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On the Complexity of Reconfiguration in
Systems with Legacy Components

Jacopo Mauro and Gianluigi Zavattaro

Department of Computer Science and Engineering - Univ. of Bologna / INRIA

Abstract. In previous works we have proved that component reconfig-
uration in the presence of conflicts among components is non-primitive
recursive, while it becomes poly-time if there are no conflicts and under
the assumption that there are no components in the initial configura-
tion. The case with non-empty initial configurations was left as an open
problem, that we close in this paper by showing that, if there are legacy
components that cannot be generated from scratch, the problem turns
out to be PSpace-complete.

1 Introduction

Modern software systems are obtained as combination of software artefacts hav-
ing complex interdependencies. Their composition, configuration and manage-
ment is a difficult task, traditionally performed manually or by writing low level
configuration scripts. Recently, many high level languages and tools like, for in-
stance, TOSCA [21], Juju [15] or Engage [9] have been proposed to support the
application manager in this difficult task. By adopting these tools, it is possi-
ble to describe the software components required to realise the system, define
their interdependencies and specify the configuration actions to be executed to
actually deploy an instance of the desired system. In some limited cases (for
instance in Engage and in the declarative modality of TOSCA), and under some
specific assumptions (no circular component dependencies), such tools automati-
cally synthesise the configuration actions to be executed. Automatic deployment
is becoming more and more important for these tools especially due to the advent
of virtualization technologies, like in Cloud Computing, that makes it possible to
quickly acquire and release computing resources in order to deploy new software
systems or reconfigure running applications on-demand.

In previous works [6,8,18] we have performed a rigorous and systematic anal-
ysis of the automatic deployment problem. We have proved that in general the
problem is undecidable, it is non-primitive recursive if component interdepen-
dencies do not include numerical constraints, and it is poly-time if also conflicts
among components are not considered. This last result was proved by restricting
our attention on the deployment of an application from scratch, that is, by as-
suming that the initial configuration is empty. This result is of particular interest
because it underpins the recent industrial trend of using the so called “immutable
servers” [20]. The application is divided in stateless components/services that



are deployed on virtual machines. When a new version of the component is de-
veloped or the virtual machine needs updates (e.g., new security patches have to
be installed), instead of upgrading in-place the virtual machine, a new one is cre-
ated and the old one destroyed. According to this approach, since all the needed
components can be freshly generated, the result proven in [18] shows that a new
deployment can be efficiently computed simply generating a new configuration
from scratch, without considering or reusing existing components.

Unfortunately the “immutable servers” approach has also some disadvan-
tages. First of all, it requires that every application is carefully designed to
ensure that important data is stored and not lost when the old servers are de-
stroyed. System upgrades are usually slower because creating new virtual servers
takes more time than performing an upgrade in-place. But, most importantly,
this approach cannot be adopted in presence of legacy components, a scenario
that often happens in practice due to software applications that for several rea-
sons, like incompatibility with novel computing architectures or cost purposes,
cannot be replaced and must be kept in-place.

Given these premises, the following question arises. How complex is the recon-
figuration problem of deciding if a final configuration can be reached in the pres-
ence of components that cannot be switched off and re-deployed from scratch?
The goal of this paper is to address this last question, proving that reconfigura-
tion is no longer polynomial, but it turns out to be PSpace-complete.

More precisely, we first report the formalisation of the reconfiguration prob-
lem using the Aeolus component model adopted in [18] (Sect. 2). Then we show
that the problem can be solved by performing a symbolic forward search of the
new configurations that can be reached from a given initial one (Sect. 3). The
symbolic approach allows for a finite representation of all the (possibly infinite)
reachable configurations. Unfortunately, the number of possible symbolic config-
urations is exponential; we mitigate this blow up by adopting a nondeterministic
polynomial-space visit of the (symbolic) search space. Finally, we show that it is
not possible to significantly improve our algorithm as we prove that the recon-
figuration problem is indeed PSpace-hard (Sect. 4). The proof is by reduction
from the reachability problem in 1-safe Petri nets [3].

Proofs are reported in separate Appendixes, for reviewer convenience.

2 Formalising the Reconfiguration Problem

In this section we recapitulate the fragment of the Aeolus model used to formally
define the reconfiguration problem. This fragment of Aeolus [18] is exactly the
one used by the planner Metis [17], a tool for finding deployment plans start-
ing from an empty initial configuration integrated in an industrial deployment
platform [7].1 In the Aeolus model, a component is a grey-box showing relevant
internal states and the actions that can be acted on the component to change its

1 W.r.t. the Aeolus model [6], the fragment used by Metis does not allow the use of
capacity constraints, conflicts, and multiple state changes.
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state during (re)configuration. Each state activates provide-ports and require-
ports representing functionalities that the component provides and needs. Active
require-ports must be bound to active provide-ports of other components.

The problem that we address in this paper is verifying the existence of a plan
(i.e., a correct sequence of configuration actions like component instantiation,
binding, or internal state changes) that, given a universe of available components
and an initial component configuration, leads to a configuration where a target
component is in a given state.

As an example, consider the task of reconfiguring a system setting up a
MySQL master-slave replication avoiding the downtime of an existing legacy
MySQL database. Reconfigurations of this kind are frequent in practice, and
are nowadays performed by system administrators who execute reconfiguration
receipts that are part of their know-how. According to the Aeolus model, the
problem can be formalised as follows. The involved components are two distinct
database instances, one in master mode and one in slave mode. We assume
to start from a configuration with only one legacy running instance, that will
become the master in the new configuration. To activate the slave, a dump of
the data stored in the master is needed. Moreover, the master has to authorise
the slave. This is a circular dependency that is resolved by forcing a precise
order in which the reconfiguration actions can be performed: the master first
requires authentication of the slave that, subsequently, requires the dump from
the master.

Fig. 1: MySQL master-slave instances (in black the initial configuration, in grey
the parts added by the reconfiguration and the new state of the master).

In Fig. 1, following the Aeolus model, we depict how to configure MySQL
components as master or as slave. We assume the master component to be a
legacy one, meaning that it can not be created from scratch but has to be used
as deployed in the initial configuration. This is technically obtained setting a
dummy state with no outgoing transitions as the initial one. In this way, no newly
legacy component could be generated and moved in a state that is different from
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the dummy one. Apart from the initial dummy state, the master component
has 5 more states. The uninst state is followed by inst and serving. In serving,
the master activates the provide-port mysql used by the clients to access the
database service. When replication is needed, in order to enter the final master
serving state, it first traverses the state auth that requires the IP address from
the slave, and the state dump to provide the dump to the slave. The slave has
instead 4 states, an initial uninst state and 3 states which complement those of
the master during the replication process.

The formal definition of the Aeolus model is based on the notion of component
type, used to specify the behaviour of a particular kind of component. In the
following, I denotes the set of port names and Z the set of components.

Definition 1 (Component type). The set Γ of component types ranged over
by T , T1, T2, . . . contains 4-tuples 〈Q, q0, T,D〉 where:

– Q is a finite set of states containing the initial state q0;
– T ⊆ Q×Q is the set of transitions;
– D is a function from Q to a pair 〈P,R〉 of port names (i.e., P,R ⊆ I)

indicating the provide-ports and require-ports that each state activates. We
assume that the initial state q0 has no requirements (i.e., D(q0) = 〈P, ∅〉).

Configurations describe systems composed by components and their bindings.
Many-to-many bindings connect components providing a functionality with com-
ponents requiring it. Each component has a unique identifier, taken from the set
Z. A configuration, ranged over by C1, C2, . . ., is given by a set of available com-
ponent types, a set of component instances in some state, and a set of bindings.

Definition 2 (Configuration). A configuration C is a quadruple 〈U,Z, S,B〉
where:

– U ⊆ Γ is the finite universe of the available component types;
– Z ⊆ Z is the set of the currently deployed components;
– S is the component state description, i.e., a function that associates to com-

ponents in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T,D〉,
and q ∈ Q is the current component state;

– B ⊆ I × Z × Z is the set of bindings, namely 3-tuples composed by a port,
the component that provides that port, and the component that requires it;
we assume that the two components are distinct.

Notation. We write C[z] as a lookup operation that retrieves the pair 〈T , q〉 =
S(z), where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection
operators .type and .state to retrieve T and q, respectively. Similarly, given
a component type 〈Q, q0, T,D〉, we use projections to decompose it: .states,
.init, and .trans return the first three elements; .P(q) and .R(q) return the two
elements of the D(q) tuple. Moreover, we use .prov (resp. .req) to denote the
union of all the provide-ports (resp. require-ports) of the states in Q. When there
is no ambiguity we take the liberty to apply the component type projections to
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〈T , q〉 pairs. Example: C[z].R(q) stands for the require-ports of component z in
configuration C when it is in state q.

As formalised below, a configuration is correct if all the active require-ports
are bound to active provide-ports.

Definition 3 (Correctness). Let us consider the configuration C = 〈U,Z, S,B〉.
We write C |=req (z, r) to indicate that the require-port of component z, with

port r, is bound to an active port providing r, i.e., there exists a component
z′ ∈ Z \ {z} such that 〈r, z′, z〉 ∈ B, C[z′] = 〈T ′, q′〉 and r is in T ′.P(q′).

The configuration C is correct if for every component z ∈ Z with S(z) =
〈T , q〉 we have that C |=req (z, r) for every r ∈ T .R(q).

In Aeolus configurations evolve by means of (deployment) actions.

Definition 4 (Actions). The set A contains the following actions:

– stateChange(z, q, q′) changes the state of the component z ∈ Z from q to q′;
– bind(r, z1, z2) creates a binding between the provide-port r ∈ I of the com-

ponent z1 and the require-port r of z2 (z1, z2 ∈ Z);
– unbind(r, z1, z2) deletes the binding between the provide-port r ∈ I of the

component z1 and the require-port r of z2 (z1, z2 ∈ Z);
– new(z : T ) creates a new component of type T in its initial state. The new

component is identified by a unique and fresh identifier z ∈ Z;
– del(z) deletes the component z ∈ Z.

The execution of actions is formalised by means of a labelled transition system
on configurations, which uses actions as labels.

Definition 5 (Reconfigurations). Reconfigurations are denoted by transitions

C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈U,Z, S,B〉 are
defined as follows:

C stateChange(z,q,q′)−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q and
(q, q′) ∈ C[z].trans and

S′(z′) =

{
〈C[z].type, q′〉 if z′ = z
C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].prov ∩ C[z2].req

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U and

S′(z′) =

{
〈T , T .init〉 if z′ = z
C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉

if S′(z′) =

{
⊥ if z′ = z
C[z′] otherwise

and

B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

A deployment plan is simply a sequence of actions that transform a correct
configuration without violating correctness along the way.

Definition 6 (Deployment plan). A deployment plan P from a correct con-
figuration C0 is a sequence of actions α1, . . . , αm s.t. there exists C1, . . . , Cm cor-
rect configurations s.t. Ci−1

αi−→ Ci.
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In the following, exploiting the fact that reconfigurations are deterministic,
we denote the deployment plan α1, . . . , αm from C0 also with the sequence of
reconfigurations steps C0

α1−→ C1
α2−→ · · · αm−−→ Cm.

We now have all the ingredients to define the reconfiguration problem, that
is our main concern: given a universe of component types and an initial config-
uration, we want to know whether and how it is possible to deploy at least one
component of a given component type T in a given state q.

Definition 7 (Reconfiguration problem). The reconfiguration problem has
as input a universe U of component types, an initial correct configuration C0,
a component type Tt, and a target state qt. The output is yes if there exists a
deployment plan P = C0

α1−→ C1
α2−→ · · · αm−−→ Cm s.t. Cm[z] = 〈Tt, qt〉, for some

component z in Cm. Otherwise, it returns no, stating that no such plan exists.

As an example, considering Fig. 1, we can see that there are deployment plans
that lead from the initial configuration (in black) to the final MySQL master-
slave replication configuration. For instance, such a plan could start with the
creation of the slave instance, followed by a state change to the inst state and
the creation of a binding between the ports slave ip of the two components. At
this point, the master component can perform two state changes, reaching the
dump state. Then, after another binding is established between the dump ports,
the slave can be moved to its serving state by performing two state changes.
Finally, the master can enter in the master serving state by performing a state
change. Note that every action in the deployment plan will correspond to one or
more concrete instructions. For instance, the state change from the serving to the
auth state in the master corresponds to issue the command grant replication

slave on *.* to user@’slave ip’.
The addition of a dummy initial state to define the master component cap-

tures its legacy nature. Indeed, since no other state of the master component is
reachable from the initial one, no component created from scratch can provide
the same functionalities of the deployed master. For this reason, only the master
component present in the initial configuration can be used to reach the target.

system

inst

uninst

m_mysql

s_mysql

Fig. 2: Target

Notice that the restriction to consider one target
state only in the definition of the reconfiguration prob-
lem is not limiting: one can require several target pairs
〈Tt, qt〉 by adding dummy provide-ports enabled only
by the components of type Tt in state qt and a dummy
target component that requires all such provides. For
instance, Fig. 2 depicts the dummy target component
that in inst state requires both an active master and
an active slave as needed in the MySQL master-slave
reconfiguration discussed above.

3 Solving the Reconfiguration Problem

In this section we present a nondeterministic polynomial space algorithm that
resolves the reconfiguration problem, thus the problem is proved to be in PSpace
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(as a consequence of the Savitch’s theorem [22] stating the equivalence between
NPSpace and PSpace). The idea is to perform a nondeterministic forward ex-
ploration of the reachable configurations. This visit could be in principle arbi-
trarily long because infinitely many different configurations could be potentially
reached. The main result that we prove in this section is that it is sufficient
to consider a bounded amount of possibly reachable abstract configurations. In
abstract configurations the bindings are not considered, but only the compo-
nent type and state of the components are taken into account. Moreover, in
abstract configurations, only the components present in the initial configuration
are precisely represented, while for all the other components that are dynamically
created, it is only considered the presence or absence of instances of components
of type T in state q, thus abstracting away from their precise number.

In order to abstract away from the bindings and consider only the component
types and states, we define the following equivalence among configurations.

Definition 8 (Configuration equivalence). Two configurations 〈U,Z, S,B〉
and 〈U,Z ′, S′, B′〉 are equivalent (〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉) iff there exists a
bijective function ρ from Z to Z ′ s.t. S(z) = S′(ρ(z)) for every z ∈ Z.

The research of the existence of the deployment plan is done on abstract
configurations where bindings are not considered. We now show that this is not
restrictive because every plan has a corresponding normalised plan where un-
binding actions are absent and binding actions are generated as soon as possible.

Definition 9 (Normalised deployment plan). A deployment plan P = C0
α1−→

· · · αm−−→ Cm is normalised iff:

– it does not contain unbind actions,

– if Ci for i ∈ [1,m−1] can be extended with a bind action then
αi+1−−−→ is a bind

action,
– Cm cannot be extended with a bind action.

Lemma 1. Given a deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm there exists

a normalised deployment plan P′ = C0
α′1−→ C′1

α′2−→ · · · α
′
n−−→ Cn such that Cn ≡ Cm.

In the remainder of the section, we assume a given universe U of component
types; so we can consider that the set of distinct component type and state
pairs 〈T , q〉 is finite. Let k be its cardinality. Moreover, we assume a given initial
configuration C0 having the initial set of components Z0.

We are now ready to define our abstractions B consisting of pairs of functions
〈Bi,Bc〉. Components are divided into two groups, those that were present in the
initial configuration and those that were dynamically created : the first ones are
precisely counted by the function Bi, while for the second ones only the presence
of a component type and state pair 〈T , q〉 is checked by the function Bc.

Definition 10 (Abstract configuration). An abstract configuration B is a
pair of functions 〈Bi,Bc〉 that associate to every pair 〈T , q〉 respectively a natural
number and a boolean value.
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It is immediate to see that (given a universe U of component types and an
initial set Z0 of components) the set of possible abstract configurations is finite:
both functions have a domain bound by k, Bc is a boolean function, and the sum
of the values in the codomain of Bi is bound by |Z0|, i.e., the number of initial
components, because such components can only be destroyed and not created.

A concretisation of an abstract configuration 〈Bi,Bc〉 is defined w.r.t. a set
of initial components Z. These components occur according to the component
type/state pairs counted by Bi, while the other components satisfy the pres-
ence/absence indication of the boolean function Bc. In the definition of concreti-

sation we use the following notations: C#〈T ,q〉(Z) is the number of components in

Z of type T in state q in the configuration C, while Z − Z ′ is the set difference
between two sets of components Z and Z ′.

Definition 11 (Concretisation). Given an abstract configuration B = 〈Bi,Bc〉
and a set of components Z we say that a correct configuration C = 〈U,Z ′, S,B〉
is one concretisation of B w.r.t. Z if the following hold:

– Bi(〈T , q〉) = C#〈T ,q〉(Z);

– if ¬Bc(〈T , q〉) then C#〈T ,q〉(Z
′ − Z) = 0;

– if Bc(〈T , q〉) then C#〈T ,q〉(Z
′ − Z) > 0.

We denote with γ(B, Z) the set of concretisations of B w.r.t. Z. We say that an
abstract configuration B is correct w.r.t. Z if it has at least one concretisation
(formally γ(B, Z) 6= ∅).

In the following, we usually consider concretisations w.r.t. the initial set of
components Z0, and we simply use γ(B) to denote γ(B, Z0).

We now define the notion of deployment plan on abstract configurations and
formalise its correspondence with concrete normalised plans.

Definition 12 (Abstract deployment plan). We write B −→ B′ with B 6= B′
if there exists C α−→ C′ for some C ∈ γ(B) and C′ ∈ γ(B′).

A first lemma proves that each normalised deployment plan has a correspond-
ing abstract version.

Lemma 2. Given a normalised deployment plan P = C0
α1−→ · · · αm−−→ Cm there

is an abstract deployment plan B0 −→ · · · −→ Bn s.t. C0 ∈ γ(B0) and Cm ∈ γ(Bn).

The opposite correspondence (each abstract plan has at least one correspond-
ing normalised concrete plan) is more complex to be formalised and proved. The
intuition is that, given an abstract configuration B = 〈Bi,Bc〉 that can be reached
by an abstract plan, there exist normalised deployment plans able to reconfigure
exactly the initial components as indicated by Bi, and deploy an arbitrary num-
ber of instances of other components in the type and state indicated by the
boolean function Bc.
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Lemma 3. Given a correct configuration C0 that cannot be extended with bind
actions and an abstract deployment plan B0 −→ · · · −→ Bn = 〈Bi,Bc〉 such that

C0 ∈ γ(B0) then there is a normalised deployment plan C0
α1−→ · · · αm−1−−−−→ Cm s.t.:

– Cm ∈ γ(Bn);
– for all natural numbers j〈T ,q〉 > 0, for every component type T and state q

such that Bc(〈T , q〉), then Cm#
〈T ,q〉(Zm − Z0) = j〈T ,q〉 where Zm and Z0 are

the components of Cm and C0 respectively.

Algorithm 1 Nondeterministic check for C0 = 〈U,Z0, S,B〉 and target Tt, qt
for all 〈T , q〉 pairs in the universe U do
Bi(〈T , q〉) = C#〈T ,q〉(Z0)

Bc(〈T , q〉) = False

counter = 0
while counter ≤ |Z0|k ∗ 2k do . k is the number of 〈T , q〉 pairs in U

guess B′
i,B′

c

if 〈Bi,Bc〉 6−→ 〈B′
i,B′

c〉 then return Failure

if B′
i(Tt, qt) > 0 or B′

c(Tt, qt) then return Success

counter = counter + 1; Bi = B′
i; Bc = B′

c
return Failure

In order to check if a solution to the reconfiguration problem exists, it is
possible to consider all the possible abstract plans. This can be done using the
nondeterministic Algorithm 1. Starting from the abstract representation 〈Bi,Bc〉
of the initial configuration C0, it performs a nondeterministic exploration of
the reachable abstract configurations until either a configuration containing the
target 〈Tt, qt〉 is reached or at least K = |Z0|k ∗ 2k abstract steps have been
considered, where |Z0| is the quantity of components of the initial configuration
and k is the number of different 〈T , q〉 pairs in the universe U . K is an upper
bound to the number of different abstract configurations: |Z0|k is an upper bound
to the different combinations of states for the initially available components,
while 2k is the number of possible sets of 〈T , q〉 pairs.

Assuming n the size of the input we have that |Z0| ≤ n, k ≤ n and there-
fore all the variables of the nondeterministic Algorithm 1 can be encoded in
O(n log(n)) space. For this reason (and for Savitch’s theorem [22]) we can con-
clude that the reconfiguration problem is in PSpace.

Theorem 1. The reconfiguration problem is PSpace.

4 The Reconfiguration Problem is PSpace-hard

PSpace-hardness of the reconfiguration problem is proved by reduction from
the reachability problem in 1-safe Petri nets, which is indeed known to be a
PSpace-hard problem [3]. We start with some background on Petri nets.
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Fig. 3: 1-safe Petri net encoding

A Petri net is a tuple N = (P, T,m0), where P and T are finite sets of
places and transitions, respectively. A finite multiset over the set P of places
is called a marking, and m0 is the initial marking. Given a marking m and
a place p, we say that the place p contains a number of tokens equal to the
number of instances of p in m. A transition t ∈ T is a pair of markings denoted
with •t and t•. A transition t can fire in the marking m if •t ⊆m (where ⊆ is
multiset inclusion); upon transition firing the new marking of the net becomes
n = (m \ •t) ] t• (where \ and ] are the difference and union operators for
multisets, respectively). This is written as m 7→ n. We use 7→∗ to denote the
reflexive and transitive closure of 7→. We say that m′ is reachable from m if
m 7→∗ m′. A Petri net P is 1-safe if in every reachable marking every place
has at most one token. Reachability of a specific marking mt from the initial
marking m0 is PSpace-complete for 1-safe nets [3].

We now consider a given 1-safe Petri net N = 〈P, T,m0〉 and discuss how
to encode it in Aeolus component types. We will use two types of legacy com-
ponents: one modelling the places and one for the transitions. The simplest
component type, denoted with Tp and depicted in Fig. 3a, is the one used to
model a place p ∈ P . Namely, a place p is encoded as one instance of Tp. A
token is present in p if the component of type Tp is in the on state. There could
be just one of these components deployed simultaneously. This can be obtained
simply adding this component to the initial configuration in the on or off state,
according to the initial marking, and make these two states non reachable from
the initial state q0 . The token could be created starting from the off state fol-
lowing a protocol consisting of providing the port ap and then requiring the port
onp. Symmetrically, a token can be removed by providing the port bp and then
requiring the port off p. The component provides the port onp when it is in the
on state, the port offp when it is in the off state.

The transitions in T can be represented with a single component of type TT
depicted in Fig. 3b. The uniqueness of this component is guaranteed, as done for
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Tp, by adding it to the initial configuration and forbidding outgoing transitions
from the initial state q0 . This component is assumed to be present in the initial
configuration in state q. From this state it can nondeterministically select one
transition t to fire, by entering a corresponding qt state. The subsequent state
changes can be divided into two phases: consumption and production. These
phases respectively model the consumption of tokens from the places in the
preset of t and the production of tokens in the places in the postset of t. The
consumption and production of tokens have been already discussed above: con-
sumption (see Fig. 3c) is obtained by providing and requiring the ports bp and
off p, production (see Fig. 3d) by providing and requiring the ports ap and onp.

We now consider a marking mt of the 1-safe Petri net N . We can check
whether mt is reachable in N by considering the following Aeolus reconfiguration
problem. The initial configuration consists of an instance of TT , in state q, plus
a component of type Tp for every place p, in on or off depending on the initial
marking m0. The target to be considered consists of a configuration in which a
port onp is active for all places p ∈mt, a port offp is active for all places p 6∈mt

and the port t is active indicating that no transition is currently in execution.
Checking these requirements can be easily done, as explained in Section 2, by
adding a dummy component having a target state requiring all the ports as
explained above. Hence, we have the following.

Theorem 2. The reconfiguration problem is PSpace-hard.

5 Related Work and Conclusions

To the best of our knowledge, there is no work that formally studies the complex-
ity of automatic reconfiguration of component systems. A significant part of the
related literature focuses on the problem of dynamic re-allocation of resources
(see, e.g., [4,12,23]). Other works focus on the nature of the reconfiguration prob-
lem, like in [25] where a classification of the reconfiguration problems is made
based on its causes, namely failures, system updates, and user requests. This
work, however, does not consider the complexity of establishing the reconfigura-
tion steps. Formal methods have been used to study reconfiguration problems
as, for instance, in [16] where graph transformations and model checking are
used to reason about dynamically changing component connectors. The focus in
this case, however, is on proving properties of the reconfigured system.

Different tools to compute the (optimal) final configuration exist. For in-
stance, Zephyrus [5] takes as input a description of the system in Aeolus and,
given an initial configuration, computes the best final configuration satisfying
the application manager requests. Similarly, in [19] a prediction-based online-
approach is proposed to find optimal reconfiguration policies, in [10] a genetic-
based algorithm is used to support the migration and deployment of enterprise
software with their reconfiguration policies, in [14] a constraint-based approach
is used to propose an optimal allocation of virtual machines and applications
on servers, and in [24] integer linear programming methods are used to find en-
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ergy efficient optimal final configurations. All these approaches just focus on the
target configuration to reach without computing the deployment steps.

AI Planning Technologies [11] have been used to generate automatically the
actions to reconfigure a system [2, 13]. However, since the classical planning
problem is PSpace [1], these techniques have scalability issues. Conversely, tools
like Metis [17,18] or Engage [9] are able to compute the deployment steps needed
to reach a target configuration but in simplified contexts: Metis imposes empty
initial configurations while Engage forbids circular dependencies.

In this work we proved that extending these tools to deal also with recon-
figurations may be too computationally expensive. Indeed, PSpace-completeness
means that there are at least some cases where solving a reconfiguration problem
requires a huge computational effort. For instance, our hardness proof shows that
this can happen in the presence of legacy components that can not be recreated
from scratch and may be required to perform cycles of deployment actions.

As a future work we plan to investigate limitations to be imposed to the Ae-
olus model (e.g., limiting the shape of the automata describing the components
lifecycle) in order to have more efficient solutions for the reconfiguration prob-
lem. Another approach could be to relax completeness, by designing algorithms
that could give negative answers even if a solution exists. Along this direction,
one promising approach is the use of heuristics to guide the exploration of the
(abstract) search space used by our nondeterministic algorithm in Section 3.
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A Proofs of Section 3

Lemma 1. Given a deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm there exists

a normalised deployment plan P′ = C0
α′1−→ C′1

α′2−→ · · · α
′
n−−→ Cn such that Cn ≡ Cm.

Proof. Considering the Aeolus fragment defined in Section 2, it is always possible
to perform a bind action bind(r, z1, z2) if the two components z1 and z2 exist
and the provide-port r of z1 is not yet bound to the require-port r of z2.2 Hence,
bindings do not require that the connected port is active and can be performed
as soon as the two components are created. For this reason, the normalised plan
P′ can be easily obtained by

– removing from P the unbind and bind actions;
– adding as soon as possible in P′ the binding actions between two comple-

mentary ports that are not yet bound (i.e., bind all the complementary ports
after every component creation or at the outset of the plan).

ut

Lemma 2. Given a normalised deployment plan P = C0
α1−→ · · · αm−−→ Cm there

is an abstract deployment plan B0 −→ · · · −→ Bn s.t. C0 ∈ γ(B0) and Cm ∈ γ(Bn).

Proof. The abstract deployment plan B0 −→ · · · −→ Bn can be constructed simply

by taking the sequence of the abstract versions of the transitions Ci
αi+1−−−→ Ci+1

in P such that the abstraction of Ci is different from the abstraction of Ci+1. ut

Lemma 3. Given a correct configuration C0 that cannot be extended with bind
actions and an abstract deployment plan B0 −→ · · · −→ Bn = 〈Bi,Bc〉 such that

C0 ∈ γ(B0) then there is a normalised deployment plan C0
α1−→ · · · αm−1−−−−→ Cm s.t.:

– Cm ∈ γ(Bn);
– for all natural numbers j〈T ,q〉 > 0, for every component type T and state q

such that Bc(〈T , q〉), then Cm#
〈T ,q〉(Zm − Z0) = j〈T ,q〉 where Zm and Z0 are

the components of Cm and C0 respectively.

Proof. The proof of the lemma is by induction on the length of the abstract
deployment plan.

Base case. If the length is 0 then B0 = Bn. The first item holds because
C0 ∈ γ(B0) = γ(Bn), while the second one trivially holds because ¬Bc(〈T , q〉) for
every component type/state pair 〈T , q〉. Indeed, since in the initial configuration
no component is created (no new actions have been performed yet), Bc(〈T , q〉)
is always false.

Inductive case. Consider the transition Bn−1 −→ Bn and assume that Bn−1 =

〈B′i,B′c〉. We have by definition that there exists an action
α−→ from a concretisa-

tion of Bn−1 to a concretisation of Bn. Since Bn−1 6= Bn,
α−→ can just be a delete,

create, or state change action. Now we have the following cases:

2 Note that this holds because we consider a fragment of Aeolus that does not support
capacity constraints to limit the amount of bindings connected to a provide-port.
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– α involves a component z in Z0. Then by inductive hypothesis there exists
a normalised deployment plan C0

α1−→ · · · αl−→ Cl s.t. Cl ∈ γ(Bn−1) and if

B′c(〈T , q〉) then Cl#〈T ,q〉(Zl −Z0) = j〈T ,q〉 where Zl are the components of Cl.
Since Cl is a concretisation of Bn−1 and α involves the initial component
z we have that z is still present in Cl. Hence, from Cl the α action can be
performed leading to a correct configuration that is a concretisation of Bn.
Since in this transition only components in Z0 are involved, Bc = B′c and
then the thesis.

– α is a create action new(z : T ′) and z 6∈ Z0. Then, due to Definition 12
requiring B′c and Bc to be different, B′c(〈T ′, T ′.init〉) is false, Bc(〈T , q〉) is
true if 〈T , q〉 = 〈T ′, T ′.init〉, equal to B′c(〈T , q〉) otherwise. By inductive

hypothesis there exists a normalised deployment plan C0
α1−→ · · · αl−→ Cl

s.t. Cl ∈ γ(Bn−1) and if B′c(〈T , q〉) then Cl#〈T ,q〉(Zl − Z0) = j〈T ,q〉 where Zl
are the components of Cl. From Cl is possible to perform j〈T ′,T ′.init〉 create
actions, each one followed by all bind actions that can be performed to reach
a configuration Cm with the required properties.

– α is a delete action del(z) that deletes a component of type T ′ in state q′ and
z 6∈ Z0. Then B′c(〈T ′, q′〉) is true, Bc(〈T , q〉) is false if 〈T , q〉 = 〈T ′, q′〉, equal
to B′c(〈T , q〉) otherwise. By inductive hypothesis there exists a normalised

deployment plan C0
α1−→ · · · αl−→ Cl s.t. Cl ∈ γ(Bn−1) and if B′c(〈T , q〉) then

Cl#〈T ,q〉(Zl − Z0) = j〈T ,q〉 where Zl are the components of Cl. Then from Cl
it is possible to delete all the j〈T ′,q′〉 components of type T ′ in state q′ that
are not in Z0 and reach a configuration Cm with the required properties.

– α is a state change stateChange(z, q′, q′′) applied to a component type T ′
and z 6∈ Z0. We have that B′c(〈T ′, q′〉) = ¬Bc(〈T ′, q′〉) or B′c(〈T ′, q′′〉) =
¬Bc(〈T ′, q′′〉), and B′c(〈T , q〉) = Bc(〈T , q〉) otherwise. Moreover, we have
that B′c(〈T ′, q′〉) and Bc(〈T ′, q′′〉) must be true.
Now, if B′c(〈T ′, q′〉) = ¬Bc(〈T ′, q′〉) let us consider

j′〈T ,q〉 =

1 if 〈T , q〉 = 〈T ′, q′′〉 and B′c(〈T ′, q′′〉)
j〈T ′,q′′〉 if 〈T , q〉 = 〈T ′, q′〉
j〈T ,q〉 otherwise

By inductive hypothesis there exists a normalised deployment plan C0
α1−→

· · · αl−→ Cl s.t. Cl ∈ γ(Bn−1) and if B′c(〈T , q〉) then Cl#〈T ,q〉(Zl − Z0) = j′〈T ,q〉
where Zl are the components of Cl. Now, starting from Cl, it is possible to
perform j′〈T ′,q′〉 = j〈T ′,q′′〉 state changes to bring in state q′′ all the non initial

components of type T ′ that are in state q′. If B′c(〈T ′, q′′〉), in the reached
configuration there are j〈T ′,q′′〉+ 1 components of type T ′ in state q′′ among
those that do not belong to Z0. In this case, a delete action is performed to
reduce by 1 this quantity. The obtained configuration Cm has the required
properties.
The case when B′c(〈T ′, q′′〉) = ¬Bc(〈T , q′′〉) is analogous. ut

Theorem 1. The reconfiguration problem is PSpace.
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Proof. Given an abstract configuration checking if 〈Bi,Bc〉 −→ 〈B′i,B′c〉 can be
done in polynomial space. This is due to the fact that 〈Bi,Bc〉 −→ 〈B′i,B′c〉 iff Bi
and Bc differ from B′i and B′c for at most two 〈T , q〉 pairs. Finding if an action
can account for these differences can be done scanning the list of state change,
new, and delete actions. As a consequence, the correctness of the Algorithm 1
(i.e., if it returns True then reconfiguration holds) follows from Lemma 3: it
is sufficient to apply the statement of the lemma to the configuration obtained
after having executed all possible binding actions on the initial configuration C0.
Soundness (i.e., if reconfiguration holds then the algorithm returns True) follows
from the following arguments. From Lemma 1 it is not restrictive to consider just
the family of normalised deployment plans. If a solution to the reconfiguration
problem exists, then for Lemma 2 an abstract deployment plan B0 −→ · · · −→ Bn
exists where Bn contains the target pair 〈Tt, qt〉. If n is smaller than the above
upper bound K then the transitions in B0 −→ · · · −→ Bn can be guessed by the
algorithm so that it can return True. Consider now n > K. As discussed above,
K is an upper bound to the number of different abstract configurations, hence
there exist i < j such that Bi = Bj . Consider now the abstract deployment plan
B0 −→ · · · −→ Bi−1 −→ Bj −→ · · · −→ Bn which is strictly shorter than the previous
one. If its length is smaller than K, this plan can be guessed by the algorithm,
otherwise the same arguments can be applied to find another strictly shorter
plan.

Abstract configurations 〈Bi,Bc〉 can be encoded with two tuples of size k.
Since the Bi function considers only components in the initial configuration it
can be represented with a tuple of values in the range [0, |Z0|]: hence the possible
values for Bi are |Z0|k. The function Bc instead can be encoded with a tuple of
length k of booleans: hence its possible values are 2k. The possible values for
the counter variable are |Z0|k ∗ 2k. Assuming n the size of the input we have
|Z0| ≤ n, k ≤ n. Hence, such variables can be encoded in log(nn + 2n + nn ∗
2n) = O(log(n2n)) = O(n log(n)). Hence the nondeterministic Algorithm 1 has
polynomial space complexity. For this reason (and for Savitch’s theorem [22])
we can conclude that the reconfiguration problem is in PSpace. ut

B Proofs of Section 4

The proof of Theorem 2 requires some preliminary definitions and lemmas. We
start by reporting the definition of our encoding of 1-safe Petri nets into Aeolus
components.

Definition 13 (1-safe Petri net encoding). Given a 1-safe Petri net N =
(P, T,m0) its encoding is the set of component types ΓN = {Tp | p ∈ P} ∪ {TT }
where Tp and TT have been defined in Figure 3.

Notice that the size of the component types ΓN is polynomial w.r.t. the size
of the 1-safe Petri net. This is due to the fact that place components have a
constant number of states and ports while the component for the transitions
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has a number of states that grows linearly with respect to the number of places
involved in the transitions.

We now introduce the notation [[m]] to characterise configurations correspond-
ing to the net marking m. Intuitively, a configuration corresponds to a marking
if it has just one component of type TT and one component of type Tp for every
place p. The component of type TT must be in state q while the components
Tp must be in onp or offp states according to the marking m considered. More-
over, the configuration could have as many components of type TT or Tp in their

initial state as wanted. In the following we use C#〈T ,q〉 to denote the number of

components of C that have type T and are in state q.

Definition 14. Let N = (P, T,m0) be a 1-safe Petri net and m one of its
markings. We define:

[[m]] = { C | C is a correct configuration having universe ΓN ,∑
q′ 6=q0 C

#
〈TT ,q′〉 = 1, C#〈TT ,q〉 = 1, ∀p ∈ P .

∑
q′ 6=q0 C

#
〈Tp ,q′〉 = 1,

∀p ∈m . C#〈Tp ,onp〉 = 1, ∀p ∈ P \m . C#〈Tp ,offp〉 = 1 }

We call net step a deployment plan that does not include new or delete actions
and that starts with a state change of the component TT in state q, and finishes
with another state change of the same component that re-enters in such state q.

Formally, it is a non empty sequence of reconfigurations C1
α1−→ C2

α2−→ · · · αm−1−−−−→
Cm such that C1#〈TT ,q〉 = Cm#

〈TT ,q〉 = 1, while Ci#〈TT ,q〉 = 0 for every 1 < i < m,

and αj is neither a new(z : T ) nor a del(z) action for every 1 ≤ j ≤ m− 1.
The proof of correspondence between a 1-safe Petri net N and its encoding

ΓN relies on two distinct lemmas, a first one about completeness of the simulation
(i.e., each firing of a net transition can be mimicked by a deployment plan
corresponding to a net step), and a second one about soundness (i.e., each net
step corresponds to the firing of a net transition).

Lemma 4. Let N = (P, T,m0) be a 1-safe Petri net, m one of its markings,
and C a configuration in [[m]]. If m 7→m′ then there exists a net step from C to
a configuration C′ ∈ [[m′]].

Proof. It is sufficient to observe that if m 7→ m′ then there exists a transition
t ∈ T that, by consuming and producing tokens, transforms m in m′. This
transition can be selected in a deployment plan from C that starts by changing
the state of TT form q to qt. Then the corresponding consumption and production
phases can be executed and the component of type TT can re-enter in state q.
This deployment plan is a net step and the reached configuration is in [[m′]]. ut

Lemma 5. Let N = (P, T,m0) be a 1-safe Petri net, m one of its markings,
and C a configuration in [[m]] having a net step to C′. Then, there exists m′ s.t. C′
is in [[m′]] and m 7→m′.

Proof. Let P be a net step from C to C′ starting with a state change of the TT
component from state q to qt, representing the selection of the transition t.
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We first observe that, by definition of net step, the final configuration C′
contains the TT component in the q state. Moreover, since a net step does not
involve delete actions there is exactly one component of type Tp per place p in
a state different from the initial one. Finally, as the component of type TT does
not provide the ports ap and bp (for every p ∈ P ) we have that these components
must be either in on or off state. So there exists m′ such that C′ ∈ [[m′]].

Consider now that the net step from C ∈ [[m]] to C′ ∈ [[m′]] includes the state
changes, on the instance of component type TT , corresponding to the consump-
tion and production phases for the selected transition t. The execution of the
consumption phase guarantees that •t ≤ m, thus t can fire in m. Moreover,
the consumption (resp. production) phase guarantees that a token component
is moved from on to off (resp. off to on) iff it belongs to •t (resp. t•). Hence,
we can conclude that m 7→m′ as effect of the firing of t. ut

Notice that besides the net step from C to C′ considered in the above Lemma,
there are deployment plans starting from C that do not correspond to net steps.
Some of them have anyway the same effect of a net step because they reach
a configuration in a set [[m′′]] s.t. m 7→ m′′. Other plans do not reach such a
configuration because, e.g., they are composed of an infinite sequence of creations
and deletions of components or could select a non enabled transition t. The
presence of these plans is irrelevant, as far as the reconfiguration problem is
concerned, because they cannot deploy the considered target component.

We can now conclude that given the 1-safe Petri net N = 〈P, T,m0〉 and
a target marking mt, we can consider the set of component types ΓN and a
component type TA having, beside an initial state, a state qa reachable from it
that requires the port t, the port onp for all places p ∈mt and port offp for all
places p 6∈mt. Lemmas 4 and 5 (and the observation after Lemma 5) guarantee
that mt can be reached in N iff the component type-state pair 〈TA, qa〉 can be
deployed with the universe of component types ΓN ∪ {TA} starting from any
of the configurations in [[m0]]. PSpace-hardness of reachability in 1-safe Petri
nets [3] implies PSpace-hardness of the reconfiguration problem.

Theorem 2. The reconfiguration problem is PSpace-hard.

Proof. Consider a 1-safe Petri net N = 〈P, T,m0〉 and a target marking mt.
The problem of checking whether mt can be reached in N from a marking m0 is
PSpace-hard [3]. Consider the set of component types ΓN and a component type
TA having, beside an initial state, a state qa reachable from the initial state that
requires the port t, a port onp for all places p ∈mt and port offp for all places
p 6∈ mt. We have already observed that the size of ΓN is polynomial w.r.t. the
size of the 1-safe net N . The size of the component type TA is also polynomial
w.r.t. the size of the 1-safe net N since it has just 2 states, 2 state transitions,
and |P |+ 1 ports.

We complete the proof by showing that a marking mt in N can be reached
iff the component type-state pair 〈TA, qa〉 is achievable with the universe of
component types ΓN ∪ {TA} starting from a configuration in [[m0]].
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The “only if” part follows from Lemma 4, that guarantees the existence of
a deployment plan reaching a configuration C ∈ [[mt]]. If C#〈TA,qa〉 = 1 then the

thesis is proven. Otherwise, from the configuration C it is possible to create a
new component z of type TA, bind each of its ports to the component of type
TT in state q and to the components of type Tp in on or off state, and perform
a state change of z into qa.

The proof of the “if” part proceeds as follows. Starting from a configuration
C0 ∈ [[m0]], the achievability of the pair 〈TA, qa〉 guarantees the existence of a

deployment plan P = C0
α1−→ C1

α2−→ · · · αn−−→ Cn where the configuration Cn
has a component of type TA in state qa. We can construct another deployment

plan P′ = C0
α′1−→ · · · α′m−−→ C′l by considering only the actions in α1, · · · , αn

that involves components of type Tp or TT not in their initial state. This new
deployment plan does not contain new and delete actions, and it turns out to be
a sequence of net steps such that C′l ∈ [[mt]]. By Lemma 5 there exists a sequence
of net transitions m0 7→ · · · 7→mt thus proving the thesis. ut
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