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Intrinsic Finite Element Methods for the
Computation of Fluxes for Poisson's Equation

P. G. Ciarlet P. Ciarlet, Jr.Y S. A. Sauter C. Simian®

Abstract

In this paper we consider an intrinsic approach for the direct compu-
tation of the uxes for problems in potential theory. We develop a general
method for the derivation of intrinsic conforming and non-conforming -
nite element spaces and appropriate lifting operators for the evaluation
of the right-hand side from abstract theoretical principles related to the
second Strang Lemma. This intrinsic nite element method is analyzed
and convergence with optimal order is proved.
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1 Introduction

For the numerical solution of second order elliptic boundary value problems,
Galerkin methods are nowadays among the most popular discretization meth-
ods. One can distinguish between the following types of Galerkin methods:

a) The continuous or exact variational formulation of the boundary value
problem is employed and its discretization is achieved by replacing the in nite-
dimensional energy space by either a nite dimensionalsulspace (conforming
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Galerkin method) or by a nite dimensional space which is not a subspace of
the energy space (non-conforming Galerking method). In the latter case, the
volume or surface integrals involved in the continuous bilinear form are broken
into a sum of local integrals. Standard examples for these nite dimensional
spaces are conformingC® hp- nite elements, CK spline spaces as they arise,
e.g., in isogeometric analysis, and the Crouzeix-Raviart nite element.

b) The continuous variational formulation is modi ed by adding terms which
enforce the continuity of the Galerkin solution in a weak way. This allows one to
use discontinuoushp- nite element spaces without imposing any essential inter-
element constraints in the de nition of the spaces. The resulting methods are,
e.g., non-conforming dG methods and non-conforming least squares methods.

Non-conforming Galerkin methods have nice properties, e.g. in dierent
parts of the domain di erent discretizations can be easily used and glued to-
gether or, for certain classes of problems (Stokes problems, highly inde nite
Helmholtz and Maxwell problems, problems with \locking", etc.), the non-
conforming discretization enjoys a better stability behavior compared to the
conforming one. But the computational cost is typically increased because
additional integrals have to be evaluated on the element interfaces of the -
nite element mesh and, in addition, the total number of unknowns is increased
compared to conforming methods. Moreover, the augmented discrete bilinear
forms require certain mesh-depending control parameters whose choice for cer-
tain problem classes might be a delicate issue.

In this paper, our goal is two-fold: on the one hand, we will identify all
piecewise polynomial nite element spaces which areveakly non-conformingin
the sense that they are not contained in the continuous energy space but the
(broken version of the) continuous bilinear form can still be used. In other
words, we will address the question, how far can one go in the non-conforming
direction while keeping the original forms?

On the other hand, we will develop a general method for thederivation of
intrinsic conforming and non-conforming nite elements from theoretical prin-
ciples for the discretization of elliptic partial di erential equations. More pre-
cisely, we employ the stability and convergence theory for non-conforming nite
elements based on the second Strang lemma and derive from these principles
weak compatibility conditions for non-conforming nite elements. In the present
case, we show that local polynomial nite element spaces for elliptic problems in
divergence formmust satisfy those compatibility conditions in order to be able
to consistently estimate the perturbation term in the second Strang lemma.

As a simple model problem for the introduction of our method, we consider
Poisson's equation but we emphasize that this method is applicable also for
much more general (systems of) elliptic equations. We consider the intrinsic
formulation of Poisson's equation, i.e., the minimization of the corresponding
energy functional in the space ofadmissibleenergies as de ned below. The goal
is to construct element by element polynomial nite element spaces for thedirect
approximation of the physical quantity of interest, i.e., the ux, the electrostatic
eld, the velocity eld, etc. depending on the underlying application. Further-
more, to take into account essential boundary conditions we have to construct



a lifting operator as the left inverse of the elementwise gradient operator, that
is, an operator de ned element by element { whose realization turns out to be
quite simple.

There is a vast literature on various conforming and non-conforming, primal,
dual, mixed formulations of elliptic partial di erential equations and conforming
as well as non-conforming discretization. Our main focus is the development of
a concept for deriving conforming and non-conforming intrinsic nite elements
from theoretical principles and not the presentation of a specic new nite
element space. For this reason, we do not provide an extensive list of references
on the analysis of specic families of nite element spaces but refer to the
monographs [6], [19], and [5], and the references therein.

Intrinsic formulations of the Lare equations modelling linear three-dimen-
sional elasticity have been rst derived in [7]. An intrinsic nite element space
has been developed in [8] and [9] by modifying the lowest order Necklec nite
elements (cf. [16], [17]) in such a way that the compatibility conditions which
arise from the intrinsic formulation are exactly satis ed.

For Poisson's equation, the approach that we propose allows us to recover
the non-conforming Crouzeix-Raviart element [12], the Fortin-Soulie element
[13], the Crouzeix-Falk element [11], and the Gauss-Legendre elements [4], [21]
as well as the standard conforminghp- nite elements.

The general theory of this paper will be developed for two-dimensional as
well as for three-dimensional domains. However it turns out that the explicit
construction of all non-conforming three-dimensional shape functions requires
some further investigation of orthogonal polynomials on surfaces. So, we will
essentially focus our attention on the two-dimensional case and present a single
three-dimensional, non-conforming nite element at the end of the paper as an
example.

The paper is organized as follows.

In Section 2 we introduce our model problem, Poisson's equation, and the
relevant function spaces for the intrinsic formulation of the continuous problem
as an energy minimization problem.

In Section 3 we derive weak continuity conditions for the characterization of
the admissible energy space when the domain is split into simplices. Using these
conditions, we derive conforming intrinsic polynomial nite element spaces and
we show that they are (necessarily) the gradients of the well-known Lagrange
hp- nite element spaces.

In Section 4 we focus on non-conforming discretizations. More precisely,
we infer from the proof of the second Strang lemma appropriate compatibility
conditions at the interfaces between elements of the mesh so that the non-
conforming perturbation of the original bilinear form is consistent with the local
error estimates. In two dimensions, we deriveall types of piecewise polynomial
nite elements that satisfy this condition and also derive local bases for these
spaces. In three dimensions, we illustrate the construction by providing one
example.

Finally, in Section 5 we summarize the main results and give some conclu-
sions and some general comments on the construction of bases for the three-



dimensional case.

2 Model problem

To formulate our model problem we rst introduce some notation. Let Rd
be a bounded domain ind = 2;3 dimensions. We denote bye®, 1  k d,
an orthonormal basis in RY, ¥ that a point x 2 RY, can be expressed by its
coordinates ()., asx = o, xxe(¥). The Euclidean scalar product of
a;b 2 RY is denoted bya b. To express the curl operator we introduced := 1
if d=2,and d :=3if d=3. The Euclidean scalar product in R? is denoted,
for v;w2 RY | by v w The vector product maps a pair of vectorsa;b 2 R
into RY and is given by

ay  ab ford=2;
(azbs  ashp;ashy  arbs;aqby  apby)'  for d=3:
The curl of a su ciently smooth d-valued function v is equal to the d -valued

function r  v. The d-dimensional curl operator maps a su ciently smooth
d -valued function v to a d-valued function via

a b=

8
@ o) @) — 5.
2 @x° @x € d=2;
curl (v) = S
) @ 1 @ @ 2 @ @ 3. q—1a-
or o U Gr v 9+ GF Gx &9 d=3:
We consider the model problem of nding, for a given electric charge density
2 H (), an electrostatic eld e in a bounded domain RY, d=2;3,
which satis es in a weak sense
div("e) = in (1)

where " denotes the electrostatic permeability. In the electrostatic case, one
may further write e = r , where is the electrostatic potential, known up to a
constant. We consider that the potential is constant on each connected com-
ponent of the boundary @. This amounts to saying that (1) is complemented
with a perfect conductor boundary condition, namely, e :=(e n)j@ =0,
where n is the unit outward normal vector eld to @

Throughout the paper we assume that

RY is a bounded Lipschitz domain with connected boundar@ :  (2)

As a consequence of this assumption,j@ is constant. Since is known up to
a constant, we will assume without loss of generality that ; =0.
Hence, the variational formulation of (1) restricted to the domain is based on
the space

E():= r HIO)

where H}() denotes the usual Sobolev space and H2() denotes its image
under the gradient operatorr .



Remark 1 If @ consists of several disjoint connected component& ,, 0
q

k g whereq 1, ie, @= @y, With @ ¢\ @ o= ; for k 6 k% then
k=0

E()= rvjVv2H'() ;Vvje,=0 andforalll k g Vjg, =
for arbitrary constants ¢c 2 R, 1 k q.

As a rule, we use boldface characters to denote functional spaces df
valued functions, and typewriter characters to denote functional spaces ofl -

valued functions. LetL2():= L2() ° H():= HY(O) *,H1():=

d d
Hg () °" andH 2 (@) = H® (@ %" We recall a well-known

result below, whose proof can be found in, e.g., [15].

Proposition 2 Let RY satisfy (2). The operatorr :H3 () ! E() isan
isomorphism and thus its inverse operator : E() ! HE() is continuous.
It holds
z
E()= e2L?() j e curl(v)=0 8v2H() (3)
n o}
= e2L?() jr e=0inH?Y) and e=0in H ¥ (@

With the help of the inverse operator , which we call a lifting operator, the
variational formulation of the model problem reads: Find e 2 E () such that
Z
e €=y 1y h; eiHé() 8e2E() ; (4)

where yy 1) h; iy denotes the duality pairing of H Y()and HE().
Under ad hoc assumptions on the permeability”, e.g., 0< "o "(X) "1
for almost all x 2 for some constants "¢ and "1, the solution e is the minimizer
on E() of the functional
1 z
j E() I R j(e) = E "e e H () h, eiHé()

In most physical applications the quantity e, or the ux "e, is the physical
quantity of interest rather than the potential u = e. Hence, our goal is to
derive conforming and non-conforming nite element spaces for the direct ap-
proximation of e in (4).

3 Conforming intrinsic nite element spaces

In this paper we restrict our studies to bounded, polygonal @l = 2) or polyhedral
(d = 3) domains RY and geometrically conformal nite element meshesT



[6] consisting of simplices . The local and global mesh width are denoted by

h :=diam andh := max .t h . The boundary of a simplex consists of
(d 1)-dimensional simplices (facets ford = 3 and triangle edges ford = 2)
which are denoted byF . We use in both cases the terminology \facet". The set
of all interior facets in T is denotedF ; the set of facets lying on@ is denoted

Fe . As a convention we assume that simplices and facets are closed sets. The

interior of a simplex is denoted by and we write F to denote the relative
interior of a facet F. For afacetF 2 F[F g , let ng denote a unit vector which
is orthogonal to F. The orientation for the inner facets is arbitrary but xed
while the orientation for the boundary facets is such that ng points toward the
exterior of .

For p2 Np := f0;1;:::g, let P§ denote the space ofi-variate polynomials of

degree p. For! , let Pg (') denote the restriction to ! of polynomials in
PY. Given T, we de ne the nite element spaces
n 0
pm . m+1 ; i po.

ST. : u.2H () 18 2T :uj 2Py form= 10

S_||J_,m = (S_l;:_)m )d :

S¥% = SYO\ HAQ)
and Z

EP = e2SP 'j e cul (v)=0 8v2H() : (5)

Form= 1, thespacessy * S¥ * E} consistof simplex-wise polyngmials
which are in general discontinuous across the facets. Hence the sum=  ; u;
of such functions is well de ned in the interior of the simplices as well as the
one-sided traces from the interior of a simplex towards its boundary.

For the inner facets F 2 F , we de ne the pointwise tangential jumps [u]g :

F! Rforx2F hy
[Wle () = lim (u(x+"ne) u(x "ne)): (6)

We emphasize that the jump [u]- as the di erence of the one-sided traces de nes
a continuous function on F. If the two one-sided limits at a facet F coincide
we de ne u as this one-sided limit and thusu is well de ned over F. If u is
discontinuous acrossF, we avoid the de nition of u on F and considerF as a
set of measure zero. Note that the functionu is continuous on if the jumps
[u] vanish for all inner facets.

From (3) we conclude that E} E () is a piecewise polynomial nite
element space which gives rise to the conforming Galerkin discretization of (4)
by intrinsic nite elements: Find er 2 EY such that

z

"er er =y 1) h; ey 8er 2 EX: )



In the rest of Section 3, we will derive a local basis foE% and a realization
of the lifting operator . We de ne for later purpose the piecewise gradient
and curl operators by

!

xd
%e(k); rt e(x):=r e(x) forallx2 n @

k=1 2T

rru(x):=

3.1 Local characterization of conforming intrinsic nite
elements

In this section, we will develop a local characterization of conforming intrin-
sic nite elements. This approach generalizes that of [8], where such nite
element approximations were considered for the rst time (for the system of
two-dimensional linearized elasticity).

Lemma 3 The spaceE} can be characterized by local conditions according to
n

EP = e2SY 'jrr e=0;
andforall F 2F [e ng]c =0; (8)
andforallF 2Fg e ngj. =0g:

Proof. We denote the right-hand side in (8) by E} and prove that Ef = E} .
Let e 2 E} . Consider the curl-condition (5) with test- elds v.
d

Parta: For 2T,letv2D := D , where D = Ct
Then, Z Z
(r e v= e curl (v)=0:

Since 2T andv2 D are arbitrary, we conclude thatr + e =0 holds.
Part b: For F 2 F,let 1; , 2T besuchthatF = ;\ 5. We set
'e:= 1[ 2. Wechoosev2 D !¢ . Then
Z Z
e curl (v) + e curl (v) =0:

1 2

For i = 1;2, denote byn' the exterior normal for ;. Simplexwise integration
by parts yields

Z VA A
e curl (v)= e n v+ (r e v ford=2;3andi=1;2
i @i i
By adding the results fori = 1;2 and taking into accountv =0 on @%, we get
Z Z VA
0= e nt v+ e n? v+ rv e v
F F s



We already proved thatr + e =0, so that
Z
0

[e nelp w
F

Sincev 2 D !¢ is arbitrary, we conclude e ng]- =0.
Partc: LetF2Fg and 2T suchthatF @. Let

De():= vj :v2D RY andv =0 insome neighborhood of n

Repeating the argument as in Part b by taking into account that v2 D- ( ) in
general does not vanish or leads toe ng =0 in this case.
Thus, we have proved thatEy E&.
Part d: To prove the opposite inclusion we considee 2 EY . Then, for all
v 2 H () it holds by integration by parts
Z X Z
e curl (v)

e curl (v)

x £ x £
(rt e v+ (e n) v

@
2TZ 2T 7

(rv e v+ sele nelp v
For F
x £
+ (e ng) v
FoFg F

=0:

Above, s = 1 depending on the orientation of the facetF. Hence,EY  E}
and the assertion follows.

3.2 Integration

We start with a lemma on integration of curl-free polynomials. Let

n d [0}
Eurl = e2 (Pg) jr e=0 (9)

p
and, for 2T ,letPl,():="fe :e2P8, 0
Lemma 4 Forany 2T andanye2P!, (), itholds

;& U2H()jru=e PPT(): (10)

Proof. Let 2T ande 2 Pgu” (). In[15, 2] it is proved that there exists
u 2 H( ), unique up to a constant, such thatr u = e; hence the left-hand



side in (10) is proved. Letm be the center of mass for . Then Poincae's
theorem yields that the path integral
Y4
U(x):= e with denoting the straight path mx (12)

X

denesU 2 H!( )suchthatr U= e. Sincee2 P}, (), there are coe cients
a 2 RY such that X

e(x) = a (x m)
iip
with the usual multi-index notation 2 Nd, jjo= 1+ 04 gow =

w;t wy!. To evaluate the integral in (11) we employ the ane pullback
x . [0;1]! MX, x:=m +t(x m )and obtain

Zl
U(x) = e () 2()dt

0

X Z,
= a (x m) (t(x m)) dt
iip 0

X 2
= @ (x m))(x m) t! Idt
iip 0

X

(X m ) 2Pp+1:

= a (X m) ]J+1 d

iip

Since the functions in the set u2 H( )jr u= e in (10) dier only by a
constant we have proved the second inclusion in (10). ]

Lemma 4 motivates the de nition of the local lifting operator © : Pgw, ()!
PE*t (ywith 2T, c2 Rgiven, fore2 PP (), by

“(e):=U+c with Uasin (11). (12)
Note that the space in (10) satis es
u2H()jru=e =f °(e):c2Rg:

Corollary 5 The (restriction of the) operator : Ef ! S.‘ﬁfé;o is an isomor-
phism with inverser :SP01 EP.

Proof. From Lemma 4 we conclude that
E_FI)_ S1;?+1; 1
holds. SinceE%}  E, the properties of the lifting operator imply that

E2 H3()



E[) p+l; 1 I I — p+1;0.
S \ 0 () 0

On the other hand, we haveSP’3*®  HE() and hence r SP5°  E.

Furthermore, it is clear that

p+1;0 p; 1.
r St ST

Hence
p+1:0 p; 1 - EP
rsyie® s\ E=EP

from which we nally conclude that the inclusion

p+1;0 p
;0 ET

holds. ]

3.3 A Local basis for conforming intrinsic nite elements

Corollary 5 shows that a local basis forEY can be easily constructed by using
the standard basis functions for hp- nite element spaces (cf. [19]). We recall
brie y their de nition. Let

NP = :S:iZNgwith g+ ii+ig P

denote the unisolvent set of equi-spaced nodal points on thd-dimensional unit
simplex

= X2RY X+ it xg 1 (13)
For a simplex 2 T with vertices A;, 0 i d, let D! denote the
a ne mapping R) = Ag+ id=l (A;  Ay)%i. Then the set of interior
nodal points are given by

n (0]
NP:= N j2NP 2T n@: (14)

The Lagrange basis forS?% can be indexed by the nodal pointsN 2 N P and
is characterized by

. O.
by 2 SPS and 8N°2NP Bl (N9 = é m mo; (15)

o |l

Recall that the simplices in T are by convention closed sets and the facets in
F[F @ are closed as well. LetV (respectively Vg ) denote the inner vertices
(resp. boundary vertices) of the meshT. For d = 3, we let E denote the set
of all interior (d 2)-dimensional closed simplex edges, that is, all those edges
that are not subsets of @.

10



Deniton 6 Forall 2T,F2F,E2E andford=3,V 2V, the spaces
BP, BE, BE and for d = 3, the spaceB}, are given as the following spans of

basis functions:
n 0
BP:=span rby,;, N2 \NP ;

BP :=span r b, jN2F\N Pt

BE :=span r b, jN2E\N P?  (for d=3);

p .— T
By i==span r by, .y

The following proposition shows that these spaces give rise to a direct sum
decomposition and that these spaces are locally de ned. To be more speci c,
we rst have to introduce some notation.

For any facetF 2 F , vertex V 2V, and E 2 E we de ne the sets

[
Te=f 2T :F @g; g = ;

fre
Tv=f 2T :V2 gq; ly = ;

ry (16)
Te=f 2T :E g; g = ford=3;

2T e

Fv =fF2F :V2 @F; ford=2:

Proposition 7 Let BP, BE, BR, By be as in De nition 6. Then the following
direct sum decomposition holds:

M M M '
3 BP BP BP d=2;
P _ vav | F2F | 2T I I
Er _g M M M M a7
BP BP BP BP d=3:
V2v E 2E F2F 2T

For any simplex , one can further identify BP with the subspace of elements of
EL supported in , namely:

BP:=fe2 E? jsuppe g: (18)
For any facet F 2F ande 2 B}, it holds
suppe g (29)
For any vertex V 2V and e 2 BP | it holds
suppey  !vy: (20)
Let d =3. For any edgeE 2 E ande 2 B?, it holds

suppe lg:

11



Proof. Corollary 5 implies that (r bgﬂ N IN2N e IS @ basis ofEY. The as-
sertion follows simply by sorting these basis functions, according as to whether
they are associated with a single simplex, with two simplices with a facet in
common, with simplices with a vertex in common, and ford = 3 with simplices
with an edge in common.

The properties for the local supports are direct consequences of the corre-
sponding properties of standard nodal basis as de ned in (15). ]

Remark 8 Proposition 7 shows that the intrinsic nite element formulation (7)
is equivalent to the standard Galerkin nite element formulation of (1): Find
ur 2 SP5°% such that

Z

"rur rvr =y 1() h;VTiH&() 8vr 2 [:H;-é:o

with et = r ur. However, the derivation via the intrinsic variational formula-
tion has the advantage of providing insights on how to design non-conforming
intrinsic nite elements.

4 Non-conforming intrinsic nite elements

In order to ensure existence and uniqueness of the solution to the variational
formulation and to obtain convergence estimates for the nite element discretiza-
tion we impose from now on that 2 L?(), so that we may replace duality
products by integrals, and we make the following assumptions on the electro-
static permeability: The electrostatic permeability " in (1) satises " 2 L ()
and

0<" min = eiginf " (X) esg sup' (X) = "max < 1: (21)

X

Besides, there exists a partitionP := ( ,-)J-le of into J polygons (polyhedra
for d = 3) such that, for somer 1,

K'Kpyy r 1 0 = lmjaxJ N | wre () <1: (22)
Remark 9 In practical situations, one may have to deal with a partition into
curved polygons or polyhedra, of a domain with piecewise curved boundary. In
this case one should consider isoparametric nite elements. For simplicity, we
restrict ourselves to the case of ane nite elements, and hence to piecewise
polygons or polyhedra.

4.1 De nition of non-conforming intrinsic nite elements

In this section, we will de ne non-conforming intrinsic nite element spaces in
order to approximate the solution of (4). As a minimal requirement we assume

that the non-conforming nite element space E} . . satis es

P
ET;nC

L2() and EP

T ;nc

6 E() and dm EP < 1: (23)

T ;nc

12



We further require that EP _ is a piecewise polynomial, simplex by simplex

T;nc
curl-free nite element space and that the conforming spaceE?® is a subspace
of Ef .: N | o
EY Ef,. e2S¥ l'jrt =0 : (24)

To be able to de ne a variational formulation in EP ., we have to extend the
lifting operator to an operator 1 whose image satis es the following prop-
erties

T E"I)';nc

TIER oSt (26)
as well as the consistency condition

+E() ! L?%() (25)

Te= e 8e2 E() : (27)

The complete de nitions of Ef . . and r will be based on the convergence
theory for non-conforming nite elements according to the second Strang lemma
(cf. [6, Th. 4.2.2]): this will tell us how to de ne them and obtain in the end
an optimal order of convergence (see Theorem 15 hereafter).

In the same spirit as in Section 3, we rst de ne the operator 1 simplexwise

by the local lifting operators © as in (12):

(re) = ¢ ¢ 2P 8 2T 8e2ER. (28)
Note that the coe cients ( ¢ ) ,; are at our disposal.
From (28) we conclude thatr 1 is a left-inverse to T, i.e.,
8e2ER . :r1 re=e (29)
A compatibility assumption on E.‘};nc concerning the jumps of functions
across facets is formulated next. For a faceF with vertices AF,0 i d 1,
the a e mapping f : % 1! F (with by 3 asin (13))isgivenby ()=
Af + :1:11 AF AF ;. The space of @ 1)-variate polynomials of degree

p on F is given by
Pg (F)=q Flj g is a polynomial of degree pon %y 1 : (30)

On the one hand, givene 2 EX, one has [ el =0 forall F 2 F, and
re=0on @ On the other hand, for elements of the non-conforming nite
element spaceE? .., we require that these conditions areweakly enforced. Given
e2 E.‘};nc, keeping in mind that, along every facetF 2 F (respectively F 2

Fe ), the jump [ r€]- (resp. the value te) is a polynomial of degree

(p+ 1), we choose aweak facet compatibility condition that reads:
z

[ telrq=0 8q2P} ,(F); 8F 2F and
ZF (31)
req=0 8q2P) (F); 8F2Fg:
F
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Remark 10 One has the freedom to choose a priori the degree of the polynomi-
als g between0 and p+1 so that the interelement continuity can be weakened in
a exible way. Indeed, a degree equal tp+1 de nes conforming nite elements,
because (31) then implied 1 €] =0 across all interior facetsF, and te€=0
on @ , and Lemma 3 leads tce 2 E.‘} . On the other hand, a degree strictly lower
than p+ 1 in the implicit de nition (31) of E.‘};nc leads to a non-conforming
nite element space, such thatE? is a strict subset ofER . .. The degree of the
polynomials g, which is chosen here equal tp, actually yields an optimal order
of convergence (see Theorem 15), whereas a degree strictly lower thanyields

a sub-optimal order of convergence.
These considerations are summarized in the following de nition.

De nition 11 The non-conforming intrinsic nite element space Ef . is given

by n 0]

E2. o= e2SY Yjrr e=0 and (31)is satised

This de nition directly implies that condition (24), i.e., E}  E}. . holds.
In Section 4.2 we will prove for the two-dimensional case the following direct

sum decomposition
M

ER ..« =Ef} span r ULy 11 ko Niacet
v
span r t Up+l;k 1k Nsimplex (32)
o1
with supp Up,g and suppUl; 4 !F

for some non-conforming 1‘unctionsUpF+1 « and Up,, . which will be de ned in
Section 4.2. The numbersNyacet, Nsimplex bOth depend on the dimensiond and
on the degree of approximationp.

Remark 12 For d = 2, we haveNfcer =1 and Ngimpex = 0 for evenp, i.e.,
only (one) facet-oriented, non-conforming basis function arises, while for oddp
it holds that, vice versa, Nfacet = 0 and Ngimpex = 1, i.€., there is only (one)
simplex-oriented, non-conforming basis function. The functionsUf,, := UpF+1 K
and Up,; = U, Will be respectively de ned in(45) and (49). The cased =3
will be considered in the forthcoming paper [10].

As a consequence of (32), one deduces the following de nition of thextended
lifting operator.

De nition 13 For a function e 2 EY ... written as
X Mot X Nogplex
- F
e=e+ Fkl TUpp kT 1 Upag i (33)
F2F k=1 2T k=1

14



for somee; 2 E.‘ﬁ and coe cients gk resp. i, the extended lifting operator
1 is de ned by

X Neet . X N
Te= e+ Fk Up+1 'k + K Up+1 ;k:
F2F k=1 2T k=1

We now prove an important result on the locality of the lifting operator 1.

Proposition 14  Assume that (32) holds. For anye 2 E? . with connected

T ;nc
support! ¢ which ful lls the condition that for all disjoint connected components
(j)j of nle, 7\ @ has positive boundary measure, it holds
supp re e

Proof. We split e = e; + e, according to (33) with e; 2 E. Since the sum, in

(32), is direct we concludé that suppe; ! fori =1;2. From Proposition 2
we obtain te; = e; 2 H}(). Since ey] n, =0 Poincae's theorem implies
that eij, = ¢, ie., ey isconstanton each disjoint connected component;

of nl.. Since!;\ @ has positive boundary measure, the property e; 2
HE () implies that ey, = 0. This proves supp ter !e.

According to the de nition of 1 for the non-conforming part e,, which im-
pliesin particularthat  + r tUL, ., = U, ., onegetsthatsuppr 1 Ug,; 4 =

suppUpFJrl « sothat supp rte; !e. The proof for the functions U, . is by
an analogous argument. |

Note that, for any innerzfacet F 2 F, we may chooseq = 1 in the left
condition of (31) to obtain [ t€]z =0: hence, the jump [ T €] is always
zero-mean valued. Lethg denote the diameter of F. The combination of a
Poincae inequality with a trace inequality then yields

K[ r€lek ., Cheklrt te nelekiop, (34)
29 =
@ che ke Nelekeae, Che okekioq o

for some constantsC and C. In a similar fashion we obtain for all boundary
facetsF 2F @ and all e2 E? . the estimate

T:nc
1=2 .
k ek oe, Che kek o,y : (35)
Equipped with Ef .nc @nd 1, the non-conforming Galerkin discretization of
(4) reads: Finder 2 EY . . such that
Z Z
"er e= re 8e2ER. . (36)
1Here, we use the observation that for a polynomial q 2 Pp(!), ! with positive
measure, it holds either qj, =0 or supp gq= ! . In our application we choose q= e; + e; and

apply the argument simplex by simplex.
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We say that the exact solution e 2 L?() is piecewise smooth over the
partition P =( ,—)J.J:1 , if there exists some integers 1 such that

& 2HS( j)=(HS( ;) forj=1;2::

We write e 2 PH °() and refer for further properties and generalizations to
non-integer values ofs, e.g., to [18, Sec. 4.1.9].

For the approximation results, the nite element meshesT are assumed to
be compatible with the partition P in the following sense: for all 2 T, there

exists a single indexj such that \ ; 6 ;.

Theorem 15 Let the electrostatic permeability” satisfy assumptions (21), (22)
and let 2 L?() . As an additional assumption on the regularity of the exact
solution, we require that the exact solution of (4) satis ese 2 PH ® () for some
integer s 1. Assume that the non-conforming nite element spaceEf . = and
the extended lifting operator t are de ned on a compatible meshT, as in
De nitions 11 and 13. Then, the non-conforming Galerkin discretization (36)

has a unique solution which satis es
ke ET kLz() Chr kekPH r() 1

with r := min fp+ 1;sg. The constantC only depends o' min , "max, K"Kpyy r 1 0
p, and the shape regularity of the mesh.

Proof. The second Strang lemma applied to the non-conforming Galerkin dis-
cretization (36) implies the existence of a unique solution which satis es the
error estimate

" . 1 -L e .
ke er kLZ() 1+ "max n ke ekLZ() + — Sup M,
min  e2EL. ¢ min e2E® . nfog kekLz()
where 7 7
Le(®)= "e e re:

The approximation properties of E.‘};nc in the in mum are inherited from

the approximation properties of E} because of the inclusiorEf}  E}. ; cf.
(24). For the second term we obtain
Z Z
Le(e) = "ert t€ 7€ (37)

Note that 2 L?() implies that div( "e) 2 L?() and, in turn, that the
jump ["e ng]e equals zero and the restriction (e ng)j. is well de ned for all
F 2 F. We may apply simplexwise integration by parts to (37) to obtain
x £ x Z
Le(e)= se"(e ng)[ tel + "(e ng) TE
For F FoFe F

16



Above, s = 1 depending on the orientation of the facetF.

Let = 2 P} , (F) denote the best approximation of "e ngj- with respect
to the L? (F) norm. Then, the combination of (31) with standard approximation
properties and a trace inequality (sincer 1) leads to

x Z x £
jLe(®)j = se("e ne O)[ Tele ("e ne ) e

For F FoFg ©

X
k"e ng q:k,_z(,:)k[ Te]FkLZ(F)

F 2F X

+ K'e ne Oe K op)K 1K 2 (F
F2F @

C X ht =% kek k k
F ek oy KL Telek 2 r
F2F |
r 1=2 .
+ hF kekH,(F)k TekLZ(F) s
F2F o

where C depends only onp, s, and k"kWr( () and the shape regularity of the

mesh, and ¢ is one simplex among those of . The estimates (34),(35) along
with the shape regularity of the mesh lead to the consistency estimate
!

X X
jLe(®) C he keky.( . kek zq ) + he keky.( ) kekyzq )
FoF F2F @
Ch' kekpyy () kekiz(y ;

which completes the proof. ]

Remark 16 If one chooses in (31) a degoreep°< p for the test-polynomials q,
then the order of convergence behaves liké kek, ) with r%:= min fp°+1;sg,
0

because the best approximatioge now belongs tP; , (F). Also, the above proof
can be easily generalized to the case whee2 PH ° () for somes > 1=2.

4.2 A local basis for non-conforming intrinsic nite ele-
ments in two dimensions

Like in Proposition 7, we construct the space E-‘};nc by de ning basis func-
tions whose supports are given by a single triangle 2 T, facet-oriented basis
functions whose supports are given byl ¢, F 2 F, and vertex-oriented basis
functions whose supports are given byl v, V 2 V. The corresponding spaces
are denoted byB® ., B E;nc, B{J,;nc. The triangle-supported subspaces are given
by n )

BP .= e2E}. . jsuppe 8 2T: (38)

T;nc
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The de nitions of T, !¢, Fy, Ty, ! v are given in (16). The facet- and
vertex-oriented subspaces will satisfy the following direct sum decompositions

M n o]
B BP.= €2E} . jsuppe !¢ B8F 2F; (39)
2Tr
M M n 0
BY.ne BE. nc BP = e2ER. . jsuppe !y 8V 2V: (40)
F2F v 2Ty

In Theorem 22, we will prove that E§. . can be decomposed into a direct sum
of these local subspaces.

4.2.1 Triangle-supported basis functions

In this section, let 2 T denote any xed triangle in the mesh. The Lagrange
basis of P, ( ) with respect to NP\ is denoted by by N 2NP\ andis
characterized by

1 ifN=N&
0 ifN 6N

We denote the (discontinuous in general) extension by zero df, to n again
by b, . From Lemma 4 and Conditions (24), (31), we deduce that
n
BP= € 2r Py ()jsuppe and

byp 2P5() and 8N°2NP\ by, (N9)= (41)

Z 0
8F @ ;8q2Pi(F): req=0 : (42)
F

According to (42), it is clear that BP  BP .. In the next step, we use the
weak compatibility conditions in (42) for the explicit characterization of BF ..
For the construction of the non-conforming triangle-supported functions we
have to introduce scaled versions of Legendre polynomials. Fdf 2 F[F g , let
r be the ane pullback to[ 1;1]. LetLq:[ 1;1]! R denote the Legendre
polynomials of degreeq with the normalization convention that Lq(1) = 1.
This in turn implies that Lq( 1) = ( 1)%. We lift them to the facet F via
LE == Lq ¢'. Itiswell known that Lf,, satis es the orthogonality condition

(L iW)Lzey =0 8w 2 PI(F): (43)

Lemma 17 For 2T, the non-conforming nite element spaceBP® . is given
by

BP if pis even,
BP +span r 1Ug,, if pis odd,
where Up+1 is de ned as follows. For anyN 2N P\ @, let Fy @ denote
a xed, but arbitrary, facet such that N 2 Fy. Then Up,, is given by

BP e = (44)

X
Upsy = LEYy (N) By (45)
N2N P\ @

and illustrated for p=3;5 in Figure 1.
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Figure 1: Representation ofUp,, for p=3 (left) and p =5 (right).

Proof. Pick somee 2 BP ., let u := te (according to Proposition 14,
suppu ) and denote the restrictionsto by e and u . The weak compati-

bility condition in (42) therefore implies that, forall F @,
Uje = ceLfy for somece 2 R: (46)

The relation u 2 P§+1 () implies that u jg is continuous so thatu is con-
tinuous at every vertex of . We distinguish two cases.

Let p be even. In this case we havel sy (1) = Lp+1 (1) so that the
continuity at the vertices of  implies ¢ = 0. Thus u jg = 0 and we have
proved (44) for evenp.

Let p be odd. Now we havelp:1 (1) = L+ (1) so that ¢ = ¢ for
al F @ and some xedc , and we conclude thatu = ¢ Up+1 with Up+1
given in (45). Conversely, we note that the gradient ofU,,, satis es the weak
compatibility condition (31). This leads to the assertion for odd p. ]

n 0
Remark 18 A basis ofBP . for evenp is given by r 1 b, (:)N 2 N P\

while a basis for oddp is given by r t B, :N 2NP™\ [ r7Upn

4.2.2 Facet-oriented basis functions

Lemma 19 For F 2 F, the non-conforming nite element space BY. . that
satis es (39) is given by

BE +span r tUL, if pis even,

P =
BRnc = gb if pis odd, (“7)
where U,DF+1 is de ned as follows. ForN 2N P*1 \ @k, let
T H |-
— 1N on'r;
g = gl OhEE (48)
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wherehy,, ., are as in (15). Then, UL, is given by

X
Uger = LEY (N) B (49)
N 2N P\ @I

with the lifted Legendre polynomials satisfying (43) and where, foN 2 N P*1 \
@Y%, we assign some faceFy @k such thatN 2 Fy.

Proof. For F 2 F,givene 2 B®, it follows from De nition 6 that supp e !¢,
without being supported on only one triangle (otherwise, e 2 BP for some

2 Tg). Then it follows from conditions (38) and (39) that e 2 B',i; nc- Hence
BE  BE,. Since anye 2 B} . can be expressed locally on 2 T¢ by

ef =r v forsomev 2 P2+1 () (cf. Lemma 4) we have

M
BE e span r thy,.g JN2NPE
2Tk

where we recall (cf. (41)) that by.,,, are the Lagrange basis functions on
and extended by zero to n . Since the functionshy.,,, for the inner nodes

N 2N P\  belong to the spaceBP BP ., we conclude from (39) that
M
BE. e span r thy,q iN2NPT\ @
2Te

Fore2 BE;nc, letu:= te(suppu !g,cf. Proposition14)andu := uj ,
2 Te. Arguing as in the case of triangle-supported basis functions, we infer
from the compatibility conditions (31)

[l = ceLpy and 8F° @ quO:cFoLgfl: (50)

Again, the relation u 2 P‘2’+l ( ) implies the continuity of u at the vertices
of . Using this property, we now split the proof into two parts. In the following
we identify a spaceRP. . which satis es

Bp

Finc — BE ng' (51)

;nc*

Let p be even. For 2 Tg, the continuity of u along @ and the end-
point properties of Lgfl imply that u AF = u BF , where AT;BF de-
note the endpoints of F (cf. Figure 2). Hence, U]: AF =[u]r BF . Since
Lpsa AP = LE, BF  we conclude that the rst condition in (50) holds
with cg = 0: in other words, u is continuous acrossr.

The results obtained so far imply that

RE.,. span rtb, N 2NPT\ @k

Pick e 2 RE; nc and setu := te. The continuity property [ u]l. = 0 which
we already derived impliesu = cUf,; with Uf,; given in (49). On the other
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Figure 2: A faceF 2 F with endpoints A7, BF and two neighboring triangles
1, 2,

Figure 3: The non-conforming basis functionsUpF+1 have support on two adja-
cent triangles and are depicted forp = 0 (left) and p =2 (right).

hand,r 1 UpF+1 ful lls the weak compatibility conditions (31). Hence we may set
RP. . :=span r tUL,; and the assertion follows for evenp. The functions
Up'>:+1 for p=0 and p =2 are depicted in Figure 3.

Let pbe odd. Picke2 R} . andsetu:= te. For 2Tg and any facet
FO @k \ @, the restriction of u to F° must be a multiple of a Legendre
polynomial. The continuity of u along @ implies in particular the continuity
at C (cf. Figure 2). Hence,u jg@i-\ @ = € Upiijerr\ @ for somec and Up,,
as de ned in (45), and X

= u c Uy
2Tk

vanishes along@ 'k withsuppt ! . So the jump of »-acrossF vanishes inAF
and BF, and the expression of the rst condition in (50) is written as [&]- = 0.
Henceu-is continuous in! ¢ and vanishes on@% . From this we conclude that
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tr2 BE (see De nition 6). The characterization of R. . as a direct sum in (51)

F;nc
shows thatu = 0 and thus RE. . = f0g. ]

Remark 20 A basis ofB®

F;nc

foroddpis givenby r thl,;  :N 2NP1\F

while for evenp we may choose r th,; y :N2NP*\ F [ r UL,

4.2.3 \Vertex-oriented basis functions

In this section we now identify the vertex-oriented subspaceB?. .

Lemma 21 LetV 2V. It holds

fOg if pis even,
[

BVne = BP if pis odd. (52)
Proof. In a rst step, we will prove that any subspace Rgﬂ v Which satis es
the direct sum decomposition

M M n 0

R-[|J-+l Vv B E;nc BP nc = eO 2 E'FI)' ;ncj SUppeO ! \% ; (53)

F2F v 2Tv

also satis es
Riav  BY: (54)

We recall from De nition 6 that B, =span r b, .,
In the second step, we will show that, for evenp the inclusion

M M
span r iy, BP. BP (55)

,nc
F2F v 2Tv

holds so that the rst case in (52) follows.
Instead, for odd p, we will prove that, for all V 2V,

T M o M
r By 2 BE. e BP (56)
F2F y 2Ty

From (40) and (54), we conclude that the second case of (52) follows.

1st Step: Choose any

n 0
e2 e%2EL. jsuppe® !y (57)

and setu := te. According to Proposition 14, suppu !y.

Let p be odd. For 2 Ty, the facet F is de ned by the condition
F @\ @V (cf. Figure 4). Since L},; has even degree, the values at the
endpoints A , B of F are both equal to one.
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Figure 4. A vertex V 2 V, a neighboring triangle 2 Ty, and a neighboring
facetF 2 Ty.

We setu := uj and de ne (cf. (45))

X
Bi=u u (A)Upy with u (A):= Iim u (x);
2Ty, X;(ZA

where the sum over the triangles is well de ned in the interior of the triangles as
well as the one-sided traces from the interior of a triangle towards its boundary.

Hence,u-= 0 on @, with suppts !y. Any facet F 2 Fy hasV as one
endpoint; denote the other one byAF. According to the weak compatibility
conditions, we know that [t]- is proportional to L;le on any facetF 2 Fy.
Then, we use the condition [} = ceL},; atthe point AF to deducecs =0
from tjg,, =0. Hence u-is continuous and vanishes on@}, . Consequently, u-
is a conforming function, i.e.,

|

X ' M M
rou u(A)U,, 2B BP BP
2Ty ; F,%}I:V ; ZTK/I
BV BF;nc Bp;nc-
F2F v 2Ty

Hence, (53) impliesR,; ,  BY.
Let p be even. We number the facets inFy counter-clockwise asFy =

Fo := Fq and Fg+1 := F1. The triangle which has F; | and F; as facets andVv

as a vertex is denoted by ;. Each facetF; hasV as an endpoint; denote byA;
the other one. We further setF°" := @;\ @ . We de ne recursively up := u

23



Figure 5: A vertex V 2 V and its outgoing facets numbered counterclockwise.
The triangles i 2 Ty contain F; 1, Fi, F° as facets andV as a vertex.

and, fork =1;2;:::;q, (cf. (49))

u A
Ug = Uk 1 e 1), (Aw) kFi)"( I()UF"

X with u Ag) = lim u X):
Upsy (Ak) p+l (uk 1), (Ak) X!Akkl()

X2

Note that ug =0 on @} nFP". All functions uy are supported in! . Arguing

as for the case of oddy we deduce thatuq is conti51uous on! ynF24. Next, we

de ne the non-conforming part of ug by ug = ugq N 2N p+t nf Fo g Ud (N) bgﬂ N -

It follows that supp ug 1 and henceug 2 BP ... FBr evenp, we have proved
BP, .nc = BF,, sothatug mustbe continuous on . As  ,y b nfpou gYa (N) Bl
is also continuous on , so is uq. In particular, this yields that uq is continuous

on!y and the assertion follows as in the case of odd. We conclude again that
R g+1 Vv B{)/ .

2nd Step: To prove (55) and (56) we again distinguish between even and
odd values ofp.

Let p be even. We employ the same notation as in the 1st step for the case
p even. Then, by using U‘!,:+1 as in (49) and recalling that UpF+1 is continuous
acrossF, we de ne a function

0 1
= pl 1 X : = @] Fi AlIFi -
Wi = By a. W, with W; := XI!|mV Upis ()2 Upiy (58)
i=1 X2 Fi
By construction, suppwy I'yv. Let us consider a xed facet F;. Note that

the functions UpFil are continuous acrosd; forj 2 fi 1;i + 19. However, the
one-sided limits for W; ; and W;,; at F; coincide so thatw; is continuous in

Iy and vanishes atV and at all inner nodesNP*1 \ | 2 T,. On the other
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hand, the function w; is determined on some outer faceE,°" by two consecutive
terms in the sum in (58), i.e.,

W]_jFiout = (W| l+ Wi)jFiom .

Note that W; 1 (V) = W, (V) = 1 considered as limit values along the facets
Fi 1, Fi. The sign properties of a facet-oriented basis function for evep implies
that W; 1 has value 1 atA; ; and value 1 at A;. Vice versa, W; has value

latA; ; and value 1 atA;. Hence, wij-.« is a Legendre polynomial with
endpoints values 0 which implieswjgox = 0 and, in turn, w3 =0 on @Y. Up
to now, we have thus proved thatw; is continuous in , with support contained
in 1y and value 0 atV and at all nodal points ; \N P*1,

Next we de ne

xa X .
Wz = Wy w1 (N) By (59)
=L oNaN e F
and observe thatw; is a conforming function which vanishes at all nodal points
in N P*1_ This implies that w, =0 in and we have established (55), or, more
precisely, that M
r b-p!—+1;v 2 BE;nc:
F2F v

Let p be odd. We will prove (56) by contradiction. So, assume that
T M o M
r bp+1;V 2 BF;nc Bp;nc:
F2F v 2Tv

We then infer from Remark 18 and Remark 20 that
X X
bg+1 v = N b-|g+1 Nt Up+1 (60)
N 2N P+l nv 2T

EJr some coecients n and . Let v = P N2N Py N bgﬂ;N and vy =
oT Ups1 - Sincebg+1 . and v are continuous in , the function vy, must
also be continuous. By contradiction it is easy to prove that
M X
coO) \ span U,,; =spanfUpyg g with Upy = Upst ;
2T 2T

so that vye 2 spanfUp.+1 g. Sinceve (V) =0 and bgﬂ v (V) =1, we obtain from
(60) that vnc (V) = 1. The restriction of Up.; to any facetF 2 F[F g isa
Legendre polynomial of even degree, which implies thav,. (V9 = 1, for every
VO2V[V g . But the functions b, ., and vc vanish on @ This contradicts

Ve (V9 = 1 for the boundary points V92 Vg . [
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4.2.4 Properties of the non-conforming intrinsic basis functions
Theorem 22 A basis of EP

T.nc IS given by

[
rrlfgn N 2NPTnV | rrUs,  if piseven, (61)
F2F

or by

rrh "N 2N P [ U if pis odd 62

TN [ r1Upn IT p IS oda. (62)
2T

Remark 23 At rst glance, it seems that B{, 6 E} . for evenp. Actually,

this subspace oE!} has already been taken into account; see (55).

Proof. By construction, the space ﬁ?mc of the functions found in (61) as in

(62) is a subspace oE®. .. So, it remains to prove that ES... EP. .
Let p be odd. The arguments are very similar to those in the proof of
Lemma 21 for oddp. Givene 2 EP ., let u:= te. Pick some 2T
having at least one facet on@. Condition (31) implies that, for all facets
F @\ @, the restriction uj. is a multiple of the lifted Legendre polynomial
Lg+1 . The continuity of uj on implies that there exists a function & := cU,,;
with r &2 BP . for somec such that u; == u & satisesuijg, g =0. Since
u; vanishes at the endpoints of all such facet$ 2 F g , the function u; is also

continuous across the other facet$ @ \ . Let
X X X

ty = ug (N)b;l N T ug (N)bgﬂ N
N 2N P+l \ X A N 2N P+l \ F
+ Ul(V)bgﬂ;V
v2a@\

and note that &, 2 EP because Lemma 21 implies in particular thatb;ngl v 2

T;nc?
é.‘}.nc. Note that u, ;= u; w; vanishes on . Since is connected, iterating

this construction for the remaining triangles nally results in a function that

vanishes on , which yields a linear representation ofu by functions in ﬁ$ ‘e
Let p be even. Again the arguments are very similar to those in the proof

of Lemma 21 for evenp. We omit the details here. ]

Remark 24 Let V;F; T denote respectively the number of vertices, facets and
triangles of the mesh. According to Euler's formula, one hasv F+ T =1
because has no holes (its boundary is connected). Also, if one splity/ and
F respectively into V.= Vi + Voary and F = Fny + Foary, With i denoting
interior vertices and facets andpqr, denoting boundary vertices and facets, one

has Vbary = Foary . Then the dimension of the vector spaceEﬁ;nC is given by:

for even p: jNP*Hj Vi + Fe = NPV F= jNPRj+T 15
forodd p: NP+ T
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As an illustration, let us consider non-conforming intrinsic basis functions of
degree 0.

Proposition 25 The lowest order non-conforming intrinsic nite elements are
given by
EQ..c=span r tU{ :F2F ;

where the functionsU! are the standard non-conforming Crouzeix-Raviart basis
functions (cf. [12]).

Proof. Choosingp = 0 and taking into f\ccount that N*= V we conclude from
(61) that a basis for E9 .. is given by rruf

F 2F
To show the connection with the Crouzeix-Raviart basis functions, we con-

sider a facetF 2 F with neighboring triangles ; and ,. From (49), we deduce
that Ul is ane on each of the triangles 1, » with value 1 at the endpoints
of F and value 1 at the vertices of ;, , that are opposite to F. Hence, Ul

coincides with the standard Crouzeix-Raviart basis functions; see again [12]m

4.3 An example of a non-conforming intrinsic nite ele-
ment in three dimensions

Although the general theory of non-conforming intrinsic nite elements in the
form of Theorem 15 holds ford = 2; 3, the construction of a local basis requires
further investigation which will be the topic of the forthcoming paper [10]. We
emphasize that our theory allows to enrich a conforming nite element space
by new, locally supported, non-conforming polynomials in a exible way. In
addition, for a given order of approximation, the number of non-conforming
basis functions increases with the spatial dimension.

As an example we give here the de nition of a non-conforming, simplex-
supported basis function ford = 3: for p2 Noand 0 k p, dene by 2
P (%2) with ~, as in (13) by

. . R R
b (R1i%2) = (%1 + %2)  POPD 21 +%2) DPOY 22 8(RiiR2) 2 %%
p R+ %X,
where P,§; ) are the Jacobi polynomials (see, e.g., [1%x22.3]) and let
x3
fop:™»! R fop = ktb;Zk with 0=3, 1=7, =0, 3=11:
k=0

The function f,p has symmetry of order three, i.e., is invariant under a ne
bijections from ” onto ”. As a consequence the functiorfzp 2 C°(@%),
which is generated by lifting fop to the facets of @5 via a ne pullbacks to

”, (see Figure 6), is continuous. Then,UGA3 is generated by interpolating the
function f3p to the interior of ~3 in an analogous fashion as explained fod = 2
in (45).
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Figure 6: Surface plot of the non-conforming functionUGA3. The support of this
function is the unit simplex.

5 Conclusions

In this article we have developed a general method for constructing nite element
spaces from intrinsic conforming and non-conforming conditions. As a model
problem we have considered the Poisson equation, but this approach is by no
means limited to this model problem. Using theoretical conditions in the spirit
of the second Strang lemma, we have derived conforming and non-conforming
nite element spaces of arbitrary order for the uxes. For these spaces, we have
also derived sets of local basis functions.

In two dimensions, it turns out that the lowest order non-conforming space is
spanned by the trianglewise gradients of the standard non-conforming Crouzeix-
Raviart basis functions. In general, all polynomial non-conforming spaces are
spanned by the gradients of standardhp- nite element basis functions enriched
by some facet-oriented non-conforming basis functions for even polynomial de-
gree and by some triangle-supported non-conforming basis functions for odd
polynomial degree. As a by-product, this methodology allowed us to recover
the well-known non-conforming Crouzeix-Raviart element (cf. Proposition 25).
By using a similar but more technical argument (cf. [20]), it can be shown
that our intrinsic derivation of non-conforming nite elements also allows one
to recover the second order non-conforming Fortin-Soulie element [13, 14], the
third order Crouzeix-Falk element [11], and the family of Gauss-Legendre ele-
ments [4], [21]. In three dimensions, one may also use the same method: see
Section 4.3 for an illustration. More systematic studies will be presented in the
forthcoming paper [10].

In the past, the construction of a new nite element was an \art" and came,
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typically, before the development of its theory. Here, we have considered the
construction of conforming and non-conforming nite elements and their anal-
ysis through a uni ed approach, and we have constructed all conforming and
non-conforming, local and polynomial nite element element spaces which can
be handled within the theory based on the second Strang lemma. In this respect
the approach is similar in its spirit to the exterior calculus for nite elements
in combination with their numerical stability analysis (see [3] and references
therein). It is a topic of future research to investigate how our approach for
non-conforming nite elements can be used for the development of an exterior
calculus for non-conforming nite elements.
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