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Intrinsic Finite Element Methods for the
Computation of Fluxes for Poisson's Equation
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Abstract

In this paper we consider an intrinsic approach for the direct compu-
tation of the 
uxes for problems in potential theory. We develop a general
method for the derivation of intrinsic conforming and non-conforming �-
nite element spaces and appropriate lifting operators for the evaluation
of the right-hand side from abstract theoretical principles related to the
second Strang Lemma. This intrinsic �nite element method is analyzed
and convergence with optimal order is proved.
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1 Introduction

For the numerical solution of second order elliptic boundary value problems,
Galerkin methods are nowadays among the most popular discretization meth-
ods. One can distinguish between the following types of Galerkin methods:

a) The continuous or exact variational formulation of the boundary value
problem is employed and its discretization is achieved by replacing the in�nite-
dimensional energy space by either a �nite dimensionalsubspace (conforming
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Galerkin method) or by a �nite dimensional space which is not a subspace of
the energy space (non-conforming Galerking method). In the latter case, the
volume or surface integrals involved in the continuous bilinear form are broken
into a sum of local integrals. Standard examples for these �nite dimensional
spaces are conformingC0 hp-�nite elements, Ck spline spaces as they arise,
e.g., in isogeometric analysis, and the Crouzeix-Raviart �nite element.

b) The continuous variational formulation is modi�ed by adding terms which
enforce the continuity of the Galerkin solution in a weak way. This allows one to
use discontinuoushp-�nite element spaces without imposing any essential inter-
element constraints in the de�nition of the spaces. The resulting methods are,
e.g., non-conforming dG methods and non-conforming least squares methods.

Non-conforming Galerkin methods have nice properties, e.g. in di�erent
parts of the domain di�erent discretizations can be easily used and glued to-
gether or, for certain classes of problems (Stokes problems, highly inde�nite
Helmholtz and Maxwell problems, problems with \locking", etc.), the non-
conforming discretization enjoys a better stability behavior compared to the
conforming one. But the computational cost is typically increased because
additional integrals have to be evaluated on the element interfaces of the �-
nite element mesh and, in addition, the total number of unknowns is increased
compared to conforming methods. Moreover, the augmented discrete bilinear
forms require certain mesh-depending control parameters whose choice for cer-
tain problem classes might be a delicate issue.

In this paper, our goal is two-fold: on the one hand, we will identify all
piecewise polynomial �nite element spaces which areweakly non-conforming in
the sense that they are not contained in the continuous energy space but the
(broken version of the) continuous bilinear form can still be used. In other
words, we will address the question, how far can one go in the non-conforming
direction while keeping the original forms?

On the other hand, we will develop a general method for thederivation of
intrinsic conforming and non-conforming �nite elements from theoretical prin-
ciples for the discretization of elliptic partial di�erential equations. More pre-
cisely, we employ the stability and convergence theory for non-conforming �nite
elements based on the second Strang lemma and derive from these principles
weak compatibility conditions for non-conforming �nite elements. In the present
case, we show that local polynomial �nite element spaces for elliptic problems in
divergence formmust satisfy those compatibility conditions in order to be able
to consistently estimate the perturbation term in the second Strang lemma.

As a simple model problem for the introduction of our method, we consider
Poisson's equation but we emphasize that this method is applicable also for
much more general (systems of) elliptic equations. We consider the intrinsic
formulation of Poisson's equation, i.e., the minimization of the corresponding
energy functional in the space ofadmissibleenergies as de�ned below. The goal
is to construct element by element polynomial �nite element spaces for thedirect
approximation of the physical quantity of interest, i.e., the 
ux, the electrostatic
�eld, the velocity �eld, etc. depending on the underlying application. Further-
more, to take into account essential boundary conditions we have to construct
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a lifting operator as the left inverse of the elementwise gradient operator, that
is, an operator de�ned element by element { whose realization turns out to be
quite simple.

There is a vast literature on various conforming and non-conforming, primal,
dual, mixed formulations of elliptic partial di�erential equations and conforming
as well as non-conforming discretization. Our main focus is the development of
a concept for deriving conforming and non-conforming intrinsic �nite elements
from theoretical principles and not the presentation of a speci�c new �nite
element space. For this reason, we do not provide an extensive list of references
on the analysis of speci�c families of �nite element spaces but refer to the
monographs [6], [19], and [5], and the references therein.

Intrinsic formulations of the Lam�e equations modelling linear three-dimen-
sional elasticity have been �rst derived in [7]. An intrinsic �nite element space
has been developed in [8] and [9] by modifying the lowest order N�ed�elec �nite
elements (cf. [16], [17]) in such a way that the compatibility conditions which
arise from the intrinsic formulation are exactly satis�ed.

For Poisson's equation, the approach that we propose allows us to recover
the non-conforming Crouzeix-Raviart element [12], the Fortin-Soulie element
[13], the Crouzeix-Falk element [11], and the Gauss-Legendre elements [4], [21]
as well as the standard conforminghp-�nite elements.

The general theory of this paper will be developed for two-dimensional as
well as for three-dimensional domains. However it turns out that the explicit
construction of all non-conforming three-dimensional shape functions requires
some further investigation of orthogonal polynomials on surfaces. So, we will
essentially focus our attention on the two-dimensional case and present a single
three-dimensional, non-conforming �nite element at the end of the paper as an
example.

The paper is organized as follows.
In Section 2 we introduce our model problem, Poisson's equation, and the

relevant function spaces for the intrinsic formulation of the continuous problem
as an energy minimization problem.

In Section 3 we derive weak continuity conditions for the characterization of
the admissible energy space when the domain is split into simplices. Using these
conditions, we derive conforming intrinsic polynomial �nite element spaces and
we show that they are (necessarily) the gradients of the well-known Lagrange
hp-�nite element spaces.

In Section 4 we focus on non-conforming discretizations. More precisely,
we infer from the proof of the second Strang lemma appropriate compatibility
conditions at the interfaces between elements of the mesh so that the non-
conforming perturbation of the original bilinear form is consistent with the local
error estimates. In two dimensions, we deriveall types of piecewise polynomial
�nite elements that satisfy this condition and also derive local bases for these
spaces. In three dimensions, we illustrate the construction by providing one
example.

Finally, in Section 5 we summarize the main results and give some conclu-
sions and some general comments on the construction of bases for the three-

3



dimensional case.

2 Model problem

To formulate our model problem we �rst introduce some notation. Let 
 � Rd

be a bounded domain ind = 2 ; 3 dimensions. We denote bye(k ) , 1 � k � d,
an orthonormal basis in Rd, so that a point x 2 Rd, can be expressed by its
coordinates (xk )d

k=1 as x =
P d

k=1 xk e(k ) . The Euclidean scalar product of
a; b 2 Rd is denoted bya � b. To express the curl operator we introduced� := 1
if d = 2, and d� := 3 if d = 3. The Euclidean scalar product in Rd� is denoted,
for v; w2 Rd� , by v

�
� w. The vector product � maps a pair of vectorsa; b 2 Rd

into Rd� and is given by

a � b :=
�

a1b2 � a2b1 for d = 2 ;
(a2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1)T for d = 3 :

The curl of a su�ciently smooth d-valued function v is equal to the d� -valued
function r � v . The d-dimensional curl operator maps a su�ciently smooth
d� -valued function v to a d-valued function via

curl (v) :=

8
><

>:

@v
@x2

e(1) � @v
@x1

e(2) ; d = 2 ;

�
@v3
@x2

� @v2
@x3

�
e(1) +

�
@v1
@x3

� @v3
@x1

�
e(2) +

�
@v2
@x1

� @v1
@x2

�
e(3) ; d = 3 :

We consider the model problem of �nding, for a given electric charge density
� 2 H � 1 (
), an electrostatic �eld e in a bounded domain 
 � Rd, d = 2 ; 3,
which satis�es in a weak sense

� div ( "e) = � in 
 ; (1)

where " denotes the electrostatic permeability. In the electrostatic case, one
may further write e = r � , where � is the electrostatic potential, known up to a
constant. We consider that the potential � is constant on each connected com-
ponent of the boundary @
. This amounts to saying that (1) is complemented
with a perfect conductor boundary condition, namely, 
 � e := ( e � n) j@
 = 0,
where n is the unit outward normal vector �eld to @
.

Throughout the paper we assume that


 � Rd is a bounded Lipschitz domain with connected boundary@
 : (2)

As a consequence of this assumption,� j@
 is constant. Since� is known up to
a constant, we will assume without loss of generality that� j@
 = 0.
Hence, the variational formulation of (1) restricted to the domain 
 is based on
the space

E (
) := r
�
H 1

0 (
)
�

;

whereH 1
0 (
) denotes the usual Sobolev space andr

�
H 1

0 (
)
�

denotes its image
under the gradient operator r .
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Remark 1 If @
 consists of several disjoint connected components@
 k , 0 �

k � q, where q � 1, i.e., @
 =
q[

k=0

@
 k , with @
 k \ @
 k 0 = ; for k 6= k0, then

E (
) =
�

r v j v 2 H 1 (
) ; vj@
 0 = 0 and, for all 1 � k � q, vj@
 k
= ck

	

for arbitrary constants ck 2 R, 1 � k � q.

As a rule, we use boldface characters to denote functional spaces ofd-
valued functions, and typewriter characters to denote functional spaces ofd� -
valued functions. Let L 2 (
) :=

�
L 2 (
)

� d
, H1 (
) :=

�
H 1 (
)

� d� , H� 1 (
) :=
� �

H 1
0 (
)

� 0
� d�

, and H� 1=2 (@
) :=
� �

H 1=2 (@
)
� 0

� d�

. We recall a well-known

result below, whose proof can be found in, e.g., [15].

Proposition 2 Let 
 � Rd satisfy (2). The operator r : H 1
0 (
) ! E (
) is an

isomorphism and thus its inverse operator� : E (
) ! H 1
0 (
) is continuous.

It holds

E (
) =
�

e 2 L 2 (
) j
Z



e � curl (v) = 0 8v 2 H1 (
)

�
(3)

=
n

e 2 L 2 (
) j r � e = 0 in H� 1 (
) and 
 � e = 0 in H� 1=2 (@
)
o

:

With the help of the inverse operator �, which we call a lifting operator , the
variational formulation of the model problem reads: Find e 2 E (
) such that

Z



"e � ~e = H � 1 (
) h�; � ~ei H 1

0 (
) 8~e 2 E (
) ; (4)

where H � 1 (
) h�; �i H 1
0 (
) denotes the duality pairing of H � 1 (
) and H 1

0 (
).
Under ad hoc assumptions on the permeability" , e.g., 0< " 0 � " (x) � "1

for almost all x 2 
 for some constants "0 and "1, the solution e is the minimizer
on E(
) of the functional

j : E(
) ! R j (~e) :=
1
2

Z



"~e � ~e � H � 1 (
) h�; � ~ei H 1

0 (
) :

In most physical applications the quantity e, or the 
ux "e, is the physical
quantity of interest rather than the potential u = � e. Hence, our goal is to
derive conforming and non-conforming �nite element spaces for the direct ap-
proximation of e in (4).

3 Conforming intrinsic �nite element spaces

In this paper we restrict our studies to bounded, polygonal (d = 2) or polyhedral
(d = 3) domains 
 � Rd and geometrically conformal �nite element meshesT
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[6] consisting of simplices� . The local and global mesh width are denoted by
h� := diam � and h := max � 2T h� . The boundary of a simplex � consists of
(d � 1)-dimensional simplices (facets ford = 3 and triangle edges for d = 2)
which are denoted byF . We use in both cases the terminology \facet". The set
of all interior facets in T is denotedF ; the set of facets lying on@
 is denoted
F@
 . As a convention we assume that simplices and facets are closed sets. The

interior of a simplex � is denoted by
�
� and we write

�
F to denote the relative

interior of a facet F . For a facet F 2 F [F @
 , let nF denote a unit vector which
is orthogonal to F . The orientation for the inner facets is arbitrary but �xed
while the orientation for the boundary facets is such that nF points toward the
exterior of 
.

For p 2 N0 := f 0; 1; : : :g, let Pp
d denote the space ofd-variate polynomials of

degree� p. For ! � 
, let Pp
d (! ) denote the restriction to ! of polynomials in

Pp
d. Given T , we de�ne the �nite element spaces

Sp;m
T :=

n
u 2 H m +1 (
) j 8� 2 T : uj �

�
2 Pp

d

o
;

Sp;m
T := ( Sp;m

T )d ;

)

for m = � 1; 0;

Sp;0
T ;0 := Sp;0

T \ H 1
0 (
) ;

and

Ep
T :=

�
e 2 Sp;� 1

T j
Z



e � curl (v) = 0 8v 2 H1 (
)

�
: (5)

For m = � 1, the spacesSp;� 1
T , Sp;� 1

T , Ep
T consist of simplex-wise polynomials

which are in general discontinuous across the facets. Hence the sumu =
P

i ui

of such functions is well de�ned in the interior of the simplices as well as the
one-sided traces from the interior of a simplex towards its boundary.

For the inner facets F 2 F , we de�ne the pointwise tangential jumps [u]F :

F ! R for x 2
�
F by

[u]F (x) = lim
" & 0

(u (x + "nF ) � u (x � "nF )) : (6)

We emphasize that the jump [u]F as the di�erence of the one-sided traces de�nes
a continuous function on F . If the two one-sided limits at a facet F coincide
we de�ne u as this one-sided limit and thus u is well de�ned over F . If u is
discontinuous acrossF , we avoid the de�nition of u on F and considerF as a
set of measure zero. Note that the functionu is continuous on 
 if the jumps
[u]F vanish for all inner facets.

From (3) we conclude that Ep
T � E (
) is a piecewise polynomial �nite

element space which gives rise to the conforming Galerkin discretization of (4)
by intrinsic �nite elements: Find eT 2 Ep

T such that
Z



"eT � ~eT = H � 1 (
) h�; � ~ei H 1

0 (
) 8~eT 2 Ep
T : (7)
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In the rest of Section 3, we will derive a local basis forEp
T and a realization

of the lifting operator �. We de�ne for later purpose the piecewise gradient
and curl operators by

r T u (x) :=
dX

k=1

@u(x)
@xk

e(k ) ; r T � e (x) := r� e (x) for all x 2 
 n

 
[

� 2T

@�

!

:

3.1 Local characterization of conforming intrinsic �nite
elements

In this section, we will develop a local characterization of conforming intrin-
sic �nite elements. This approach generalizes that of [8], where such �nite
element approximations were considered for the �rst time (for the system of
two-dimensional linearized elasticity).

Lemma 3 The spaceEp
T can be characterized by local conditions according to

Ep
T =

n
e 2 Sp;� 1

T j r T � e = 0 ;

and for all F 2 F [e � nF ]F = 0 ; (8)

and for all F 2 F @
 e � nF jF = 0g:

Proof. We denote the right-hand side in (8) by ~Ep
T and prove that Ep

T = ~Ep
T .

Let e 2 Ep
T . Consider the curl-condition (5) with test-�elds v.

Part a: For � 2 T , let v 2 D
�

�
�
�

:=
�

D
�

�
�
�� d�

, where D
�

�
�
�

:= C1
c

�
�
�
�

.
Then, Z

�
(r � e)

�
� v =

Z

�
e � curl (v) = 0 :

Since� 2 T and v 2 D
�

�
�
�

are arbitrary, we conclude that r T � e = 0 holds.
Part b: For F 2 F , let � 1; � 2 2 T be such that F = � 1 \ � 2. We set

! F := � 1 [ � 2. We choosev 2 D
�

�
! F

�
. Then

Z

� 1

e � curl (v) +
Z

� 2

e � curl (v) = 0 :

For i = 1 ; 2, denote by n i the exterior normal for � i . Simplexwise integration
by parts yields

Z

� i

e � curl (v) =
Z

@�i

�
e � n i � �

� v +
Z

� i

(r � e)
�
� v for d = 2 ; 3 and i = 1 ; 2:

By adding the results for i = 1 ; 2 and taking into account v = 0 on @!F , we get

0 =
Z

F

�
e � n1� �

� v +
Z

F

�
e � n2� �

� v +
Z

! F

(r T � e)
�
� v:
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We already proved that r T � e = 0, so that

0 =
Z

F
[e � nF ]F

�
� v:

Sincev 2 D
�

�
! F

�
is arbitrary, we conclude [e � nF ]F = 0.

Part c: Let F 2 F @
 and � 2 T such that F � @�. Let

DF (� ) :=
�

vj � : v 2 D
�
Rd �

and v = 0 in some neighborhood of 
 n�
	

:

Repeating the argument as in Part b by taking into account that v 2 DF (� ) in
general does not vanish onF leads to e � nF = 0 in this case.

Thus, we have proved that Ep
T � ~Ep

T .
Part d: To prove the opposite inclusion we considere 2 ~Ep

T . Then, for all
v 2 H1 (
) it holds by integration by parts

Z



e � curl (v) =

X

� 2T

Z

�
e � curl (v)

=
X

� 2T

Z

�
(r T � e)

�
� v +

X

� 2T

Z

@�
(e � n � )

�
� v

=
X

� 2T

Z

�
(r T � e)

�
� v +

X

F 2F

Z

F
sF [e � nF ]F

�
� v

+
X

F 2F @


Z

F
(e � nF )

�
� v

= 0 :

Above, sF = � 1 depending on the orientation of the facetF . Hence, ~Ep
T � Ep

T
and the assertion follows.

3.2 Integration

We start with a lemma on integration of curl-free polynomials. Let

P p
curl :=

n
e 2 (Pp

d)d j r � e = 0
o

(9)

and, for � 2 T , let P p
curl (� ) := f ej � : e 2 P p

curl g.

Lemma 4 For any � 2 T and any e 2 P p
curl (� ), it holds

; 6=
�

u 2 H 1 (� ) j r u = e
	

� Pp+1
d (� ) : (10)

Proof. Let � 2 T and e 2 P p
curl (� ). In [15, 2] it is proved that there exists

u 2 H 1 (� ), unique up to a constant, such that r u = e ; hence the left-hand
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side in (10) is proved. Let m � be the center of mass for� . Then Poincar�e's
theorem yields that the path integral

U (x) :=
Z


 x

e with 
 x denoting the straight path m � x (11)

de�nes U 2 H 1 (� ) such that r U = e. Sincee 2 P p
curl (� ), there are coe�cients

a� 2 Rd such that
e (x) =

X

j � j� p

a� (x � m � ) �

with the usual multi-index notation � 2 Nd
0, j� j := � 1 + : : : + � d, w � :=

w� 1
1 � � � w� d

d . To evaluate the integral in (11) we employ the a�ne pullback
� x : [0; 1] ! m � x, � x := m � + t (x � m � ) and obtain

U (x) =
Z 1

0
e � � x (t) � � 0

x (t) dt

=
X

j � j� p

a� � (x � m � )
Z 1

0
(t (x � m � )) � dt

=
X

j � j� p

(a� � (x � m � )) ( x � m � ) �
Z 1

0
t j � j dt

=
X

j � j� p

a� � (x � m � )
(x � m � ) �

j� j + 1
2 Pp+1

d :

Since the functions in the set
�

u 2 H 1 (� ) j r u = e
	

in (10) di�er only by a
constant we have proved the second inclusion in (10).

Lemma 4 motivates the de�nition of the local lifting operator � c
� : P p

curl (� ) !
Pp+1

d (� ) with � 2 T , c 2 R given, for e 2 P p
curl (� ), by

� c
� (e) := U + c with U as in (11). (12)

Note that the space in (10) satis�es
�

u 2 H 1 (� ) j r u = e
	

= f � c
� (e) : c 2 Rg:

Corollary 5 The (restriction of the) operator � : Ep
T ! Sp+1 ;0

T ;0 is an isomor-

phism with inverse r : Sp+1 ;0
T ;0 ! Ep

T .

Proof. From Lemma 4 we conclude that

� Ep
T � Sp+1 ;� 1

T

holds. SinceEp
T � E, the properties of the lifting operator � imply that

� Ep
T � H 1

0 (
) :

9



Hence
� Ep

T � Sp+1 ;� 1
T \ H 1

0 (
) = Sp+1 ;0
T ;0 :

On the other hand, we have Sp+1 ;0
T ;0 � H 1

0 (
) and hence r Sp+1 ;0
T ;0 � E.

Furthermore, it is clear that

r Sp+1 ;0
T ;0 � Sp;� 1

T :

Hence
r Sp+1 ;0

T ;0 � Sp;� 1
T \ E = Ep

T

from which we �nally conclude that the inclusion

Sp+1 ;0
T ;0 � � Ep

T

holds.

3.3 A Local basis for conforming intrinsic �nite elements

Corollary 5 shows that a local basis forEp
T can be easily constructed by using

the standard basis functions for hp-�nite element spaces (cf. [19]). We recall
brie
y their de�nition. Let

bN p :=
�

i
p

: i 2 Nd
0 with i 1 + : : : + i d � p

�

denote the unisolvent set of equi-spaced nodal points on thed-dimensional unit
simplex

�̂ d :=
�

x 2 Rd
� 0 j x1 + : : : + xd � 1

	
: (13)

For a simplex � 2 T with vertices A �
i , 0 � i � d, let � � : �̂ d ! � denote the

a�ne mapping � � (x̂ ) := A �
0 +

P d
i =1 (A �

i � A �
0 ) x̂ i . Then the set of interior

nodal points are given by

N p :=
n

� �

�
N̂

�
j N̂ 2 bN p; � 2 T

o
n@
 : (14)

The Lagrange basis forSp;0
T ;0 can be indexed by the nodal pointsN 2 N p and

is characterized by

bT
p;N 2 Sp;0

T ;0 and 8N 0 2 N p bT
p;N (N 0) =

�
1 N = N 0;
0 N 6= N 0:

(15)

Recall that the simplices in T are by convention closed sets and the facets in
F [ F @
 are closed as well. LetV (respectively V@
 ) denote the inner vertices
(resp. boundary vertices) of the meshT . For d = 3, we let E denote the set
of all interior ( d � 2)-dimensional closed simplex edges, that is, all those edges
that are not subsets of@
.

10



De�nition 6 For all � 2 T , F 2 F , E 2 E and for d = 3 , V 2 V , the spaces
B p

� , B p
F , B p

E and for d = 3 , the spaceB p
V are given as the following spans of

basis functions:

B p
� := span

n
r bT

p+1 ;N j N 2
�
� \ N p+1

o
;

B p
F := span

�
r bT

p+1 ;N j N 2
�
F \ N p+1

�
;

B p
E := span

�
r bT

p+1 ;N j N 2
�
E \ N p+1

�
(for d = 3 );

B p
V := span

�
r bT

p+1 ;V

	
.

The following proposition shows that these spaces give rise to a direct sum
decomposition and that these spaces are locally de�ned. To be more speci�c,
we �rst have to introduce some notation.

For any facet F 2 F , vertex V 2 V , and E 2 E we de�ne the sets

TF := f � 2 T : F � @�g; ! F :=
[

� 2T F

�;

TV := f � 2 T : V 2 � g; ! V :=
[

� 2T V

�;

TE := f � 2 T : E � � g ; ! E :=
[

� 2T E

� for d = 3 ;

FV := f F 2 F : V 2 @Fg; for d = 2 :

(16)

Proposition 7 Let B p
� , B p

F , B p
E , B p

V be as in De�nition 6. Then the following
direct sum decomposition holds:

Ep
T =

8
>>>><

>>>>:

 
M

V 2V

B p
V

!

�

 
M

F 2F

B p
F

!

�

 
M

� 2T

B p
�

!

d = 2 ;
 

M

V 2V

B p
V

!

�

 
M

E 2E

B p
E

!

�

 
M

F 2F

B p
F

!

�

 
M

� 2T

B p
�

!

d = 3 :

(17)

For any simplex � , one can further identify B p
� with the subspace of elements of

Ep
T supported in � , namely:

B p
� := f e 2 Ep

T j suppe � � g : (18)

For any facet F 2 F and e 2 B p
F , it holds

suppe � ! F : (19)

For any vertex V 2 V and e 2 B p
V , it holds

suppeV � ! V : (20)

Let d = 3 . For any edgeE 2 E and e 2 B p
E , it holds

suppe � ! E :

11



Proof. Corollary 5 implies that ( r bT
p+1 ;N )N 2N p +1 is a basis ofEp

T . The as-
sertion follows simply by sorting these basis functions, according as to whether
they are associated with a single simplex, with two simplices with a facet in
common, with simplices with a vertex in common, and ford = 3 with simplices
with an edge in common.

The properties for the local supports are direct consequences of the corre-
sponding properties of standard nodal basis as de�ned in (15).

Remark 8 Proposition 7 shows that the intrinsic �nite element formulation (7)
is equivalent to the standard Galerkin �nite element formulation of (1): Find
uT 2 Sp+1 ;0

T ;0 such that
Z



" r uT � r vT = H � 1 (
) h�; v T i H 1

0 (
) 8vT 2 Sp+1 ;0
T ;0

with eT = r uT . However, the derivation via the intrinsic variational formula-
tion has the advantage of providing insights on how to design non-conforming
intrinsic �nite elements.

4 Non-conforming intrinsic �nite elements

In order to ensure existence and uniqueness of the solution to the variational
formulation and to obtain convergence estimates for the �nite element discretiza-
tion we impose from now on that � 2 L 2 (
), so that we may replace duality
products by integrals, and we make the following assumptions on the electro-
static permeability: The electrostatic permeability " in (1) satis�es " 2 L 1 (
)
and

0 < " min := ess inf
x 2 


" (x) � ess sup
x 2 


" (x) =: "max < 1 : (21)

Besides, there exists a partitionP := (
 j )J
j =1 of 
 into J polygons (polyhedra

for d = 3) such that, for some r � 1,

k"kP W r; 1 (
) := max
1� j � J






 " j 
 j








W r; 1 (
 j )
< 1 : (22)

Remark 9 In practical situations, one may have to deal with a partition into
curved polygons or polyhedra, of a domain with piecewise curved boundary. In
this case one should consider isoparametric �nite elements. For simplicity, we
restrict ourselves to the case of a�ne �nite elements, and hence to piecewise
polygons or polyhedra.

4.1 De�nition of non-conforming intrinsic �nite elements

In this section, we will de�ne non-conforming intrinsic �nite element spaces in
order to approximate the solution of (4). As a minimal requirement we assume
that the non-conforming �nite element space Ep

T ;nc satis�es

Ep
T ;nc � L 2 (
) and Ep

T ;nc 6� E (
) and dim Ep
T ;nc < 1 : (23)

12



We further require that Ep
T ;nc is a piecewise polynomial, simplex by simplex

curl-free �nite element space and that the conforming spaceEp
T is a subspace

of Ep
T ;nc :

Ep
T � Ep

T ;nc �
n

e 2 Sp;� 1
T j r T � e = 0

o
: (24)

To be able to de�ne a variational formulation in Ep
�; nc , we have to extend the

lifting operator � to an operator � T whose image satis�es the following prop-
erties

� T :
�

Ep
T ;nc + E (
)

�
! L 2 (
) (25)

� T : Ep
T ;nc ! Sp+1 ;� 1

T (26)

as well as the consistency condition

� T e = � e 8e 2 E (
) : (27)

The complete de�nitions of Ep
T ;nc and � T will be based on the convergence

theory for non-conforming �nite elements according to the second Strang lemma
(cf. [6, Th. 4.2.2]): this will tell us how to de�ne them and obtain in the end
an optimal order of convergence (see Theorem 15 hereafter).

In the same spirit as in Section 3, we �rst de�ne the operator � T simplexwise
by the local lifting operators � c

� as in (12):

(� T e)j �
�

:= � c�
�

�
ej �

�

�
2 Pp+1

d

�
�
�
�

8� 2 T 8e 2 Ep
T ;nc : (28)

Note that the coe�cients ( c� ) � 2T are at our disposal.
From (28) we conclude that r T is a left-inverse to � T , i.e.,

8e 2 Ep
T ;nc : r T � T e = e: (29)

A compatibility assumption on Ep
T ;nc concerning the jumps of functions

across facets is formulated next. For a facetF with vertices A F
i , 0 � i � d � 1,

the a�ne mapping � F : �̂ d� 1 ! F (with b� d� 1 as in (13)) is given by � F (� ) =
A F

0 +
P d� 1

i =1

�
A F

i � A F
0

�
� i . The space of (d � 1)-variate polynomials of degree

� p on F is given by

Pp
d� 1 (F ) :=

�
q � � � 1

F j q is a polynomial of degree � p on �̂ d� 1
	

: (30)

On the one hand, givene 2 Ep
T , one has [�T e]F = 0 for all F 2 F , and

� T e = 0 on @
. On the other hand, for elements of the non-conforming �nite
element spaceEp

T ;nc , we require that these conditions areweaklyenforced. Given
~e 2 Ep

T ;nc , keeping in mind that, along every facet F 2 F (respectively F 2
F@
 ), the jump [� T ~e]F (resp. the value � T ~e) is a polynomial of degree�
(p + 1), we choose aweak facet compatibility condition that reads:

Z

F
[� T ~e]F q = 0 8q 2 Pp

d� 1 (F ) ; 8F 2 F and
Z

F
� T ~eq = 0 8q 2 Pp

d� 1 (F ) ; 8F 2 F @
 :
(31)

13



Remark 10 One has the freedom to choose a priori the degree of the polynomi-
als q between0 and p+ 1 so that the interelement continuity can be weakened in
a 
exible way. Indeed, a degree equal top+1 de�nes conforming �nite elements,
because (31) then implies[� T ~e]F = 0 across all interior facets F , and � T ~e = 0
on @
 , and Lemma 3 leads to~e 2 Ep

T . On the other hand, a degree strictly lower
than p + 1 in the implicit de�nition (31) of Ep

T ;nc leads to a non-conforming
�nite element space, such thatEp

T is a strict subset ofEp
T ;nc . The degree of the

polynomials q, which is chosen here equal top, actually yields an optimal order
of convergence (see Theorem 15), whereas a degree strictly lower thanp yields
a sub-optimal order of convergence.

These considerations are summarized in the following de�nition.

De�nition 11 The non-conforming intrinsic �nite element space Ep
T ;nc is given

by
Ep

T ;nc :=
n

e 2 Sp;� 1
T j r T � e = 0 and (31) is satis�ed

o
:

This de�nition directly implies that condition (24), i.e., Ep
T � Ep

T ;nc holds.
In Section 4.2 we will prove for the two-dimensional case the following direct

sum decomposition

Ep
T ;nc = Ep

T �
M

F 2F

span
�

r T UF
p+1 ;k : 1 � k � N facet

	

�
M

� 2T

span
�

r T U �
p+1 ;k : 1 � k � Nsimplex

	
; (32)

with supp U �
p+1 ;k � � and suppUF

p+1 ;k � ! F

for some non-conforming functionsUF
p+1 ;k and U �

p+1 ;k which will be de�ned in
Section 4.2. The numbersN facet , Nsimplex both depend on the dimensiond and
on the degree of approximationp.

Remark 12 For d = 2 , we haveN facet = 1 and Nsimplex = 0 for even p, i.e.,
only (one) facet-oriented, non-conforming basis function arises, while for oddp
it holds that, vice versa, N facet = 0 and Nsimplex = 1 , i.e., there is only (one)
simplex-oriented, non-conforming basis function. The functionsUF

p+1 := UF
p+1 ;k

and U �
p+1 := U �

p+1 ;k will be respectively de�ned in(45) and (49). The cased = 3
will be considered in the forthcoming paper [10].

As a consequence of (32), one deduces the following de�nition of theextended
lifting operator .

De�nition 13 For a function e 2 Ep
T ;nc written as

e = e1 +
X

F 2F

N facetX

k=1

� F;k r T UF
p+1 ;k +

X

� 2T

N simplexX

k=1

� �;k r T U �
p+1 ;k (33)
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for some e1 2 Ep
T and coe�cients � F;k resp. � �;k , the extended lifting operator

� T is de�ned by

� T e := � e1 +
X

F 2F

N facetX

k=1

� F;k UF
p+1 ;k +

X

� 2T

N simplexX

k=1

� �;k U �
p+1 ;k :

We now prove an important result on the locality of the lifting operator � T .

Proposition 14 Assume that (32) holds. For any e 2 Ep
T ;nc with connected

support ! e which ful�lls the condition that for all disjoint connected components
(! j ) j of 
 n! e, ! j \ @
 has positive boundary measure, it holds

supp � T e � ! e:

Proof. We split e = e1 + e2 according to (33) with e1 2 E. Since the sum, in
(32), is direct we conclude1 that supp ei � ! e for i = 1 ; 2. From Proposition 2
we obtain � T e1 = � e1 2 H 1

0 (
). Since e1j 
 n! e
= 0 Poincar�e's theorem implies

that � e1j! j
= cj , i.e., � e1 is constant on each disjoint connected component! j

of 
 n! e. Since ! j \ @
 has positive boundary measure, the property � e1 2
H 1

0 (
) implies that � e1j! j
= 0. This proves supp � T e1 � ! e.

According to the de�nition of � T for the non-conforming part e2, which im-
plies in particular that � T

�
r T UF

p+1 ;k

�
= UF

p+1 ;k , one gets that suppr T UF
p+1 ;k =

suppUF
p+1 ;k so that supp � T e2 � ! e. The proof for the functions U �

p+1 ;k is by
an analogous argument.

Note that, for any inner facet F 2 F , we may chooseq = 1 in the left
condition of (31) to obtain

R
F [� T ~e]F = 0: hence, the jump [� T ~e]F is always

zero-mean valued. LethF denote the diameter of F . The combination of a
Poincar�e inequality with a trace inequality then yields

k[� T ~e]F kL 2 (F ) � ChF k[r T � T ~e � nF ]F kL 2 (F ) (34)

(29)
= ChF k[~e � nF ]F kL 2 (F ) � ~Ch1=2

F k~ekL 2 ( ! F ) ;

for some constantsC and ~C. In a similar fashion we obtain for all boundary
facets F 2 F @
 and all e 2 Ep

T ;nc the estimate

k� T ~ekL 2 (F ) � ~Ch1=2
F k~ekL 2 ( ! F ) : (35)

Equipped with Ep
T ;nc and � T , the non-conforming Galerkin discretization of

(4) reads: Find eT 2 Ep
T ;nc such that

Z



"eT � ~e =

Z



� � T ~e 8~e 2 Ep

T ;nc : (36)

1Here, we use the observation that for a polynomial q 2 Pp (! ), ! � 
 with positive
measure, it holds either qj ! = 0 or supp q = ! . In our application we choose q = e1 + e2 and
apply the argument simplex by simplex.
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We say that the exact solution e 2 L 2 (
) is piecewise smooth over the
partition P = (
 j )J

j =1 , if there exists some integers � 1 such that

ej 
 j 2 H s(
 j ) := ( H s (
 j ))d for j = 1 ; 2; : : : ; J:

We write e 2 PH s(
) and refer for further properties and generalizations to
non-integer values ofs, e.g., to [18, Sec. 4.1.9].

For the approximation results, the �nite element meshes T are assumed to
be compatible with the partition P in the following sense: for all � 2 T , there
exists a single indexj such that

�
� \ 
 j 6= ; .

Theorem 15 Let the electrostatic permeability" satisfy assumptions (21), (22)
and let � 2 L 2 (
) . As an additional assumption on the regularity of the exact
solution, we require that the exact solution of (4) satis�ese 2 PH s (
) for some
integer s � 1. Assume that the non-conforming �nite element spaceEp

T ;nc and
the extended lifting operator � T are de�ned on a compatible meshT , as in
De�nitions 11 and 13. Then, the non-conforming Galerkin discretization (36)
has a unique solution which satis�es

ke � eT kL 2 (
) � Chr kekPH r (
) ;

with r := min f p + 1 ; sg. The constant C only depends on"min , "max , k"kP W r; 1 (
) ,
p, and the shape regularity of the mesh.

Proof. The second Strang lemma applied to the non-conforming Galerkin dis-
cretization (36) implies the existence of a unique solution which satis�es the
error estimate

ke � eT kL 2 (
) �
�

1 +
"max

"min

�
inf

~e2 E p
T ; nc

ke � ~ekL 2 (
) +
1

"min
sup

~e2 E p
T ; nc nf 0g

jL e (~e)j
k~ekL 2 (
)

;

where

L e (~e) :=
Z



"e � ~e �

Z



� � T ~e:

The approximation properties of Ep
T ;nc in the in�mum are inherited from

the approximation properties of Ep
T because of the inclusionEp

T � Ep
T ;nc ; cf.

(24). For the second term we obtain

L e (~e) =
Z



"e � r T � T ~e �

Z



� � T ~e: (37)

Note that � 2 L 2 (
) implies that div ( "e) 2 L 2 (
) and, in turn, that the
jump ["e � nF ]F equals zero and the restriction ("e � nF )jF is well de�ned for all
F 2 F . We may apply simplexwise integration by parts to (37) to obtain

L e (~e) = �
X

F 2F

Z

F
sF " (e � nF ) [� T ~e]F +

X

F 2F @


Z

F
" (e � nF ) � T ~e:
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Above, sF = � 1 depending on the orientation of the facetF .
Let qF 2 Pp

d� 1 (F ) denote the best approximation of "e � nF jF with respect
to the L 2 (F ) norm. Then, the combination of (31) with standard approximation
properties and a trace inequality (sincer � 1) leads to

jL e (~e)j =

�
�
�
�
�
�

X

F 2F

Z

F
sF ("e � nF � qF ) [� T ~e]F +

X

F 2F @


Z

F
("e � nF � qF ) � T ~e

�
�
�
�
�

�
X

F 2F

k"e � nF � qF kL 2 (F ) k[� T ~e]F kL 2 (F )

+
X

F 2F @


k"e � nF � qF kL 2 (F ) k� T ~ekL 2 (F )

� C

 
X

F 2F

hr � 1=2
F kekH r ( � F ) k[� T ~e]F kL 2 (F )

+
X

F 2F @


hr � 1=2
F kekH r ( � F ) k� T ~ekL 2 (F )

!

;

where C depends only onp, s, and k"kW r ( � F ) , and the shape regularity of the
mesh, and� F is one simplex among those of! F . The estimates (34),(35) along
with the shape regularity of the mesh lead to the consistency estimate

jL e (~e)j � C

 
X

F 2F

hr
F kekH r ( � F ) k~ekL 2 ( ! F ) +

X

F 2F @


hr
F kekH r ( � F ) k~ekL 2 ( ! F )

!

� ~Chr kekP H r (
) k~ekL 2 (
) ;

which completes the proof.

Remark 16 If one chooses in (31) a degreep0 < p for the test-polynomials q,
then the order of convergence behaves likehr 0

kekH r 0(
) , with r 0 := min f p0+ 1 ; sg,

because the best approximationqF now belongs toPp0

d� 1 (F ). Also, the above proof
can be easily generalized to the case wheree 2 PH s (
) for some s > 1=2.

4.2 A local basis for non-conforming intrinsic �nite ele-
ments in two dimensions

Like in Proposition 7, we construct the spaceEp
T ;nc by de�ning basis func-

tions whose supports are given by a single triangle� 2 T , facet-oriented basis
functions whose supports are given by! F , F 2 F , and vertex-oriented basis
functions whose supports are given by! V , V 2 V . The corresponding spaces
are denoted byB p

�; nc , B p
F; nc , B p

V;nc . The triangle-supported subspaces are given
by

B p
�; nc :=

n
e 2 Ep

T ;nc j suppe � �
o

8� 2 T : (38)
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The de�nitions of TF , ! F , FV , TV , ! V are given in (16). The facet- and
vertex-oriented subspaces will satisfy the following direct sum decompositions

B p
F; nc �

M

� 2T F

B p
�; nc =

n
e 2 Ep

T ;nc j suppe � ! F

o
8F 2 F ; (39)

B p
V;nc �

M

F 2F V

B p
F; nc �

M

� 2T V

B p
�; nc =

n
e 2 Ep

T ;nc j suppe � ! V

o
8V 2 V : (40)

In Theorem 22, we will prove that Ep
T ;nc can be decomposed into a direct sum

of these local subspaces.

4.2.1 Triangle-supported basis functions

In this section, let � 2 T denote any �xed triangle in the mesh. The Lagrange
basis ofPp

2 (� ) with respect to N p \ � is denoted by b�
p;N , N 2 N p \ � , and is

characterized by

b�
N;p 2 Pp

2 (� ) and 8N 0 2 N p \ � b �
N;p (N 0) =

�
1 if N = N 0;
0 if N 6= N 0:

(41)

We denote the (discontinuous in general) extension by zero ofb�
p;N to 
 n� again

by b�
p;N . From Lemma 4 and Conditions (24), (31), we deduce that

B p
�; nc =

n
ej � 2 r Pp+1

2 (� ) j suppe � � and

8F � @�; 8q 2 Pp
1 (F ) :

Z

F
� T eq = 0

o
: (42)

According to (42), it is clear that B p
� � B p

�; nc . In the next step, we use the
weak compatibility conditions in (42) for the explicit characterization of B p

�; nc .
For the construction of the non-conforming triangle-supported functions we

have to introduce scaled versions of Legendre polynomials. ForF 2 F [F @
 , let
� F be the a�ne pullback to [ � 1; 1]. Let L q : [� 1; 1] ! R denote the Legendre
polynomials of degreeq with the normalization convention that L q (1) = 1.
This in turn implies that L q (� 1) = ( � 1)q. We lift them to the facet F via
L F

q := L q � � � 1
F . It is well known that L F

q+1 satis�es the orthogonality condition

(L F
q+1 ; w)L 2 (F ) = 0 8w 2 Pq

1(F ): (43)

Lemma 17 For � 2 T , the non-conforming �nite element spaceB p
�; nc is given

by

B p
�; nc =

�
B p

� if p is even,
B p

� + span
�

r T U �
p+1

	
if p is odd,

(44)

where U �
p+1 is de�ned as follows. For any N 2 N p+1 \ @�, let FN � @� denote

a �xed, but arbitrary, facet such that N 2 FN . Then U �
p+1 is given by

U �
p+1 :=

X

N 2N p +1 \ @�

L FN
p+1 (N ) b�

p+1 ;N (45)

and illustrated for p = 3 ; 5 in Figure 1.
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Figure 1: Representation ofU �
p+1 for p = 3 (left) and p = 5 (right).

Proof. Pick some e 2 B p
�; nc , let u := � T e (according to Proposition 14,

suppu � � ) and denote the restrictions to � by e� and u� . The weak compati-
bility condition in (42) therefore implies that, for all F � @�,

u� jF = cF L F
p+1 for somecF 2 R: (46)

The relation u� 2 Pp+1
2 (� ) implies that u� j@� is continuous so that u� is con-

tinuous at every vertex of � . We distinguish two cases.
Let p be even. In this case we haveL p+1 (1) = � L p+1 (� 1) so that the

continuity at the vertices of � implies cF = 0. Thus u� j@� = 0 and we have
proved (44) for evenp.

Let p be odd. Now we have L p+1 (1) = L p+1 (� 1) so that cF = c� for
all F � @� and some �xed c� , and we conclude that u� = c� U �

p+1 , with U �
p+1

given in (45). Conversely, we note that the gradient ofU �
p+1 satis�es the weak

compatibility condition (31). This leads to the assertion for odd p.

Remark 18 A basis ofB p
�; nc for evenp is given by

n
r T bT

p+1 ;N : N 2 N p+1 \
�
�
o

,

while a basis for oddp is given by
n

r T bT
p+1 ;N : N 2 N p+1 \

�
�
o

[
�

r T U �
p+1

	
.

4.2.2 Facet-oriented basis functions

Lemma 19 For F 2 F , the non-conforming �nite element space B p
F; nc that

satis�es (39) is given by

B p
F; nc =

�
B p

F + span
�

r T UF
p+1

	
if p is even,

B p
F if p is odd,

(47)

where UF
p+1 is de�ned as follows. For N 2 N p+1 \ @!F , let

bF
p+1 ;N :=

�
bT

p+1 ;N j! F on ! F ;
0 on 
 n! F ;

(48)
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where bT
p+1 ;N are as in (15). Then, UF

p+1 is given by

UF
p+1 :=

X

N 2N p +1 \ @!F

L FN
p+1 (N ) bF

p+1 ;N (49)

with the lifted Legendre polynomials satisfying (43) and where, forN 2 N p+1 \
@!F , we assign some facetFN � @!F such that N 2 FN .

Proof. For F 2 F , given e 2 B p
F , it follows from De�nition 6 that supp e � ! F ,

without being supported on only one triangle (otherwise, e 2 B p
� for some

� 2 TF ). Then it follows from conditions (38) and (39) that e 2 B p
F; nc . Hence

B p
F � B p

F; nc . Since any e 2 B p
F; nc can be expressed locally on� 2 TF by

ej � = r v� for somev� 2 Pp+1
2 (� ) (cf. Lemma 4) we have

B p
F; nc �

M

� 2T F

span
�

r T b�
N;p +1 j N 2 N p+1 \ �

	
;

where we recall (cf. (41)) that b�
N;p +1 are the Lagrange basis functions on�

and extended by zero to 
n� . Since the functions b�
N;p +1 for the inner nodes

N 2 N p+1 \
�
� belong to the spaceB p

� � B p
�; nc , we conclude from (39) that

B p
F; nc �

M

� 2T F

span
�

r T b�
N;p +1 j N 2 N p+1 \ @�

	
:

For e 2 B p
F; nc , let u := � T e (suppu � ! F , cf. Proposition 14) andu� := uj � ,

� 2 TF . Arguing as in the case of triangle-supported basis functions, we infer
from the compatibility conditions (31)

[u]F = cF L F
p+1 and 8F 0 � @!F ujF 0 = cF 0L F 0

p+1 : (50)

Again, the relation u� 2 Pp+1
2 (� ) implies the continuity of u� at the vertices

of � . Using this property, we now split the proof into two parts. In the following
we identify a spaceR p

F; nc which satis�es

B p
F; nc = B p

F � R p
F; nc : (51)

Let p be even. For � 2 TF , the continuity of u� along @� and the end-
point properties of L F 0

p+1 imply that u�
�
AF

�
= u�

�
B F

�
, where AF ; B F de-

note the endpoints of F (cf. Figure 2). Hence, [u]F
�
AF

�
= [ u]F

�
B F

�
. Since

L F
p+1

�
AF

�
= � L F

p+1

�
B F

�
we conclude that the �rst condition in (50) holds

with cF = 0: in other words, u is continuous acrossF .
The results obtained so far imply that

R p
F; nc � span

�
r T bF

p+1 ;N j N 2 N p+1 \ @!F
	

:

Pick e 2 R p
F; nc and set u := � T e. The continuity property [ u]F = 0 which

we already derived impliesu = cUF
p+1 with UF

p+1 given in (49). On the other
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Figure 2: A face F 2 F with endpoints AF , B F and two neighboring triangles
� 1, � 2;

Figure 3: The non-conforming basis functionsUF
p+1 have support on two adja-

cent triangles and are depicted forp = 0 (left) and p = 2 (right).

hand, r T UF
p+1 ful�lls the weak compatibility conditions (31). Hence we may set

R p
F; nc := span

�
r T UF

p+1

	
and the assertion follows for evenp. The functions

UF
p+1 for p = 0 and p = 2 are depicted in Figure 3.

Let p be odd. Pick e 2 R p
F; nc and setu := � T e. For � 2 TF and any facet

F 0 � @!F \ @�, the restriction of u� to F 0 must be a multiple of a Legendre
polynomial. The continuity of u� along @� implies in particular the continuity
at C� (cf. Figure 2). Hence,u� j@!F \ @� = c� U �

p+1 j@!F \ @� for somec� and U �
p+1

as de�ned in (45), and
~u = u �

X

� 2T F

c� U �
p+1

vanishes along@!F with supp ~u � ! F . So the jump of ~u acrossF vanishes inAF

and B F , and the expression of the �rst condition in (50) is written as [~u]F = 0.
Hence ~u is continuous in ! F and vanishes on@!F . From this we conclude that
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~u 2 B p
F (see De�nition 6). The characterization of R p

F; nc as a direct sum in (51)
shows that u = 0 and thus R p

F; nc = f 0g.

Remark 20 A basis ofB p
F; nc for odd p is given by

�
r T bT

p+1 ;N : N 2 N p+1 \
�
F

�

while for evenp we may choose
�

r T bT
p+1 ;N : N 2 N p+1 \

�
F

�
[

�
r T UF

p+1

	
.

4.2.3 Vertex-oriented basis functions

In this section we now identify the vertex-oriented subspaceB p
V;nc .

Lemma 21 Let V 2 V . It holds

B p
V;nc =

�
f 0g if p is even,
B p

V if p is odd.
(52)

Proof. In a �rst step, we will prove that any subspace R T
p+1 ;V which satis�es

the direct sum decomposition

R T
p+1 ;V �

M

F 2F V

B p
F; nc �

M

� 2T V

B p
�; nc =

n
e0 2 Ep

T ;nc j suppe0 � ! V

o
; (53)

also satis�es
R T

p+1 ;V � B p
V : (54)

We recall from De�nition 6 that B p
V = span

�
r bT

p+1 ;V

	
.

In the second step, we will show that, for evenp the inclusion

span
�

r bT
p+1 ;V

	
�

M

F 2F V

B p
F; nc �

M

� 2T V

B p
�; nc (55)

holds so that the �rst case in (52) follows.
Instead, for odd p, we will prove that, for all V 2 V ,

r bT
p+1 ;V =2

M

F 2F V

B p
F; nc �

M

� 2T V

B p
�; nc : (56)

From (40) and (54), we conclude that the second case of (52) follows.

1st Step: Choose any

e 2
n

e0 2 Ep
T ;nc j suppe0 � ! V

o
(57)

and set u := � T e. According to Proposition 14, suppu � ! V .
Let p be odd. For � 2 TV , the facet F � is de�ned by the condition

F � � @�\ @!V (cf. Figure 4). Since L F �

p+1 has even degree, the values at the
endpoints A � , B � of F � are both equal to one.
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Figure 4: A vertex V 2 V , a neighboring triangle � 2 TV , and a neighboring
facet F 2 TV .

We set u� := uj �
�

and de�ne (cf. (45))

~u := u �
X

� 2T V

u� (A � ) U �
p+1 with u� (A � ) := lim

x ! A �

x 2
�
�

u� (x) ;

where the sum over the triangles is well de�ned in the interior of the triangles as
well as the one-sided traces from the interior of a triangle towards its boundary.

Hence, ~u = 0 on @!V with supp ~u � ! V . Any facet F 2 F V has V as one
endpoint; denote the other one byAF . According to the weak compatibility
conditions, we know that [~u]F is proportional to L F

p+1 on any facet F 2 F V .
Then, we use the condition [~u]F = cF L F

p+1 at the point AF to deduce cF = 0
from ~uj@!V = 0. Hence ~u is continuous and vanishes on@!V . Consequently, ~u
is a conforming function, i.e.,

r

 

u �
X

� 2T V

u� (A � ) U �
p+1

!

2 B p
V �

M

F 2F V

B p
F �

M

� 2T V

B p
�

� B p
V �

M

F 2F V

B p
F; nc �

M

� 2T V

B p
�; nc .

Hence, (53) impliesR T
p+1 ;V � B p

V .
Let p be even. We number the facets in FV counter-clockwise asFV =

f F1; : : : ; Fqg (see Figure 5) for someq and, to simplify the notation, we set
F0 := Fq and Fq+1 := F1. The triangle which has Fi � 1 and Fi as facets andV
as a vertex is denoted by� i . Each facetFi has V as an endpoint; denote byA i

the other one. We further set F out
i := @�i \ @!V . We de�ne recursively u0 := u
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Figure 5: A vertex V 2 V and its outgoing facets numbered counterclockwise.
The triangles � i 2 TV contain Fi � 1, Fi , F out

i as facets andV as a vertex.

and, for k = 1 ; 2; : : : ; q, (cf. (49))

uk = uk � 1 �
(uk � 1) � k

(A k )

UF k
p+1 (A k )

UF k
p+1 with ( uk � 1) � k

(A k ) := lim
x ! A k

x 2
�
� k

uk � 1 (x) :

Note that uq = 0 on @!V nF out
1 . All functions uk are supported in ! V . Arguing

as for the case of oddp we deduce thatuq is continuous on! V nF out
1 . Next, we

de�ne the non-conforming part of uq by u+
q := uq�

P
N 2N p +1 nf F out

1 g uq (N ) bT
p+1 ;N .

It follows that supp u+
q � � 1 and henceu+

q 2 B p
� 1 ;nc . For evenp, we have proved

B p
� 1 ;nc = B p

� 1
, so that u+

q must be continuous on 
. As
P

N 2N p +1 nf F out
1 g uq (N ) bT

p+1 ;N

is also continuous on 
, so is uq. In particular, this yields that uq is continuous
on ! V and the assertion follows as in the case of oddp. We conclude again that
R T

p+1 ;V � B p
V .

2nd Step: To prove (55) and (56) we again distinguish between even and
odd values ofp.

Let p be even. We employ the same notation as in the 1st step for the case
p even. Then, by usingUF

p+1 as in (49) and recalling that UF
p+1 is continuous

acrossF , we de�ne a function

w1 := bT
p+1 ;V �

1
q

qX

i =1

Wi with Wi :=

0

@lim
x ! V
x 2 F i

UF i
p+1 (x)

1

A UF i
p+1 : (58)

By construction, suppw1 � ! V . Let us consider a �xed facet Fi . Note that
the functions UF j

p+1 are continuous acrossFi for j =2 f i � 1; i + 1g. However, the
one-sided limits for Wi � 1 and Wi +1 at Fi coincide so that w1 is continuous in
! V and vanishes atV and at all inner nodes N p+1 \

�
� , � 2 TV . On the other
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hand, the function w1 is determined on some outer facetF out
i by two consecutive

terms in the sum in (58), i.e.,

w1jF out
i

= ( Wi � 1 + Wi )jF out
i

.

Note that Wi � 1 (V ) = Wi (V ) = 1 considered as limit values along the facets
Fi � 1, Fi . The sign properties of a facet-oriented basis function for evenp implies
that Wi � 1 has value 1 atA i � 1 and value � 1 at A i . Vice versa, Wi has value
� 1 at A i � 1 and value 1 at A i . Hence, w1jF out

i
is a Legendre polynomial with

endpoints values 0 which impliesw1jF out
i

= 0 and, in turn, w1 = 0 on @!V . Up
to now, we have thus proved thatw1 is continuous in 
, with support contained
in ! V and value 0 at V and at all nodal points

�
� i \ N p+1 .

Next we de�ne

w2 = w1 �
qX

i =1

X

N 2N p +1 \
�

F i

w1 (N ) bT
p+1 ;N (59)

and observe thatw2 is a conforming function which vanishes at all nodal points
in N p+1 . This implies that w2 = 0 in 
 and we have established (55), or, more
precisely, that

r bT
p+1 ;V 2

M

F 2F V

B p
F; nc :

Let p be odd. We will prove (56) by contradiction. So, assume that

r bT
p+1 ;V 2

M

F 2F V

B p
F; nc �

M

� 2T V

B p
�; nc :

We then infer from Remark 18 and Remark 20 that

bT
p+1 ;V =

X

N 2N p +1 nV

� N bT
p+1 ;N +

X

� 2T

� � U �
p+1 (60)

for some coe�cients � N and � � . Let vc :=
P

N 2N p +1 nV � N bT
p+1 ;N and vnc :=

P
� 2T � � U �

p+1 . SincebT
p+1 ;N and vc are continuous in 
, the function vnc must

also be continuous. By contradiction it is easy to prove that

C0 (
) \
M

� 2T

span
�

U �
p+1

	
= span f Up+1 g with Up+1 :=

X

� 2T

U �
p+1 ;

so that vnc 2 spanf Up+1 g. Sincevc (V ) = 0 and bT
p+1 ;V (V ) = 1, we obtain from

(60) that vnc (V ) = 1. The restriction of Up+1 to any facet F 2 F [ F @
 is a
Legendre polynomial of even degree, which implies thatvnc (V 0) = 1, for every
V 0 2 V [ V @
 . But the functions bT

p+1 ;V and vc vanish on @
. This contradicts
vnc (V 0) = 1 for the boundary points V 0 2 V@
 .
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4.2.4 Properties of the non-conforming intrinsic basis functions

Theorem 22 A basis of Ep
T ;nc is given by

�
r T bT

p+1 ;N : N 2 N p+1 nV
	

[
[

F 2F

�
r T UF

p+1

	
if p is even, (61)

or by �
r T bT

p+1 ;N : N 2 N p+1 	
[

[

� 2T

�
r T U �

p+1

	
if p is odd. (62)

Remark 23 At �rst glance, it seems that B p
V 6� Ep

T ;nc for even p. Actually,
this subspace ofEp

T has already been taken into account; see (55).

Proof. By construction, the space Êp
T ;nc of the functions found in (61) as in

(62) is a subspace ofEp
T ;nc . So, it remains to prove that Ep

T ;nc � Êp
T ;nc .

Let p be odd. The arguments are very similar to those in the proof of
Lemma 21 for odd p. Given e 2 Ep

�; nc , let u := � T e. Pick some � 2 T
having at least one facet on@
. Condition (31) implies that, for all facets
F � @�\ @
, the restriction ujF is a multiple of the lifted Legendre polynomial
L F

p+1 . The continuity of uj � on � implies that there exists a function ~u := cU�
p+1

with r ~u 2 B p
�; nc for somec such that u1 := u � ~u satis�esu1j@�\ @
 = 0. Since

u1 vanishes at the endpoints of all such facetsF 2 F @
 , the function u1 is also
continuous across the other facetsF � @�\ 
. Let

~u1 :=
X

N 2N p +1 \
�
�

u1 (N ) bT
p+1 ;N +

X

F � @�\ 


X

N 2N p +1 \
�
F

u1 (N ) bT
p+1 ;N

+
X

V 2 @�\ 


u1 (V ) bT
p+1 ;V

and note that ~u1 2 Êp
T ;nc , because Lemma 21 implies in particular thatbT

p+1 ;V 2

Êp
T ;nc . Note that u2 := u1 � ~u1 vanishes on� . Since 
 is connected, iterating

this construction for the remaining triangles �nally results in a function that

vanishes on 
, which yields a linear representation ofu by functions in Êp
T ;nc .

Let p be even. Again the arguments are very similar to those in the proof
of Lemma 21 for evenp. We omit the details here.

Remark 24 Let V; F; T denote respectively the number of vertices, facets and
triangles of the mesh. According to Euler's formula, one hasV � F + T = 1
because
 has no holes (its boundary is connected). Also, if one splitsV and
F respectively into V = Vint + Vbdry and F = Fint + Fbdry , with int denoting
interior vertices and facets and bdry denoting boundary vertices and facets, one
has Vbdry = Fbdry . Then the dimension of the vector spaceEp

T ;nc is given by:

for even p: jN p+1 j � Vint + Fint = jN p+1 j � V+ F = jN p+1 j + T � 1 ;
for odd p: jN p+1 j + T:
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As an illustration, let us consider non-conforming intrinsic basis functions of
degree 0.

Proposition 25 The lowest order non-conforming intrinsic �nite elements are
given by

E0
T ;nc = span

�
r T UF

1 : F 2 F
	

;

where the functionsUF
1 are the standard non-conforming Crouzeix-Raviart basis

functions (cf. [12]).

Proof. Choosingp = 0 and taking into account that N 1 = V we conclude from
(61) that a basis for E0

T ;nc is given by
[

F 2F

�
r T UF

1

	
.

To show the connection with the Crouzeix-Raviart basis functions, we con-
sider a facetF 2 F with neighboring triangles � 1 and � 2. From (49), we deduce
that UF

1 is a�ne on each of the triangles � 1, � 2 with value 1 at the endpoints
of F and value � 1 at the vertices of � 1, � 2 that are opposite to F . Hence,UF

1
coincides with the standard Crouzeix-Raviart basis functions; see again [12].

4.3 An example of a non-conforming intrinsic �nite ele-
ment in three dimensions

Although the general theory of non-conforming intrinsic �nite elements in the
form of Theorem 15 holds ford = 2 ; 3, the construction of a local basis requires
further investigation which will be the topic of the forthcoming paper [10]. We
emphasize that our theory allows to enrich a conforming �nite element space
by new, locally supported, non-conforming polynomials in a 
exible way. In
addition, for a given order of approximation, the number of non-conforming
basis functions increases with the spatial dimension.

As an example we give here the de�nition of a non-conforming, simplex-
supported basis function for d = 3: for p 2 N0 and 0 � k � p, de�ne bp;k 2
Pp

2 (�̂ 2) with �̂ 2 as in (13) by

bp;k (x̂1; x̂2) := ( x̂1 + x̂2)k P (0 ;2k+1)
p� k (2 (x̂1 + x̂2) � 1) P (0 ;0)

k

�
x̂1 � x̂2

x̂1 + x̂2

�
8 (x̂1; x̂2) 2 �̂ 2;

where P ( �;� )
p are the Jacobi polynomials (see, e.g., [1,x22.3]) and let

f 2D : �̂ 2 ! R f 2D :=
3X

k=0

� k b6;2k with � 0 = 3, � 1 = 7, � 2 = 0, � 3 = 11:

The function f 2 D has symmetry of order three, i.e., is invariant under a�ne
bijections from �̂ 2 onto �̂ 2. As a consequence the functionf 3D 2 C0 (@̂� 3),
which is generated by lifting f 2D to the facets of @̂� 3 via a�ne pullbacks to
�̂ 2 (see Figure 6), is continuous. Then,U �̂ 3

6 is generated by interpolating the
function f 3D to the interior of �̂ 3 in an analogous fashion as explained ford = 2
in (45).
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Figure 6: Surface plot of the non-conforming functionU �̂ 3
6 . The support of this

function is the unit simplex.

5 Conclusions

In this article we have developed a general method for constructing �nite element
spaces from intrinsic conforming and non-conforming conditions. As a model
problem we have considered the Poisson equation, but this approach is by no
means limited to this model problem. Using theoretical conditions in the spirit
of the second Strang lemma, we have derived conforming and non-conforming
�nite element spaces of arbitrary order for the 
uxes. For these spaces, we have
also derived sets of local basis functions.

In two dimensions, it turns out that the lowest order non-conforming space is
spanned by the trianglewise gradients of the standard non-conforming Crouzeix-
Raviart basis functions. In general, all polynomial non-conforming spaces are
spanned by the gradients of standardhp-�nite element basis functions enriched
by some facet-oriented non-conforming basis functions for even polynomial de-
gree and by some triangle-supported non-conforming basis functions for odd
polynomial degree. As a by-product, this methodology allowed us to recover
the well-known non-conforming Crouzeix-Raviart element (cf. Proposition 25).
By using a similar but more technical argument (cf. [20]), it can be shown
that our intrinsic derivation of non-conforming �nite elements also allows one
to recover the second order non-conforming Fortin-Soulie element [13, 14], the
third order Crouzeix-Falk element [11], and the family of Gauss-Legendre ele-
ments [4], [21]. In three dimensions, one may also use the same method: see
Section 4.3 for an illustration. More systematic studies will be presented in the
forthcoming paper [10].

In the past, the construction of a new �nite element was an \art" and came,
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typically, before the development of its theory. Here, we have considered the
construction of conforming and non-conforming �nite elements and their anal-
ysis through a uni�ed approach, and we have constructed all conforming and
non-conforming, local and polynomial �nite element element spaces which can
be handled within the theory based on the second Strang lemma. In this respect
the approach is similar in its spirit to the exterior calculus for �nite elements
in combination with their numerical stability analysis (see [3] and references
therein). It is a topic of future research to investigate how our approach for
non-conforming �nite elements can be used for the development of an exterior
calculus for non-conforming �nite elements.
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