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ABSTRACT offer multiple spatial resolutions (also including very high
resolution, VHR) and frequent temporal coverage, two
This paperaddresses the problem wfultisensor fusion of crucial properties INEO applications especially in risk
COSMO-SkyMed and RADARSAT2 data together with management (e.g., global detection of urban sresange
optical imagery for classification purposesThe proposed detection,infrastructure mapping, lancbver and landise
method is based on an explicit hierarchical grapsed mapping). However, the use of remesensing image
model that is sufficiently flexible to deal with multisource analysis has been mostly addressed so far by focusing
coregsteredimages collected at different spatial resolutionsseparately on multispectral or SAR imagery and by working
by different sensorsAn especially novel element of the with singleresolution images. This approach bears the
proposed approach is the use of multiple gtrads in  obvious advantage of simplicity but may be, in general,
cascade, each associated watlset ofimages acquired by severely suboptimal. From a methodological viewpoint,
different SAR sensorswith the aim to characterize the when  multisensor  (multispectral and SAR) or
correlationsassociated with distinct imagdsom different  multiresolution images of a given event are available, using
instruments Experimental results are shown WilOSMO  them sepiately, for instanceto map changediscards the
SkyMed, RADARSAT?2, andPléiadegatd. correlation among these multiple data sources and, most
importantly, their complementarity. SAR and multispectral
Index Terms? Multisensor, multiresolution remote images exhibit complementary properties in terms of noisy
sensing images,supervised classification, hierarchical behavior (often strong in SAR due speckle, usually less

Markov random fields critical in multispectral imagery), feasibility of pheto
interpretation (usually easier with optical than with SAR
1.INTRODUCTION data), sensitivity to atmospheric conditions (strong

sensitivity for optical acquisitions, and almost no sensitivity
Nowadays, remote sensing images of our planet frorfor SAR) and to Swillumination (critical sensitivity for
satellite systemsare acquired continuously; they have multispectral sensors, dandnight acquisition capability
become powerful scientific tools to enable betterfor SAR) [1]. Similarly, the multiple spatial resolutions
understanding@and improved management of the Earth andcollectively offered by missions such @SK, Pléiades, and
its environment. RS2 offer complementary information in terms of synoptic
The ability to fly a wide variety of satellites into spaceview and spatial/geometrical detail. Exploiting these
bringsa different ways of seeing the Wdrthat the physical complementarities is expected to convey important
proprieties of satellites leave behindCurrent and information forEO applications.
forthcoming satellite missions for Earth observation (EOjn particular, the opportunity of jot availability of CSK
e.g., Sentinel, Pléiades, COSMhyMed (CSK), andRS2imagery offers very high resolution (VHR), -all
RADARSAT-2 (RS2) TerraSARX) convey a huge weather, day/night, short revisit time data, polarimetric, and
potential for such diversity, as they allow a spatiallymultifrequency (% and Gbands for CSK and RS2,
distributed and temporally repetitivéew of the monitored respectively) acquisition capabilitieSimilarly, the strong
area at the desired spatial scales. In particular, the latadifferences in terms of wavelength range (microwave vs.
French, Italian and Canadian missions involving visible and near infrared), sensitivity to cloud cover and Sun
multispectral or synthetic aperture radar (SAR) payloads|lumination and noisdike propertiesmake the joint use of
i.e., Pléades CSK, andRS2 are especiallyelevant, as they CSK and RS2 data together with optical datpecidy
interesting for many applications to environmental
! We would like to thankhe French Space Agenc (CNES), the Italian monitoring and risk management
Space Agency (AS)) and the Cana di;’n Spacge Agyency (Cshy doiding In this framework, accurate and tirefficient classification

respectively Pléiage§OSMO SkyMedand Radarsa images. method are especially important tools to support rapid and
reliable assessment of the ground changes adagdes




induced by a disaster, in particular when an extensive areharacterize the multisensor correlations associated, at
has been affected. Given the huge amount and variety dffferent scales, with distinct images ithe input
data available currently from lageneration VHR satellite multisource dat§2]. To this end, the proposed multisensor
missions, including the aforementioned CSK and RS2 anBPM algorithm runs in two recursive steps, referred to as
multiple missionscarrying optical payloads (e.g., Pléiades, 3 ERWWRPDQGGRKERS SDVVHV 7KHVH VWE
WorldView-2 and-3), the main difficulty is to develop a various transition probabilities for each site of the gtrad
classifier that can take benefit of multiband, multiresolutionwhich foster that pixels maintain the same classmbership
and multisensor input imagery. acrossconsecutive sensors and scalese / . 1 DQG 3
The proposed method addresses the problem of multisensetationships in Figure 1), and the pixelwise class
fusion of CSK and RS2 data together with optical data foconditional statistics of the image data at each node of each
classification purposes, allows input data collected afjuadtree, given the corresponding (satellite or wavelet)
multiple resolutions and additional multiscale featuredeatures For more @tails onthis MPM formulation on
derived through wavelets to be fused, and supports bothultiple quadtrees, we refer to [2]. Here, we especially
singledate and multitemporal imaglassification. focus on its extension to support multisensor fusion of CSK,
The proposed approa&xtends theecent methoghroposed RS2, and optical imagery.
in [2], which focused on multiresolution and multitemporal ~
optical image classification using hierarchical Markov — fers# P ool ramsan ;
random fielé (MRFs) [3, 4, 5] to a multiscale and g L
multisensormodel thatfuses the spatial, multiresolution, 2
andalso multisensorinformation conveyed binput images
collected by CSK, RS2, and one optical sensor (Pléiades)
multiple spatial resolutions This model is a hierarchical ;
Markov random field (MRF) intgrated with a quaetree
structure The choice of a quatlee allows taking benefit
from its good analytical propertie8][(e.g., causality) and to
apply noniterative classification algorithms such as the
maximization of posterior marginals (MPM) [7], which
associates, with each site in the considered data set, the m ‘
probable class label given the entire input multisourc v
information Figurel: Multisensor hierarchical structure
An especially novel element of the proposed approach is the
use of multiple quadrees in cascade (see Figure 1), eacliiven atraining set for eaclscale level for each classe,
associated with the set of images given by é@8R sensor.  scale « and sensorwe model the corresponding class
This approach aims at exploiting the multiscale informationsonditional marginalprobability density function RDF)
that is typically associated with either SAR or optical VHR | : |, T L | ;using finite mixturedistributions( OB 5% ;
imagery. AP

LTel 1L T 888 (33 kada (1)

VHR Optical image

g
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2.MULTI SENSORHIERARCHICAL MODEL . (65 u
where éf # are the mixing proportionsa % is the set of the

Let us focus, on the case of singlate multisensor data parameters of the/" PDF mixture component of thé %
composed ofCSK andbr RS2 imagey and of an optical class at theJ® scale level(§ 4 and 5% is the Xh level of
image.For eachSAR sensor, the input imagareinserted the quadtree associated with the considered sensor

in a separate quadee structure on the basis dfieir  Mixture modeling is performedepending orthe different
resolutions, Wile missing levels of the quédee are filled types of remote sensing imagery used in this study. Indeed,
in using wavelet transformg8] of the optical images when the input data at thd®’ scale levelis an optical
embedded in fingt-resolution level(see Figure 1). Then, a image classconditional marginal PDF  L:Us ToL | ;
novel formulation of MPM is proposed for the resultingrelated to each class can be modled by aGaussian
multisensor quadree mixture [9] with a set of parameters associated with the
Specifically, given the whole multisensor dapyramid > corresponding mean andariance On the oppositeSAR

the posterior marginal’ k&, > oof the label 5,of each site  acquisitions are known to be affected tpeskle [LO]. For

«in the quadtree related to one of the tW®AR sensors is this reason, weuse appropriate SABpecific models for
expressed as a function not only of the posterior marginal §uUch images, such as the generaligesthma distribution

the parent node’ k3, > ain the same quattee but also of [11]. Th_e parameters of the mixture modef both SAR .
d and optical imagesre estimated through the stochastic

the posterior mgrginar-kéqg >oof the parent npde in the expectatiormaximization (SEM) algorithm [, 13], which
quadtree associated with the other sensor, with the aim tig an iterative stochastic parameter estimation algorithm



developed dr problems characterized by datahave a minor impact on thdassificationmap,because the
incompleteness and approaching, under suitableesampling ratio is quite close to unity.

assumptions, maximum likelihood estimates. For each scalEive classes are considered: urlfead), water (blue), low
SEM is applied to the training s#les of each class to vegetation(green) sand(yellow) and containergpurple)

estimate the related parameters. We present the final classification mapsFigures 4 and5
and the correspaling classification accuraciem the test
4. RESULTS samplesn Table 1

To the best of our knowledge, none of the previously
In this section, we discuss the results of the experimentaleveloped applicatieapecific methods allows a direct
validation of the developed model on two datasetguired integration of both muliesolution and muksource
over Portau-Prince (Haiti)using opticalSAR data without major preor postprocessing. The
a panchromati®|éiades acquisitioat 0.5m resolution  results obtained by the proposeulltisensor hierarchical
(Pléiades, © CNES distribution Airbus DS, 2011), method, see Figes 4(d) and 5(d), lead to a detailed
shown in Figures 2(a) and3(a). classifcation with aremarkablelevel of classification map
aCSKimage(© ASI, 2011),X band,HH polarization, regularity. The mai source of misclassification is the
Spotlight mode (1m pixel spacing), geocoded, single container area, whereontaines are partly classified as
look, shown irFigures 2(b) and3(b). urban This is consistent with the fact that no texture
aRS2image © CSA 2011),C band,HH polarization, features are used as input to the considered hierarchical

Ultra-Fine mode (1.56 m pixel spacing), geocoded, MRF. In Table 1 we compare numerically theesults
singlelook, shown inFigures 2(c) and3(c). obtained with the proposed hierarchical method when

considering either onlpléiadesor both SAR(CSK or RS2)

and optical images. We observe an improvement related to
the combination of the twSAR images, in particular in the
urban areas for whiic the joint use of CSK and RS2
acquisitionrepresents a significant source of discriminative
information. More specifically, we have observed that the
optical image has a relevant effect in the sasmd
vegetation discrimination, and the SAR acquisit®rare

C jointly very helpful to detect therban This confirms the
Figure 2: First site used for experiment&) Pleiades (b) CSK  potentialof exploiting the synergyf the data provided by
and(c) RS2 imags the CSK and RS2nissions withrespect teach other antb

the imagery collected by spaceborne optical HR cameras.
5. CONCLUSIONS

In the proposed method, mukéinsor and muktgsolution
fusion is based on explicit statistical modeling. It combines
. a marginalsstatistical model of the considered input optical
and both CSK and RS2 SAimages, through hierarchical
Markov random field modelingbased on quadtrees in
cascade,leading to a statistical supervised classification
& approach. We have developed a noveltisaurce MPM-
@ based hierarchical Markov random field model that takes
I into accountboth SAR and opticahformation and leads to
improved robustness of the classifiavhen aplied to
several challenging higtesolution image sets associated
with urban andsuburban test siteshe proposed method
. gives high overall classification accuracy with a small
= computation time (a few minutes). A furthadvantage of
the proposed classifier is that it candeneralizedo the use
of different satellites and/or acquisitions dates by extending
the multiple quadtree structure suitably. This research work
The RS2 imagecomes atl.56 m pixel spacingTo fit with ~ Will be done in the near futureA further interestig
the dyadic decomposition imposed by the gtra¢, we extension will be the integration of texture features to better
slightly resampled the data to obtain the 0.5 = 2 /4 ngliscriminate subclasses of the urban area.
resolution.Down sampling froml.56to 2 m is expected to

Figure 3 Secondsite used for experiment&@) Pléiades(b) CSK
and(c) RS2 image



Figure 4: (a) Result using a only optical Pleiades images, (b
Result using both Pleiades and CSK acquisitions, (c) Result using

both Pleiades and RS2 acquisitions (d) Result using all sensors

Figure 5 (a) Result using anly optical Pleiades images, (b)
Result using both Pleiades and CSK acquisitionsRésult using
both Pleiades an@S2acquisitiongd) Result using all sensors
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Water Urban Vegetation Bare Soil containers Total
Only Pléiades 100% 61.66 % 81.69 % 82.82 % 56.72% 76.5%%
Pléiades + CSK 100% 44.32% 83.54% 74.75% 49.12% 70.34%
Pléiades + RS2 92.56% 44.85% 79.85% 78.62% 42.1%% 67.60
Pléiades +CSK+RS2 90.79% 91,45 % 82,59 % 81.02 % 54.8%% 80,14 %

Table 1: Céssification accuracies of results shown in Figure 5



