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Abstract: The measurements of valve opening activity in a population of oysters under natural
environmental conditions are used to estimate the velocity of their valve movement activity.
Three di�erent di�erentiation schemes were used to estimate the velocity, namely an algebraic-
based di�erentiator method, a non-homogeneous higher order sliding mode di�erentiator and
a homogeneous �nite-time di�erentiator. The estimated velocities were then used to compare
the performances of these three di�erent di�erentiators. We demonstrate that this estimated
velocity can be used for water quality monitoring as the di�erentiators can detect very rapid
change in valve movements of the oyster population resulting from some external stimulus or
common input.
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1. INTRODUCTION

Since the last century, the environmental quality of our
world is changing rapidly causing signi�cant changes in
the water quality. For this reason, nowadays, national
and international legislation has strict recommendations
on the protection of aquatic environment against the re-
lease of dangerous substances. In order to abide by these
recommendations for the protection of aquatic environ-
ments, the large scale monitoring of water quality is es-
sential. However, to implement such an extensive network
of monitoring is very costly. Researchers are then work-
ing on an indirect ecological monitoring from behavioral
and physiological responses of representatives of the ma-
rine fauna. Hence, bio-indicators are increasingly being
used and showed high e�ciency, for instance through bio-
accumulation of contaminants in their tissues. Neverthe-
less, until now, large scale monitoring with bio-indicators
do not seem feasible and realistic as it involves inten-
sive exploitation of human resources for the collection
of samples, complex chemical analysis and so on [Telfer
et al. (2009)]. A solution is to develop unmanned systems
using bio-sensors, able to work 24/7, at high frequency
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by remote control. As of today, networks of such online
sensors, operating at large scale do not exist and are still
a matter of research.

To ful�ll that objective, an installation of numerous online
remote sensors is required, working at high frequency for
instant collection of information on a daily basis in marine
environment [Krger and Law (2005)]. Behavioral and phys-
iological responses of wildlife to pollution are very sensitive
and can be estimated for an indirect ecological monitoring.
However, a limiting factor today is the analysis of data
that needs su�ciently accurate models of animal behavior
in natural conditions. Other di�culties lie in the fact that
animals may be heavily in�uenced by environment, group
interactions and internal rhythms ( e.g. feeding, breathing,
spawning).

Observation of the opening and closing activities of bi-
valves is a possible way to evaluate their physiological
behavior in reaction to environment. The deviations from
a normal behavior can be used for detection of a con-
taminant in surrounding water. The pioneer work that
analyzes bivalve's activities through the record of their
valve movements (e.g. valvometry) was realized by F.
Marceau [Marceau (1909)] with smoked glazed paper.
Today, valvometers are commercially available and are
mainly based on the principle of electromagnetic induc-
tion, like the Mossel Monitor [Kramer et al. (1989)] or the
Dreissena Monitor [Borcherding (1992)]. In recent years,



the interest for modeling and estimation of behavior of
marine animals directly in real marine conditions has in-
tensively increased [Riisgard et al. (2006); Robson et al.
(2007); Garcia-March et al. (2008); Galang et al. (2012)].

A remarkable monitoring solution has been realized in
the UMR CNRS 5805 EPOC Laboratory in Arcachon,
France [Sow et al. (2011); Tran et al. (2003); Schmitt
et al. (2011)], where a new framework for noninvasive
valvometry has been developed and implemented since
2006. The designed method is strongly based on bivalve's
respiratory physiology and ethology. The developed plat-
form for valvometry was built using lightweight electrodes
(approximately 100 mg each) linked by thin �exible wires
to high-performance electronic units. These electrodes are
capable to measure the position of the opening of a mollusk
shell with an accuracy of a few� m. This system allows the
bivalves to be studied in their natural environment with
minimal experimental constraints. Statistical approaches
have already been used for the analysis of this data [Sow
et al. (2011); Tran et al. (2003); Schmitt et al. (2011)].

The goal of the present work is to estimate the velocity of
the valve opening/closing activities of the bivalve (i.e. an
oyster in our case) from the measured position of shell.
We have used the experimental data obtained from a
population of 16 oysters living in the bay of Arcachon
(France). We have tried to examine whether there exist any
relationship between the velocity and the contamination of
water as the quality of the water in�uence the behavior of
the oyster population. Three di�erent methods of di�er-
entiation were used for estimating the velocity, namely:
an algebraic di�erentiator [Mboup et al. (2009)], a higher
order sliding mode (HOSM) based di�erentiator [E�mov
and Fridman (2011)] and a homogeneous �nite-time dif-
ferentiator [Perruquetti et al. (2008)]. Their performances
were then compared. The methods were chosen because of
their individual merits. For example, HOSM di�erentiator
has the global di�erentiation ability independently on the
amplitude of the di�erentiated signal and measurement
noise, but it has some chattering in the response, while
the homogeneous �nite-time di�erentiator has no chat-
tering, but it is more sensitive to the amplitudes of the
signals to be di�erentiated. The di�erentiator based on the
aforementioned algebraic method is very useful in noisy
settings, but it presents some delay in online applications.

The organization of the paper is as follows: a brief de-
scription on the measurement and data collection activity
is given in section II. Section III presents a summarized
version of the three di�erentiation schemes, while section
IV describes the result, i.e velocity estimation from the
experimental data, and discusses the relation of velocity
estimation with contamination level in water. Finally, sec-
tion V concludes the present work.

2. MEASUREMENT SYSTEM DESCRIPTION

The monitoring site was located in the bay of Arcachon,
France, at the Eyrac pier (Latitude: 44� 40 N, Longitude:
1� 10 W). Sixteen Paci�c oysters, Crassostrea gigas, mea-
suring from 8 cm to 10 cm in length were permanently
installed on this site. These oysters were all from the same
age group (1:5 years old) and came from the same local
supplier. They also all grew in the bay of Arcachon. They

were immersed on the sea bottom (at 3 m to 7 m deep in
the water, depending on the tide activity). We analyzed
the data for the year 2007.

The electronic equipment has been �rst described in [Tran
et al. (2003)] and slightly modi�ed (adapted to severe
open ocean conditions) in [Chambon et al. (2007)]. A
considerable advantage of this monitoring system is that
it is completely autonomous and made to work without in
situ human intervention for one full year. Each animal is
equipped with two light coils (sensors) of approximately
100 mg each, �xed on the edge of each valve. One of
the coils emits a high-frequency sinusoidal signal, that is
received by the other coil. One measurement is performed
every 0:1 sec (i.e. at 10 Hz) for one among the sixteen
animals. So the behavior of a particular oyster is measured
every 1:6 sec. EPOC's website MolluScan-Eye2 can be
consulted to see the recorded data sets of information.
So, every day,54000triplets (1 distance, 1 stamped time
value, 1 animal number) are collected for each oyster. The
strength of the electric �eld produced between the two
coils is proportional to the inverse of distance between the
point of measurement and the center of the transmitting
coil leading to the measurement of the distance between
coils. A schematic description of the monitoring system
can be found in [Ahmed et al. (2014, 2015)].

3. DIFFERENTIATION METHODS

For our problem of velocity estimation of the valve activity
in oysters, we have considered three di�erent methods of
derivative estimation that are summarized below.

3.1 Algebraic di�erentiator

The algebraic time derivative estimation presented here is
based on concepts of di�erential algebra and operational
calculus. A more detailed description of the approach can
be found in [Mboup et al. (2009); Ushirobira et al. (2013)].
A moving horizon version of this technique is summarized
below adapted from the references mentioned just before.

For a real-valued signaly(t), analytic on some real interval,
consider its approximating N th degree polynomial func-
tion, originated from its truncated Taylor expansion:

y(t) =
NX

i =0

ai

i !
t i ; (1)

where the termsai 's are the unknown constant coe�cients
representing the derivatives of the signal. The aim is to
estimate these time derivatives of y(t), up to order N .
This estimation can be done by restarting the algebraic
combinations on moving time horizon of integrals ofy(t).
The summarized result of this method is given below taken
from [Mboup et al. (2009)]:.

For any T > 0, the j -th order time derivative estimate
by( j ) (t); j = 0 ; 1; 2; � � � ; N; of the signal y(t) de�ned in (1)
satis�es the following convolution

by( j ) (t) =
Z T

0
H j (T; � )y(t � � )d�; j = 0 ; 1; � � � ; N;

2 http://molluscan-eye.epoc.u-bordeaux1.fr/



for all t � T , where the convolution kernel,

H j (T; � ) =
(N + j + 1)!( N + 1)!

TN + j +1 �

N � jX

� 1=0

jX

� 2 =0

(T � � ) � 1 + � 2 (� � )N � � 1 � � 2

� 1!� 2!(N � � 1 � � 2)!( � 1 + � 2)!(N � � 1 + 1)
:

As we can conclude, the kernelH j (T; � ) depends on the
order j of the time derivative to be estimated and on an
arbitrary constant length of time window, T > 0. Since we
are interested in calculating the �rst-order time derivative,
let us consider a degree-one polynomialy(t) = a0 + a1t.
By applying the above result to this signal, we obtain the
following �rst-order time derivative estimate

b_y(t) =
Z T

0

6
T3 (T � 2� )y(t � � )d�: (2)

3.2 A non-homogeneous HOSM di�erentiator

The di�erentiation problem in this case has the following
setup: let us consider an unknown signaly(t). To calculate
the derivative of this signal, consider an auxiliary equation
_x = u where x(t) denotes the estimate of the original
signal y(t). The control law u is designed to drive the
estimation error, i.e. e(t) = x(t) � y(t), to zero. The work
[E�mov and Fridman (2011)] proposes a variant of a super-
twisting �nite-time control u that ensures vanishing the
error e(t) and its derivative _e(t). Thus it can be used to
provide a derivative estimate. It has also been shown that
the obtained estimate is robust against a non-di�erentiable
noise of any amplitude. Now if we consider a noisy version
of the original signal i.e. ~y(t) = y(t) + � (t); where � (t) is
a bounded measurement noise, then the di�erentiator is
given by [E�mov and Fridman (2011)]:

_x1 = � �
p

jx1 � ~y(t)j sgn (x1 � ~y(t)) + x2; (3)

_x2 = � � sgn (x1 � ~y(t)) � � sgn (x2) � x2;

where x1; x2 2 R are the state variables of the system (3),
�; � and � are the tuning parameters with � > 0 and
� > � � 0. The variable x1(t) serves as an estimate of the
function y(t) and x2(t) converges to _y(t), i.e. it provides
the derivative estimate. Therefore the system (3) has~y(t)
as the input and x2(t) as the output.

Moreover, the system (3) is discontinuous and a�ected by
the disturbance � . So, the �rst thing to prove is that the
system has bounded trajectories. The second important
point is to check the quality of the derivative estimation
with respect to noise amplitude. To proceed, introduce new
variables e1 = x1(t) � y(t) and e2 = x2(t) � _y(t). The
system (3) can now be written with respect to the new
variables as:

_e1 = � �
p

je1 j sgn (e1 ) + � 1 (t );

_e2 = � 
 (t ) sgn (e1 ) � � sgn (e2 ) � e1 + � 2 (t ); (4)

� 1 (t ) = �
p

je1 j sgn (e1 ) �
� p

je1 � � (t ) j sgn (e1 � � (t ))
�

;

� 2 (t ) = � (sgn (e1 ) � sgn (e1 � � (t ))) ;

where the disturbances originated from the noise� are
� 1 and � 2 and the function 
 (t) = � + ( _y(t) + •y(t)) �
� (sgn (e2(t)) � sgn (e2(t) + _y(t))) sgn (e2(t)) is piecewise
continuous. If j _y(t)j � `1; j •y(t)j � `2, for example, then for

� > ` 1 + `2 +2 � , it is strictly positive and 0 < � � 
 (t) � �
for � = � � `1 � `2 � 2� and � = � + `1+ `2+2 � . Assume that
j� (t)j � � 0 for all t 2 R+ : By de�nition, j� 1(t)j � �

p
2� 0,

� 2(t) = 0 for je1(t)j � � 0, j� 2(t)j � 2� and � 2(t)e1(t) � 0
for all t 2 R+ . Then the global boundedness of the solu-
tions of the di�erentiator (4) is given by the next Lemma.
Lemma 1. (E�mov and Fridman (2011)). Let the signal
� : R ! R be Lebesgue measurable andj _y(t)j � `1,
j •y(t)j � `2, j� (t)j � � 0 for all t 2 R+ ; � > 0, � > 0 and
0 < � < �: Then in (4) for all t0 2 R+ and initial conditions
x1(t0) 2 R; x2(t0) 2 R the solutions are bounded:

jx1 (t ) � y(t )j < max
�

jx1 (t0 ) � y(t0 )j; 4� � 2 (jx2 (t0 ) � _y(t0 )j

+3 � + `1 + `2 + � + �
p

2� 0 )2
o

;

jx2 (t ) � _y(t )j � j x2 (t0 ) � _y(t0 )je� 0:5t + j3� + `1 + `2 + � j;

This Lemma states that the proposed di�erentiator has
bounded solution for any positive values of the tuning
parameters � , � and � and all initial conditions. The
accuracy of the derivative estimation in the case of non-
di�erentiable noise is analyzed in the following. The prop-
erties of the signal� (t) are the same as in Lemma 1.
Lemma 2. (E�mov and Fridman (2011)). Let � > ` 1 +
`2+2 �; � > 0 and � � 2

� p
8�� +

p
� + � (� � � )

�
=(1:5� +

0:5� ). Then for any initial conditions e(0) 2 
 0 =n
e 2 R2 : � je1 (0) j + 0 :5e2

2 (0) � 2
p

2� (� + � )�� (� � � ) � 1
o

; the

trajectories of the system (4) satisfy the estimate for all
t � T

je1 (t )j � � � 1
�

c1 � 0 + c2

p
� 0

�
;

je2 (t )j �

r
2

�
c1 � 0 + c2

p
� 0

�
;

c1 = max

�
8

� 2

�
(0:025� + � )� + max

np
2(� + � ); 6

o
�
� 2

; �

�
;

c2 = � 2=(�
p

2); � = min
�

��=
p

�;
p

2�
	

where the �nite time T of convergence possesses the
estimate T � 4� � 1

p
� je1(0)j + 0 :5e2

2(0), provided that
c1� 0 + c2

p
� 0 � 2

p
2� (� + � )�� (� � � ) � 1.

The result of Lemma 2 says that if the noise amplitude� 0
is comparable with the chosen� , � and 
 (the constraint
c1� 0 + c2

p
� 0 � 2

p
2� (� + � )�� (� � � ) � 1 holds), then the

resulted estimatex2 on the derivative _y has the error pro-
portional to � 0:5

0 and � 0:25
0 . If the noise amplitude is very

high, then the result of Lemma 1 satis�es guaranteeing the
boundedness of the trajectory.

3.3 Homogeneous �nite-time di�erentiator

Consider a nonlinear system of the following form:

_x = � (x; u); (5)

y = h(x); (6)

where x 2 Rd is the state, u 2 Rn is a known and
su�ciently smooth control input and y(t) 2 R is the
output. The function � : Rd � Rm ! Rd is a known
continuous vector �eld. It is assumed that the system



described by (5)�(6) is locally observable and there exists
a local coordinate transformation that transforms the
system (5)�(6) into the observable canonical form

_z = Az + f (y; u; _u; : : : ; u ( r ) ); (7)

y = Cz;

where z 2 Rn is the state, r > 0 and

A =

0

B
B
B
@

a1 1 0 0 0
a2 0 1 0 0
...

...
...

. . .
...

an � 1 0 0 0 1
an 0 0 0 0

1

C
C
C
A

; C =
�

1 0 � � � 0
�

: (8)

The observer design for the transformed system then
becomes simple as all the nonlinearities are now functions
of output and known input.

The notions of �nite time stability and homogeneity used
here are omitted due to space limitation and can be
consulted from [Perruquetti et al. (2008)]. An observer can
be designed as follows

0

B
B
B
B
B
@

dẑ1

dt
dẑ2

dt
...

dẑn

dt

1

C
C
C
C
C
A

= A

0

B
B
@

z1

ẑ2

...
ẑn

1

C
C
A + f (y; u; _u; � � � ; u ( r ) ) �

0

B
B
@

� 1 (z1 � ẑ1 )
� 2 (z1 � ẑ1 )

...
� n (z1 � ẑ1 )

1

C
C
A ;

where the functions � i 's are de�ned in a way that
the observation error e = z � ẑ tends to zero in a
�nite time (an example is given below). According to
[Perruquetti et al. (2008)], an approach to ensure FTS is
based on homogeneity. The observation error dynamics can
be written as 8

>>>>>><

>>>>>>:

_e1 = e2 + � 1(e1);
_e2 = e3 + � 2(e1);

...
_en � 1; en + � n � 1(e1);
_en = � n (e1):

(9)

Denote dxc = jxj � sgn(x) for all x 2 R and some � >
0, then select � i (e1) = � ki de1c� i ;1 � i � n � 1 for
coe�cients k1; :::; kn forming a Hurwitz polynomial and
the powers(� 1; :::; � n ) 2 Rn

> 0 have to be selected to ensure
that the system (9) is homogeneous with respect to some
(r 1; :::; r n ) 2 Rn

> 0. For a given d 2 R, the sequences
(r 1; :::; r n ) and (� 1; :::; � n ) can be chosen via the following
recurrent formulas:

r i +1 = r i + d; 1 � i � n � 1;

� i =
r i + 1

r 1
; 1 � i � n � 1;

� n =
r n + d

r 1
;

then the system (9) is homogeneous of degreed w.r.t. the
weights (r 1; :::; r n ) 2 Rn

> 0 [Perruquetti et al. (2008)]. A
particular choice is r i = f (i � 1)� � (i � 2)g and � i = i� �

(i � 1) for all 1 � i � n for some� 2
h
1 � 1

n � 1 ; 1
i
, then (9)

is homogeneous of degree� � 1 [Perruquetti et al. (2008)].
Therefore, the system (9) can be then written as follows

8
>>>>><

>>>>>:

_e1 = e2 � k1de1c� ;

_e2 = e3 � k2de1c2� � 1 ;
...

_en � 1 = en � kn de1c( n � 1) � � ( n � 2) ;

_en = kn de1cn� � ( n � 1) :

Theorem 3. (Perruquetti et al. (2008)). For any coe�cients
k1; : : : ; kn forming a Hurwitz polynomial, there exists
� 2

h
1 � 1

n � 1 ; 1
i

(su�ciently close to 1) such that (9) is
globally FTS.

The advantages of homogeneous �nite-time stable systems
include the rate of convergence and their robustness with
respect to di�erent disturbances.

Using the designed observer, a di�erentiator can be de-
rived. For this purpose consider a smooth signaly(t). The
aim of the di�erentiator is to estimate the successive time
derivatives of y(t) up to the order n � 1, i.e. _y(t), : : : ,
y(n � 1) (t). Assume that y(n ) (t) = �

�
_y(t); : : : ; y(n � 1) (t)

�
:

Set Y =
�
y _y � � � y(n � 1)

� T
. Then,

_Y = AY + �( Y );

y = CY;
where A and C can be found in (8) and

�( Y ) =

0

B
B
@

0
...
0

�
�

_y(t ); :::; y ( n � 1) (t )
�

1

C
C
A 2 Rn :

So, the following homogeneous �nite-time observer (which
is a di�erentiator in this case) can be proposed:

_z1 = z2 � k1bz1 � ye� ;

_zi = zi +1 � kbz1 � yei� � ( i � 1) ; i = 2 ; : : : ; n � 1;

_zn = � kn bz1 � yen� � ( n � 1) :

4. RESULT AND DISCUSSIONS

As mentioned in the Introduction, the goal of this paper
is to estimate the velocities of the valve opening/closing
activities of an oyster population for ecological monitor-
ing. The activity of an oyster population was observed
in the bay of Arcachon, France. The water quality of our
experimental site was fairly the same throughout the year.
Therefore, the behavior of the population was about the
same as their natural behavior. However, during the Win-
ter, excessive rainfall was observed from mid-November to
mid-December in the bay of Arcachon in 2007. This can be
seen as a perturbation for the oysters. As a consequence,
we may expect that this perturbation would change the
behavior of the oyster population resulting in a rapid open-
ing/closing of the valves. This would imply an increase of
the velocity, as velocity is nothing but the time derivative
of the distance of the valve opening/closing.

The valve opening/closing activity of the oyster population
can be seen in Fig. 1. Once we have the data of the distance
of the valve opening/closing, we can estimate the velocity
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Fig. 1. Valve opening/closing activity of the oyster population for
the month of December in the bay of Arcachon, France

Fig. 2. Velocity estimation for the valve opening/closing activities
of the oyster population

Fig. 3. Zoomed view of Figure 2

Fig. 4. Precipitation and water salinity level in the bay of Arcachon
in 2007

of this activity using the methods described in Section 3.
The estimated valve velocity of the oyster population (a
mean value for all oysters) is given in Fig. 2, while the data
regarding the precipitation and water salinity level in the
bay of Arcachon during 2007 can be seen in Fig. 4.

Fig. 2 contains 1.5425 million data points. Now, if we take
a closer look at the �gure by zooming it, the velocity
estimation performance of the di�erent di�erentiators can
be observed more precisely. A close-look of Fig. 2 can
be seen in Fig. 3. From this last �gure, it can be con-
cluded that the three di�erentiators are producing roughly
the same result. HOSM di�erentiator is a�ected by the
chattering e�ect, but in spite of this fact, the output of
HOSM di�erentiator is very much similar to the output of
Homogeneity based di�erentiator. The output of algebraic
method based di�erentiator is a little delayed, but it is
smoother than the others. From the output of the three

Fig. 5. Valve opening/closing activity of the population on Decem-
ber 17 between 11.00 hour and 12.00 hour

di�erentiators, no de�nitive conclusion can be drawn by
saying that a certain di�erentiator is the best in our case
as no reference is achievable (no quantitative evaluation).
However, a qualitative assessment can be performed: since
HOSM and homogeneity based di�erentiator both recon-
struct/estimate the original signal to calculate its time
derivative, a qualitative comparison is possible between
them by looking at the original signal estimation error.
This approach is not applicable for the algebraic di�eren-
tiator. For HOSM, the estimation error was 0:22% while
for Homogeneity based di�erentiator it was 0:35%.

As mentioned before, some heavy rainfall was observed at
the beginning of December and it could be considered as a
potential perturbation for the oysters. From the �gures, we
can see that no abnormal/sudden rapid change in velocity
can be observed within these days. The velocity pattern
starting from the beginning of December and onward
seems quite normal. So, no direct relationship between
the valve opening/closing activity and the perturbation
(i.e. heavy rainfall) was established here. One reason
for this is maybe the data itself, for example, if some
dynamics is missing. Our data acquisition system spends
0:1 sec for each oyster and continues this for the rest
of the population. So, the next time it returns to the
same oyster when 1:6 sec is already past and we do
not have any information within this period. It has been
observed in the laboratory environment that oysters can
respond more rapidly to a perturbation in the water
quality. Amplitude/level of perturbation along with other
environmental factors like, tide, sun, cloudiness,etc., play
a role in their response to perturbations as well. All these
possibilities plus an improved data acquisition system
should be considered for a future study.

A �nal remark is that an abnormal increase in the pop-
ulation velocity of valve activity has been detected by
the system later on between December 17 & 18. Most
individuals in the population closed their valve rapidly
in unison as it can be better observed by the zoom of
the population activity in Fig. 5. From this �gure, we
can tell that the members of the population suddenly
closed their valve around 11 hour 26 minutes. Before, we
didn't observe any such rapid valve movement in unison.
That is why it can't be said that this behavior is due to
some internal dynamics of the individual oysters. We can
conclude that they all shared/in�uenced by some common
input/external stimulus. However, the origin of this com-
mon input/external stimulus is still not known to us. In
terms of the e�ectiveness of our di�erentiators, it can be
said from Fig. 2 that they are quite capable of detecting
this sudden rapid closing of the valve of the population
which happened in just few seconds. This was the aim of
our work i.e. to detect the rapid movement of the valve



activity by which we can monitor the water quality. In
that sense, we can tell that our work is quite successful in
case of the detection of the rapid change in valve activity
which can be a way to monitor the water quality.

5. CONCLUSION

This paper presents the application of three di�erent veloc-
ity estimators to estimate the valve movement activity of
an Oyster population for ecological monitoring, i.e. water
quality surveillance. The behavior of the population of
16 oysters was normalized and averaged to generate the
behavior of the population. This data was then used to
estimate the velocities. The three di�erent velocity esti-
mators were: algebraic-based method di�erentiator, non-
homogeneous higher order sliding mode di�erentiator and
homogeneous �nite-time di�erentiator. Their performance
was satisfactory in estimating the velocity of the oyster
population. Their output was more or less almost the
same. This estimated velocity was then used to monitor
the water quality as the valve movement activity depends
on this. It was shown that the velocity estimators were
capable of detecting the rapid change in valve movement
due to the synchronous behavior of oyster population to
some common input/external stimulus. This capability of
detecting the rapid change can be used for monitoring the
water quality by using the oysters as biosensors.

This work has some limitation because of the data being
used as it was discussed in the previous Section. In
future works, the estimators have to be tested using the
data providing more information than the current one so
that every possible dynamics of the oyster population is
preserved in the data set. Moreover, the same approach,
i.e. velocity estimation, can be considered for detecting
other phenomenon like spawning in a future work.
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