if
δ = +∞) with the settling time estimate: T (ϕ) ≤ 1

αµ + 1
βν .

Proof: The conditions C1)-C4) of Theorem 2 guarantees
existence of proper Lyapunov-Krasovski functionals V1 :
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Ch → R+ ∪ {0} and V2 : Ch → R+ ∪ {0} implicitly
defined by the equations Q1(V1, y) = 0 and Q2(V2, y) = 0
for any y ∈ Ch. Given y0 ∈ Ch the inequality V1(y0) ≥ 1
holds if and only if V2(y0) ≥ 1. Indeed, if V1(y0) ≥ 1 then
the conditions C3) and C6) imply Q2(1, y0) = Q1(1, y0) ≥
Q1(V1(y0), y0) = 0 = Q2(V2(y0), y0) and V2(y0) ≥ 1.
Analogously, given y0 ∈ Ch the inequality V1(y0) < 1 holds
if and only if V2(y0) < 1.

The condition C7) implies V̇2(xh(t)) ≤ −βV 1+ν
2 (xh(t)) for

V2 ≥ 1. Hence, for V2(xh(0)) > 1 we have V2(xh(t)) < 1,
∀t > T2 = 1

βν .
The condition C5bis) of Theorem 3 implies that if

V1(xh(t1)) < 1 for some t1 ∈ R+ ∪ {0}, then we have
V1(xh(t)) = 0, ∀t > t1 + T1, where T1 = 1

αµ .
Implicit Lyapunov-Krasovski functional-based analysis of

exponential and hyper exponential stability requires some
additional restrictions to the class of functionals to be used.

Theorem 5: If there exist a continuous functional Q : R+×
Ch → R, which satisfies the conditions C1) - C4) of Theorem
2 and the conditions:
C4∗) there exists c ∈ R+ such that q1(cs, s) ≥ 0 for 0 < cs <
Vmax, where q1 is defined by the condition C4) of Theorem 2
and V max ∈ R+ is some constant number;
C5∗) for all (V, xh(t)) ∈ Ω and 0 < V < V max such that
x(t) satisfies (1) we have

∂Q(V,xh(t))
∂t ≤ αp(V )V ∂Q(V,xh(t))

∂V , ∀t ∈ R+,

where α ∈ R+ is some constant number, then the origin of
system (1) is

• exponentially stable if p(V ) = 1;
• hyper exponentially stable of degree r = 1 if

p(V ) =

{
1 + ln(V ) for V > 1,
1− ln(V ) for V ≤ 1,

with the convergence rate α. The global (hyper) exponential
stability is provided if V max = +∞.

Proof: Repeating the proof of Theorem 2 we show exis-
tence of a proper Lyapunov-Krasovski functional V : Ch →
R+ ∪ {0} implicitly defined by the equation Q(V, y) = 0.
The condition C4∗ implies that q1(cs, s) ≥ q1(σ1, s) for
all (σ1, s) ∈ R2

+ : q1(σ1, s) = 0. Hence, due to the
condition 3) of Definition 4 a function σ1 ∈ K∞ such that
q1(σ1(s), s) = 0, s ∈ R+ satisfies the inequality cs ≤ σ1(s)
for all s ∈ R+ : σ1(s) ≤ Vmax.

Let us denote for shortness V (t) = V (xh(t)) and
V0 = V (xh(0)). The condition C5∗) implies V̇ (t) ≤
−αp(V (t))V (t) along the trajectories of (1). For p(V ) = 1
we have V (t) ≤ V0e

−αt. For p(V ) = 1 + ln(V ) and
V0 > 1 we derive V (t) ≤ ee

−αt ln(eV0)−1 ≤ V0e
1−eαt , 0 ≤

t ≤ T1, where T1 := α−1 ln(ln(eV0)) and V (T1) ≤ 1.
For p(V ) = 1 − ln(V ) and V0 ≤ 1 we obtain V (t) ≤
ee
αt ln(V0/e)+1 ≤ V0e

1−eαt ,∀t > 0. Taking into account
c‖y(0)‖ ≤ σ1(‖y(0)‖) ≤ V (y) we finish the proof of the
(hyper) exponential stability.

The next section presents an example of control design
using Theorem 5.

V. EXAMPLE: HYPER EXPONENTIAL STABILIZATION

A. Problem formulation

Let us consider a single input control system of the form{
ẋ(t) = A0x(t) +A1x(t− h) + bu(t), t > 0,
x(t) = ϕ(t) ∈ Ch, t ∈ [−h, 0],

(4)

where x ∈ Rn is the state vector, u ∈ R is a control input,
A0, A1 ∈ Rn×n are the system matrices of the form A0 =(

0 In−1

0 0

)
, A1 = diag{ai}ni=1, ai ∈ R, i = 1, 2, ..., n and

the vector b ∈ Rn×1 is of the form b = (0, 0, ..., 1)>.
The problem is to stabilize hyper exponentially the origin

of the system (4).

B. Hyper Exponential Control Design

Introduce the Implicit Lyapunov-Krasovski Functional
(ILKF) by the equality

Q(V, y) := −1 + y>(0)D
(

1
V

)
PD

(
1
V

)
y(0)+

0∫
−h

(
e
V

)µ 2τ+h
h y>(τ)D

(
1
V

)
SD

(
1
V

)
y(τ)dτ,

(5)

where µ ∈ (0, 1), the diagonal matrix D(·) is defined by
D(λ) = diag

{
λ1+µ(n−i)}n

i=1
for λ ∈ R+ and 0 < P =

P> ∈ Rn×n, 0 < S = S> ∈ Rn×n. Denote H :=
diag{1 + µ(n− i)}ni=1.

If µ = 0 then the equation Q(V, y) = 0 provides
the well-known Lyapunov-Krasovski functional: V (y) =√
y>(0)Py(0) +

∫ 0

−h y
>(τ)Sy(τ)dτ.

The next proposition presents an algorithm of the ILKF-
based control design.

Proposition 1: If X ∈ Rn×n, Z ∈ Rn×n and y ∈ R1×n

satisfy the following system of LMIs:(
A0X+XA>0 +by+y>b>+ 2eµ

h X+eµA1ZA
>
1 X

X −1
eµ Z

)
≤ 0,

(6)
γX ≥ XH+HX > 0, X > 0, ZH+HZ−µZ > 0, Z > 0.

then the functional Q defined by (5) with P = X−1 and S =
Z−1 satisfies the conditions C1)-C4) of Theorem 2 and the
control defined by

u(V, x(t)) = V 1−µkD(V −1)x(t), (7)

with k = yX−1, V ∈ R+ : Q(V, xh(t)) = 0
stabilizes the origin of the system (4) hyper
exponentially with degree r = 1, the decay rate
α = 2µ

γh , where γ = max
{
λmax

(
X1/2H+HX1/2

)
,

µ+λmax

(
Z1/2H+HZ1/2

)}
, and the domain of

initial conditions Π = {ϕ ∈ Ch : Q(1, ϕ) < 0}. The
control (7) is a continuous function of time and
‖u(V, xh(t))‖ ≤ V 1−µ

√
λmax(P−1/2kT kP−1/2) for

Q(V, xh(t)) = 0.
Proof: I. The functional Q(V, y(·)) defined by (5) is

continuously F-differentiable in R+×Ch. Since P > 0, Q > 0
and µ ∈ (0, 1) then qi ∈ IK∞, i = 1, 2 and the inequalities

λmin(P )‖y(0)‖2+λmin(S)
∫ 0

-h( eV )
2τ+h
hµ-1 ‖y(τ)‖2dτ

max{V 2+2µ(n−1),V 2} ≤ Q(V, y(·))+1 ≤
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λmax(P )‖y(0)‖2+λmax(S)
∫ 0

-h( eV )
µ 2τ+h

h ‖y(τ)‖2dτ
min{V 2+2µ(n−1),V 2}

hold for all V ∈ R+ and y ∈ Ch. Hence, it is easy to see that
for any y ∈ Ch there exists V ∈ R+ such that Q(V, y) = 0.
Introduce the functions q1 : R+ × R+ → R and q2 : R+ ×
R+ → R by the formulas q1(σ1, s) = λmin(P )s2

max
{
σ2
1 , σ

2+2µ(n−1)
1

} −
1 and q2(σ2, s) =

(λmax(P )+λmax(S)eµσµ2 h)s
2

min
{
σ2
2 , σ

2+2µ(n−1)
2

} − 1, where

σ1, σ2, s ∈ R+. The obtained estimates also guarantee that
q1(V, ‖y(0)‖) ≤ Q(V, y(·)) ≤ q2(V, ‖y‖h) for all V ∈ R+

and y ∈ Ch. The derivative of Q(·, y) for y ∈ Ch is

∂Q(V,y)
∂V = −y

>(0)D(V −1)(HP+PH)D(V −1)y(0)
V −∫ 0

−h( eV )
µ 2τ+h

h y>(τ)D(V −1)(HS+SH)D(V −1)y(τ)dτ

V −
µ
∫ 0
−h

2τ+h
h ( eV )

µ 2τ+h
h y>(τ)D(V −1)SD(V −1)y(τ)dτ

V .

The inequalities (6) for P := X−1 and S = Z−1 imply ∂Q
∂V <

0 for all V ∈ R+ and y ∈ Ch\{0}. Therefore, the conditions
C1)-C4) of Theorem 2 hold. Obviously, the condition C4*) of
Theorem 5 also holds for c =

√
λmax(P ) and V max = 1.

II. If x(t) is a solution to the system (4), (7) then

∂Q(V,xh(t))
∂t =

2x>(t)D(V −1)PD(V −1)(A0x(t) +A1x(t− h) + bu(t))+
eµV −µx>(t)D(V −1)SD(V −1)x(t)−

V µe−µx>(t− h)D(V −1)SD(V −1)x(t− h)−
2µ ln( eV )

h

0∫
−h

(
e
V

) 2τ+h
h x>(t+τ)D(V −1)SD(V −1)x(t+τ)dτ.

Taking into account that D(V −1)A0D
−1(V −1) = V −1A0,

D(V −1)A1D
−1(V −1) = A1, D(V −1)bu =

V −µbkD(V −1)x(t) we obtain

∂Q(V,xh(t))
∂t = − 2µ ln( eV )

h + q>Wq+
2
h

(
µ ln

(
e
V

)
− eµ

V µ

)
xT (t)D(V −1)PD(V −1)x(t),

where

W=
(
e−µ

[
P (A0+bk) + (A0+bk)>P

]
+ S + 2

hP PA1

A>1 P −S

)
,

q =

 √
eµ

V µD(V −1)x(t)√
V µ

eµ D(V −1)x(t− h)

 .

Taking into account µ ln
(
e
V

)
≤ eµ

V µ for V ∈ R+ the

LMIs (6) and Schur Complement imply −
[
∂Q
∂V

]−1

≥
V
γ and ∂Q(V,xh(t))

∂t ≤ −2µ ln(eV −1)
h . Therefore, V̇ =

−
[
∂Q
∂V

]−1
∂Q(V,xh(t))

∂t ≤ − 2µ ln(eV −1)V
γh , for V (y) ≤ 1. The-

orem 5 implies that the system (4), (7) is hyper exponentially
stable with the domain of hyper exponential attraction Π (or
equivalently for V (·) ≤ 1). The estimate of the hyper expo-
nential convergence rate follows from

√
λmin(P )‖y(0)‖ ≤ V .

III. The control function u is locally bounded. Indeed,

‖u(V, x(t))‖2 = V 2−2µxT (t)D(V −1)kT kD(V −1)x(t)
≤ λmax(P -1/2kT kP -1/2)V 2−2µxT (t)D(V -1)PD(V -1)x(t).

Hence, for Q(V, y) = 0 we have ‖u(V, x(t))‖2 ≤
λmax(P−1/2kT kP−1/2)V 2−2µ. Since V (·) is a continuous
functional then the function u(·) := u(V (xh(·)), xh(·)) is the
continuous function and u(t)→ 0 as V (xh(t))→ 0.

The presented control scheme admits LMI constraints to
parameters of nonlinear hyper exponential (fast) feedback. Any
existing LMI solver can be used in order to adjust the control
parameters. Note that introducing an additional LMI(

X yT

y u2
0

)
≥ 0, u0 ∈ R+ (8)

to (6) we guarantees ‖u(t)‖ ≤ u0 for V ≤ 1. Indeed, the
inequality λmax(P−1/2kT kP−1/2) ≤ u2

0 can be equivalently
rewritten as yT y ≤ u2

0X and Schur Complement implies (8).

C. Practical implementation

In order to apply the control (7) in practice it is necessary
to present the procedure for calculation of the value V for any
given y(·) ∈ Ch such that Q(V, y(·)) = 0. Since Q satisfies
the condition C3) of Theorem 2 then for any y(·) the ILF
equation has a unique solution, which can be easily found by
means of, for example, the bisection method.

An alternative approach is to realize the ILKF-based control
scheme using a Newton method for numerical calculation of
the solution of the equation Q(V, y(·)) = 0, for example,

V̇n = −pQ(Vn, y(·))
[
∂Q(Vn,y(·))

∂Vn

]−1

, p ∈ R+. (9)

For any fixed y(·) the presented gradient method guarantees
Vn → V : Q(V, y(·)) = 0. In order to boost the convergence
of Newton method its fast modification can be considered (see,
for example, [5]). In practice, the ILKF control can be realized
in a sufficiently fast digital control device.

D. Numerical Simulation

Consider the problem of hyper exponential stabilization of
the system (4) with n = 2, the matrix A1 = diag{1, 0}, µ =
0.75, u0 = 50 and the delay h = 0.5. By solving the LMI
system (6) we obtain K =

(
−82.3072 −14.6158

)
and

P =

(
6.3785 0.7197
0.7197 0.1081

)
, S =

(
1.5866 0.0032
0.0032 0.0008

)
.

The simulations for the ILKF control application have
been made in MATLAB Simulink. The value of ILKF was
calculated on-line using the Newton method (9) with p =
103. All integrals, which appear in (9), were approximated
by Simpson formula. In order to avoid singularities during
calculation of Q(V, y(·)) the admissible value of V is also
bounded from below by Vmin = 0.01. In this case the hyper
exponential convergence can only be guaranteed to a zone
defined by inequality V (y) ≤ Vmin. However, such assumption
is not restrictive from practical point of view, since due to
measurement noises and uncertainties just a practical stability
is possible in real-life systems. The results of simulations are
depicted in Figure 1.
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VI. CONCLUSIONS

This technical note presents the method of the implicit
Lyapunov-Krasovski functionals and demonstrates its possible
application to control design. The obtained stability theorems
extend the results of the paper [23] to time-delay systems.
The main difficulty of this extension is the representation
of all conditions of Lyapunov-Krasovski theorems using the
implicit functions in Banach spaces (see, conditions C1)-C5)
of Theorem 2). The special class of implicit functions IK∞
is introduced for this purpose.

The application ILKF method for fast (hyper exponential)
stabilization of a time-delay system is demonstrated on an
example. The corresponding ILKF has been obtained by means
of an appropriate parametrization of the classical explicit
Lyapunov-Krasovski functional. The hyper exponential sta-
bilization of a more general time-delay model is a possible
direction of future research.

0 0.5 1 1.5 2−1

−0.5

0

0.5

1

t

x
1

0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

t

x
2

0 0.5 1 1.5 2−50

−25

0

25

50

t

u

Fig. 1. The simulation results (x1 - blue line; x2- green line; u - red line).
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