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Abstrat: This researh report addresses the problem of multihannel audio soure separation.

We propose a deep neural network (DNN) based framework where the soure spetra are estimated

using DNNs and used in a multihannel �lter. The �lter is derived using an iterative expetation-

maximization (EM) algorithm, in whih spatial ovariane matries enode the spatial information.

We present an extensive experimental study to show the impat of di�erent design hoies on the

performane of the proposed tehnique. We onsider di�erent ost funtions for the training of

DNNs, namely Itakura-Saito (IS) divergene, Cauhy ost funtion, phase-sensitive ost funtion,

and mean squared error (MSE). The use of probabilistially motivated ost funtion, suh as the IS

divergene, is interesting beause it leads to a mathematially rigorous EM interpretation for the

proposed framework. We also study the number of EM iterations and the use of multiple DNNs,

where eah DNN aims to improve the spetra estimated by the preeding EM iteration. Finally,

we present its appliation to a speeh enhanement problem. The experimental results show the

bene�t of the proposed multihannel approah over a single-hannel DNN-based approah.

Key-words: audio soure separation, speeh enhanement, multihannel, deep neural networks

(DNN), expetation-maximization (EM)



Séparation de soures audio multianale par réseaux de

neurones profonds

Résumé : Ce rapport porte sur le problème de la séparation de soures audio multianal. Nous

proposons un adre basé sur les réseaux de neurones profonds (deep neural networks ou DNNs)

où les spetres des soures sont estimé par des DNNs et utilisés dans un �ltre multianal. Ce �ltre

est obtenu en utilisant un algorithme espérane-maximisation (EM), dans lequel des matries de

ovariane spatiale enodent l'information spatiale. Nous présentons une étude expérimentale

approfondie montrant l'impat de di�érents hoix sur la performane de la tehnique proposée.

Nous onsidérons di�érentes fontions de oût pour l'apprentissage des DNNs: la divergene

d'Itakura-Saito (IS) divergene, la fontion de oût de Cauhy, une fontion de oût sensible à la

phase, et l'erreur quadratique moyenne (mean squared error ou MSE). L'usage de fontions de

oût motivées par la théorie des probabilités, omme la divergene IS et la fontion de oût de

Cauhy, est intéressant ar il permet une interprétation probabiliste rigoureuse de l'algorithme

EM proposé. Nous étudions aussi le nombre d'itérations EM et l'usage de DNNs multiples,

où haque DNN vise à améliorer les spetres estimés à l'itération EM préédente. En�n, nous

présentons l'appliation de ette tehnique à un problème de rehaussement de la parole. Les

résultats expérimentaux montrent le potentiel de l'approhe multianal proposée par rapport à

une approhe basée sur les DNNs à un seul anal.

Mots-lés : séparation de soures audio, rehaussement de la parole, multianal, réseaux de

neurones profonds, algorithme Espérane-Maximisation (EM)



Multihannel audio soure separation with deep neural networks 3

1 Introdution

Audio soure separation aims to reover the signals of underlying sound soures from an observed

mixture signal. Reent researh on soure separation an be divided into (1) speeh separation, in

whih the speeh signal is reovered from a mixture ontaining multiple bakground noise soures

with possibly interfering speeh; and (2) musi separation, in whih the singing voie and pos-

sibly ertain instruments are reovered from a mixture ontaining multiple musial instruments.

Speeh separation is mainly used for speeh enhanement in hearing aids or noise robust au-

tomati speeh reognition (ASR), while musi separation has many interesting appliations,

inluding musi editing/remixing, upmixing, musi information retrieval, and karaoke [1�5℄.

Reent studies have shown that deep neural networks (DNNs) are able to model omplex

funtions and perform well on various tasks, notably ASR [6,7℄. More reently, DNNs have been

applied to single-hannel speeh enhanement and shown to provide a signi�ant inrease in

ASR performane ompared to earlier approahes based on beamforming or nonnegative matrix

fatorization (NMF) [8℄. The DNNs typially operate on magnitude or log-magnitude spetra in

the Mel domain or the short time Fourier transform (STFT) domain. Various other features have

been studied in [9�11℄. The DNNs an be used either to predit the soure spetrograms [11�16℄

whose ratio yields a time-frequeny mask or diretly to predit a time-frequeny mask [10,17�21℄.

The estimated soure signal is then obtained as the produt of the input mixture signal and the

estimated time-frequeny mask. Various DNN arhitetures and training riteria have been

investigated and ompared [19,21,22℄. Although the authors in [15℄ onsidered both speeh and

musi separation, most studies foused either on speeh separation [10�12,14,17�21℄ or on musi

separation [13, 16℄.

As shown in many works mentioned above, the use of DNNs for audio soure separation

by modeling the spetral information is extremely promising. However, a framework to exploit

DNNs for multihannel audio soure separation is laking. Most of the approahes above on-

sidered single-hannel soure separation, where the input signal is either one of the hannels of

the original multihannel mixture signal or the result of delay-and-sum (DS) beamforming [19℄.

E�orts on exploiting multihannel data have been done by extrating multihannel features and

using them to derive a single-hannel mask [10, 11℄. As a result, they do not fully exploit the

bene�ts of multihannel data as ahieved by multihannel �ltering [1, 4℄.

In this researh report, we propose a DNN-based multihannel soure separation framework

where the soure spetra are estimated using DNNs and used to derive a multihannel �lter

using an iterative EM algorithm. The framework is built upon the state-of-the-art iterative

EM algorithm in [23℄ whih integrates spatial and spetral models in a probabilisti fashion.

This model was used up to some variants in [24�28℄. We study the impat of di�erent design

hoies on the performane, inluding the ost funtion used for the training of DNNs and the

number of EM iterations. We also study the impat of the spatial information by varying the

number of spatial parameter updates and the use of multiple DNNs to improve the spetra over

the iterations. We present the appliation of the proposed framework to a speeh enhanement

problem.

This work extends our preliminary work in [29℄ by following the exat EM algorithm in [24℄,

instead of its variant in [28℄ and by reporting extensive experiments to study the impat of

di�erent design hoies not only on the speeh reognition performane, but also on the soure

separation performane.

The rest of this researh report is organized as follows. Setion 2 desribes the iterative EM

algorithm for multihannel soure separation, whih is the basis for the proposed DNN-based

iterative algorithm desribed in Setion 3. Setion 4 shows the e�etiveness of the framework

for a speeh separation problem and the impat of di�erent design hoies. Finally, Setion 5
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4 Nugraha, Liutkus, and Vinent

onludes the researh report and presents future diretions.

2 Bakground

In this setion, we brie�y desribe the problem of multihannel soure separation and the iterative

EM algorithm in [23, 24℄, whih is the basis for the proposed DNN-based multihannel soure

separation algorithm.

2.1 Problem formulation

Following lassial soure separation terminology [5℄, let I denote the number of hannels, J the

number of soures, cj(t) ∈ RI×1
the I-hannel spatial image of soure j, and x(t) ∈ RI×1

the

observed I-hannel mixture signal. Both cj(t) and x(t) are in the time domain and related by

x(t) =

J∑

j=1

cj(t). (1)

Soure separation aims to reover the soure spatial images cj(t) from the observed mixture

signal x(t).

2.2 Model

Let x(f, n) ∈ CI×1
and cj(f, n) ∈ CI×1

denote the short-time Fourier transform (STFT) oe�-

ients of x(t) and cj(t), respetively, for frequeny bin f and time frame n. Also, let F be the

number of frequeny bins and N the number of time frames.

We assume that cj(f, n) are independent of eah other and follow a multivariate omplex-

valued zero-mean Gaussian distribution [23, 24, 27, 30℄

cj(f, n) ∼ Nc (0, vj(f, n)Rj(f)) , (2)

where vj(f, n) ∈ R+ denotes the power spetral density (PSD) of soure j for frequeny bin f
and time frame n, and Rj(f) ∈ C

I×I
is the spatial ovariane matrix of soure j for frequeny

bin f . This I × I matrix represents spatial information by enoding the spatial position and the

spatial width of the orresponding soure [23℄. Sine the mixture x(f, n) is the sum of cj(f, n),
it is onsequently distributed as

x(f, n) ∼ Nc


0,

J∑

j=1

vj(f, n)Rj(f)


 . (3)

Given the PSDs vj(f, n) and the spatial ovariane matries Rj(f) of all soures, the spa-

tial soure images an be estimated in the minimum mean square error (MMSE) sense using

multihannel Wiener �ltering [23, 27℄

ĉj(f, n) = Wj(f, n)x(f, n), (4)

where the Wiener �lter Wj(f, n) is given by

Wj(f, n) = vj(f, n)Rj(f)




J∑

j′=1

vj′(f, n)Rj′ (f)




−1

. (5)

Inria



Multihannel audio soure separation with deep neural networks 5

Finally, the time-domain soure estimates ĉj(t) are reovered from ĉj(f, n) by inverse STFT.

Following this formulation, soure separation beomes the problem of estimating the PSD

and the spatial ovariane matries of eah soure. This an be ahieved using an EM algorithm.

2.3 General iterative EM framework

The general iterative EM algorithm is summarized in Algorithm 1. It an be divided into the E-

step and the M-step. The estimated PSDs vj(f, n) are initialized in the spetrogram initialization

step, for instane by omputing the PSD of the mixture, while the estimated spatial ovariane

matries Rj(f) an be initialized by I × I identity matries. In the E-step, given the estimated

parameters vj(f, n) and Rj(f) of eah soure, the soure image estimates ĉj(f, n) are obtained
by multihannel Wiener �ltering (4) and the posterior seond-order raw moments of the spatial

soure images R̂cj
(f, n) are omputed as

R̂cj
(f, n) = ĉj(f, n)ĉ

H
j (f, n) + (I−Wj(f, n)) vj(f, n)Rj(f), (6)

where I denotes the I × I identity matrix and ·H is the Hermitian transposition. In the M-step,

the spatial ovariane matries Rj(f) are updated as

Rj(f) =
1

N

N∑

n=1

1

vj(f, n)
R̂cj

(f, n). (7)

The soure PSDs vj(f, n) are �rst estimated without onstraints as

zj(f, n) =
1

I
tr
(
R

−1
j (f)R̂cj

(f, n)
)
, (8)

where tr(· ) denotes the trae of a matrix. Then, they are updated aording to a given spetral

model by �tting vj(f, n) from zj(f, n) in the spetrogram �tting step. The spetrogram initial-

ization and the spetrogram �tting steps depend on how the spetral parameters are modeled.

Spetral models used in this ontext may inlude NMF [24℄, whih is a linear model with nonneg-

ativity onstraints, KAM [27℄, whih relies on the loal regularity of the soures, and ontinuity

models [31℄. In this study, we propose to use DNNs for this purpose.

3 DNN-based multihannel soure separation

In this setion, we propose a DNN-based multihannel soure separation algorithm, whih is

based on the iterative algorithm presented in Setion 2. Theoretial arguments regarding the

ost funtion for DNN training are also presented.

3.1 Algorithm

In our algorithm, DNNs are employed to model the soure spetra vj(f, n). We use them to

predit the soure spetra instead of the time-frequeny masks beause our preliminary experi-

ments showed that the performane of both approahes was similar on our dataset. Moreover,

it is more onvenient to integrate DNNs that estimate spetra into Algorithm 1 beause the

algorithm requires PSD and the power spetrum an be viewed as an estimate of the PSD [32℄.

A DNN is used for spetrogram initialization and one or more DNNs are used for spetrogram

�tting. Let DNN0 be the DNN used for spetrogram initialization and DNNl the ones used for

RR n° 8740



6 Nugraha, Liutkus, and Vinent

Algorithm 1 General iterative EM algorithm [23,24℄

Inputs:

The STFT of mixture x(f, n)
The number of hannels I
The number of soures J
The number of EM iterations L
The spetral models M0, M1, . . . , MJ

1: for eah soure j of J do

2: Initialize the soure spetrogram:

vj(f, n)← spetrogram initialization

3: Initialize the soure spatial ovariane matrix:

Rj(f)← I × I identity matrix

4: end for

5: for eah EM iteration l of L do

6: Compute the mixture ovariane matrix:

Rx(f, n)←
∑J

j=1
vj(f, n)Rj(f)

7: for eah soure j of J do

8: Compute the Wiener �lter gain:

Wj(f, n)← Eq. (5) given vj(f, n), Rj(f), Rx(f, n)

9: Compute the spatial soure image:

ĉj(f, n)← Eq. (4) given x(f, n), Wj(f, n)

10: Compute the posterior seond-order raw moment of the spatial soure image:

R̂cj
(f, n)← Eq. (6) given vj(f, n), Rj(f), Wj(f, n), ĉj(f, n)

11: Update the soure spatial ovariane matrix:

Rj(f)← Eq. (7) given vj(f, n), R̂cj
(f, n)

12: Compute the unontrained soure spetrogram:

zj(f, n)← Eq. (8) given Rj(f), R̂cj
(f, n)

13: Update the soure spetrogram:

vj(f, n)← spetrogram �tting given zj(f, n), Mj

14: end for

15: end for

16: for eah soure j of J do

17: Compute the �nal spatial soure image:

ĉj(f, n)← Eq. (4) given all vj(f, n), all Rj(f), x(f, n)

18: end for

Outputs:

All spatial soure images [ĉ1(f, n), . . . , ĉJ (f, n)]

Inria



Multihannel audio soure separation with deep neural networks 7

spetrogram �tting. DNN0 aims to estimate the soure spetra simultaneously from the observed

mixture. This usage of joint DNN is similar to the usage of DNNs in the ontext of single-hannel

soure separation in [12,14,15℄. Meanwhile, DNNl aims to improve the soure spetra estimated

at iteration l. This usage of DNN to obtain lean spetra from noisy spetra is similar to the

usage of DNNs in the ontext of single-hannel speeh enhanement in [33, 34℄. Theoretially,

we an train di�erent DNNs for spetrogram �tting at di�erent iterations. Thus, the maximum

number of DNNs for spetrogram �tting is equal to the number of iterations L.
In this researh report, we onsider magnitude STFT spetra as the input and output of

DNNs. Following [19℄, the input and output spetra are omputed from single-hannel signals

x̃(f, n) and c̃j(f, n) obtained from the orresponding multihannel signals x(f, n) and cj(f, n),
respetively, by DS beamforming. All DNNs are trained with the magnitude spetra of the

single-hannel soure images |c̃j(f, n)| as the target.

The inputs of DNN0 and DNNl are denoted by |x̃(f, n)| and
√
zj(f, n), respetively. The

outputs of both types of DNNs for soure j, frequeny bin f , and frame index n are denoted by√
vj(f, n). DNN0 takes the magnitude spetra |x̃(f, n)| and yields the initial magnitude spetra√
vj(f, n) for all soures simultaneously. DNNl takes the magnitude spetra

√
zj(f, n) of all

soures and yields the improved magnitude spetra

√
vj(f, n) for all soures simultaneously.

The proposed DNN-based iterative algorithm is desribed in Algorithm 2.

3.2 Cost funtions

We are interested in the use of di�erent ost funtions for training the DNNs.

1. The Itakura-Saito (IS) divergene [35℄ between the target |c̃j(f, n)| and the estimate

√
vj(f, n)

is expressed as

DIS =
1

JFN

∑

j,f,n

(
|c̃j(f, n)|2

vj(f, n)
− log

|c̃j(f, n)|2

vj(f, n)
− 1

)
. (9)

It is a popular metri in the speeh proessing ommunity beause it yields signals with

good pereptual quality. Moreover, it is desirable from a theoretial point of view beause

it results in maximum likelihood (ML) estimation of the spetra [35℄ and the whole Al-

gorithm 2 then ahieves ML estimation. While the IS divergene has beome a popular

hoie for NMF-based audio soure separation [35�37℄, its use as the ost funtion for DNN

training is unommon.

2. The Kullbak-Leibler (KL) divergene [38℄ is expressed as

DKL =
1

JFN

∑

j,f,n

(
|c̃j(f, n)| log

|c̃j(f, n)|√
vj(f, n)

− |c̃j(f, n)|+
√
vj(f, n)

)
. (10)

It is also a popular hoie for NMF-based audio soure separation [35℄ and has been shown

to be e�etive for DNN training [13℄.

3. The Cauhy ost funtion is expressed as

DCau =
1

JFN

∑

j,f,n

(
3

2
log
(
|c̃j(f, n)|

2 + vj(f, n)
)
− log

√
vj(f, n)

)
. (11)

It has been proposed reently for NMF-based audio soure separation and advoated as

performing better than the IS divergene is some ases [39℄.

RR n° 8740



8 Nugraha, Liutkus, and Vinent

Algorithm 2 DNN-based iterative algorithm

Inputs:

The STFT of mixture x(f, n)
The number of hannels I
The number of soures J
The number of spatial updates K
The number of EM iterations L
The DNN spetral models DNN0, DNN1, . . . , DNNL

1: Compute a single-hannel version of the mixture:

x̃(f, n)← DS beamforming given x(f, n)

2: Initialize all soure spetrograms simultaneously:

[v1(f, n), . . . , vJ(f, n)]← DNN0 (|x̃(f, n)|)
2

3: for eah soure j of J do

4: Initialize the soure spatial ovariane matrix:

Rj(f)← I × I identity matrix

5: end for

6: for eah EM iteration l of L do

7: for eah spatial update k of K do

8: Compute the mixture ovariane matrix:

Rx(f, n)←
∑J

j=1
vj(f, n)Rj(f)

9: for eah soure j of J do

10: Compute the Wiener �lter gain:

Wj(f, n)← Eq. (5) given vj(f, n), Rj(f), Rx(f, n)

11: Compute the spatial soure image:

ĉj(f, n)← Eq. (4) given x(f, n), Wj(f, n)

12: Compute the posterior seond-order raw moment of the spatial soure image:

R̂cj
(f, n)← Eq. (6) given vj(f, n), Rj(f), Wj(f, n), ĉj(f, n)

13: Update the soure spatial ovariane matrix:

Rj(f)← Eq. (7) given vj(f, n), R̂cj
(f, n)

14: end for

15: end for

16: for eah soure j of J do

17: Compute the unontrained soure spetrogram:

zj(f, n)← Eq. (8) given Rj(f), R̂cj
(f, n)

18: end for

19: Update all soure spetrograms simultaneously:

[v1(f, n), . . . , vJ (f, n)]← DNNl

([√
z1(f, n), . . . ,

√
zJ(f, n)

])2

20: end for

21: for eah soure j of J do

22: Compute the �nal spatial soure image:

ĉj(f, n)← Eq. (4) given all vj(f, n), all Rj(f), x(f, n)

23: end for

Outputs:

All spatial soure images [ĉ1(f, n), . . . , ĉJ (f, n)]

Inria



Multihannel audio soure separation with deep neural networks 9

4. The phase-sensitive (PS) ost funtion is de�ned as

DPS =
1

2JFN

∑

j,f,n

|mj(f, n)x̃(f, n)− c̃j(f, n)|
2, (12)

where mj(f, n) = vj(f, n)/
∑

j′ vj′ (f, n) is the single-hannel Wiener �lter [8, 22℄. It mini-

mizes the error in the omplex-valued STFT domain, not in the magnitude STFT domain

as the other ost funtions onsidered here.

5. The mean squared error (MSE) [35℄ is expressed as

DMSE =
1

2JFN

∑

j,f,n

(
|c̃j(f, n)| −

√
vj(f, n)

)2

. (13)

It is the most widely used ost funtion for various optimization proesses, inluding DNN

training for regression tasks. Despite its simpliity, it works well in most ases.

4 Experimental evaluation for speeh enhanement

In this setion, we present the appliation of the proposed framework for speeh enhanement in

the ontext of the CHiME-3 Challenge [40℄ and evaluate di�erent design hoies. We onsidered

di�erent ost funtions, numbers of spatial updates, and numbers of spetral updates. We

antiipated that these three parameters are important parameters for the proposed framework.

Extensive experiments have been done to investigate the omparative importane of these three

parameters. By presenting detailed desriptions, we want to boost the reproduibility of the

experiments presented and the performane ahieved in this artile.

4.1 Task and dataset

The CHiME-3 Challenge is a speeh separation and reognition hallenge whih onsiders the use

of ASR for a multi-mirophone tablet devie. In this ontext, we onsider two soures (J = 2),
namely speeh and noise. The hallenge provides real and simulated 6-hannel mirophone

array data in 4 varied noise settings (bus, afe, pedestrian area, and street juntion) divided

into training, development, and test sets. The training set onsists of 1,600 real and 7,138

simulated utteranes (tr05_real and tr05_simu), the development set onsists of 1,640 real and

1,640 simulated utteranes (dt05_real and dt05_simu), while the test set onsists of 1,320 real

and 1,320 simulated utteranes (et05_real and et05_simu). The utteranes are taken from the

5k voabulary subset of the Wall Street Journal orpus [41℄. All data are sampled at 16 kHz.

For further details, please refer to [40℄.

We used the soure separation performane metris de�ned in BSS Eval toolbox 3.0

1

[42℄

in most of the experiments presented in this setion. The metris inlude signal to distortion

ratio (SDR), soure image to spatial distortion ratio (ISR), signal to interferene ratio (SIR),

and signal to artifats ratio (SAR). In addition, at the end of this setion, we use the best speeh

separation system as the front-end, ombine it with the best bak-end in [29℄, and evaluate the

ASR performane in terms of word error rate (WER).

The ground truth speeh and noise signals, whih are employed as training targets for DNN-

based speeh enhanement, were extrated using the baseline simulation tool provided by the

hallenge organizers [40℄. The ground truth speeh and noise signals for the real data are not

1

http://bass-db.gforge.inria.fr/bss_eval/
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10 Nugraha, Liutkus, and Vinent

perfet beause they are extrated based on an estimation of the impulse responses (IRs) between

the lose-talking mirophone and the mirophones on the tablet devie. Hene, the resulting

soure separation performane metris for the real data are unreliable. Therefore, we evaluate

the separation performane on the simulated data for studying the impat of the di�erent design

hoies. By ontrast, sine the ground truth transriptions for ASR are reliable, we evaluate the

ASR performane on real data.

4.2 General system design

The proposed DNN-based speeh separation framework is depited in Fig. 1. A single-hannel

variant of this framework whih boils down to the approah in [19℄ is also depited for omparison.

The framework an be divided into three main suessive steps, namely pre-proessing, spe-

trogram initialization, and multihannel �ltering. We desribe eah step in detail below and then

provide further desription of the DNNs in the following setion.

4.2.1 Preproessing

The STFT oe�ients were extrated using a Hamming window of length 1024 and hopsize 512

resulting F = 513 frequeny bins.

The time-varying time di�erene of arrivals (TDOAs) between the speaker's mouth and eah

of the mirophones are �rst measured using the provided baseline speaker loalization tool [40℄,

whih relies on a nonlinear variant of steered response power using the phase transform (SRP-

PHAT) [43,44℄. All hannels are then aligned with eah other by shifting the phase of STFT of

the input noisy signal x(f, n) in all time-frequeny bins (f, n) by the opposite of the measured

delay. This preproessing is required to satisfy the model in (2) whih assumes that the soures

do not move over time.

In addition, we obtain a single-hannel signal by averaging the realigned hannels together.

The ombination of time alignment and hannel averaging is known as DS beamforming in the

mirophone array literature [45, 46℄.

4.2.2 Spetrogram initialization

The initial PSDs of speeh and noise are omputed from the magnitude soure spetra estimated

by DNN0.

4.2.3 Multihannel �ltering

The PSDs and spatial ovariane matries of speeh and noise are estimated and updated using

the iterative algorithm (Algorithm 2), in whih DNNl is employed for spetrogram �tting at

iteration l. In order to avoid numerial instabilities due to the use of single preision, the PSDs

vj(f, n) are �oored to 10−5
in the EM iteration.

In addition, the hannels of estimated speeh spatial image are averaged to obtain a single-

hannel signal for the ASR evaluation. Empirially, this provided better ASR performane than

the use of one of the hannels.

The number of spatial updates K is investigated in Setion 4.5 and the number of iterations

L in Setion 4.6.
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Figure 1: Proposed DNN-based speeh separation framework. Both the single-hannel and the

multihannel versions are shown.

4.3 DNN spetral models

Three design aspets are disussed below: the arhiteture, the input and output, and the

training.

4.3.1 Arhiteture

The DNNs follow a multilayer pereptron (MLP) arhiteture. The number of hidden layers

and the number of units in eah input or hidden layer may vary. The number of units in the

output layer equals the dimension of spetra multiplied by the number of soures. The ativation

funtions of the hidden and output layers are reti�ed linear units (ReLUs) [47℄.

In this researh report, DNN0 and DNNl have a similar arhiteture. They have an input

layer, three hidden layers, and an output layer. Both types of DNNs have hidden and output

layers size of F×J = 1026. DNN0 has an input layer sizes of F = 513 and DNNl of F×J = 1026.

4.3.2 Inputs and outputs

In order to provide temporal ontext, the input frames are onatenated into supervetors on-

sisting of a enter frame, left ontext frames, and right ontext frames. In hoosing the ontext

frames, we use every seond frame relative to the enter frame in order to redue the redun-

danies aused by the windowing of STFT. Although this auses some information loss, this

enables the supervetors to represent a longer ontext [16, 48℄. In addition, we do not use the

magnitude spetra of the ontext frames diretly, but the di�erene of magnitude between the

ontext frames and the enter frame. These di�erenes at as omplementary features similar

to delta features. Preliminary experiments (not shown here) indiated that this improves DNN

training and provides a minor improvement in terms of SDR.
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Let |x̃(f, n)| be the input frames of DNN0. The supervetor an be expressed as

Z0(f, n) =




|x̃(f, n− 2c)| − |x̃(f, n)|
.

.

.

|x̃(f, n)|
.

.

.

|x̃(f, n+ 2c)| − |x̃(f, n)|




(14)

where c is the one-sided ontext length in frames. The supervetor for DNNl, Zl(f, n), is on-
struted in a similar way where a stak of

√
zj(f, n) is used as input instead of |x̃(f, n)| (see

Fig. 2 and 3). In this researh report, we onsidered c = 2, so the supervetors for the input of

the DNNs were omposed by 5 time frames (2 left ontext, 1 enter, and 2 right ontext frames).

The dimension of the supervetors is redued by prinipal omponent analysis (PCA) to the

dimension of the DNN input. As shown in [49℄, dimensionality redution by PCA signi�antly

minimizes the omputational ost of DNN training with a negligible e�et on the performane

of DNN. Standardization (zero mean, unit variane) is done element-wise before and after PCA

over the training data as in [49℄. The standardization fators and the PCA transformation matrix

are then kept for pre-proessing of any input. Thus, stritly speaking, the inputs of DNNs are

not the supervetors of magnitude spetra Z0(f, n) and Zl(f, n), but their transformation into

redued dimension vetors.

Fig. 2 and 3 illustrates the inputs and outputs of the DNNs for spetrogram initialization

and spetrogram �tting, respetively. F denotes the dimension of the spetra, C = 2c + 1 the

ontext length, and J the number of soures.

4.3.3 Training riterion

The ost funtion used for DNN training is the sum of a primary ost funtion and an ℓ2
regularization term. The ℓ2 regularization term [50℄ is used to prevent over�tting and an be

expressed as

Dℓ2 =
λ

2

∑

q

w2
q (15)

where wq are the DNN weights and the regularization parameter is �xed to λ = 10−5
. No

regularization is applied to the biases.

Table 1 summarizes the implementation of di�erent ost funtions for the experiments. In

order to avoid numerial instabilities, instead of using the original formulation of IS divergene

in (9), our implementation used a regularized formulation as shown in (16). It should be noted

that the use of regularization in this ase is a ommon pratie to avoid instabilities [36,51℄. For

the same reason, we used regularized formulations for KL and Cauhy divergenes as shown in

(17) and (18), respetively. For these three divergenes, the regularization parameter is set

to δ = 10−3
. In addition, geometri analysis on the PS ost funtion by onsidering that

mj(f, n) ∈ R
F×N
+ leads to a simpli�ed formula shown in (19).

4.3.4 Training algorithm

The weights are initialized randomly from a zero-mean Gaussian distribution with standard

deviation of

√
2/nl, where nl is the fan-in (the number of inputs to the neuron, whih is equal

to the size of the previous layer in our ase) [52℄. Finally, the biases are initialized to zero.
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Figure 2: Illustration of the inputs and outputs of the DNN for spetrogram initialization. Input:

magnitude spetrum of the mixture (left). Output: magnitude spetra of the soures (right).

Figure 3: Illustration of the inputs and outputs of the DNNs for spetrogram �tting. Input: stak

of magnitude spetra of all soures (left). Output: magnitude spetra of the soures (right).

The DNNs are trained by greedy layer-wise supervised training [53℄ where the hidden layers

are added inrementally. In the beginning, a NN with one hidden layer is trained after random

weight initialization. The output layer of this trained NN is then substituted by new hidden

and output layers to form a new NN, while the parameters of the existing hidden layer are kept.

Thus, we an view this as a pre-training method for the training of a new NN. After random

initialization for the parameters of new layers, the new NN is entirely trained. This proedure is

done iteratively until the target number of hidden layers is reahed.

Training is done by bakpropagation with minibath size of 100 and the ADADELTA pa-

rameter update algorithm [54℄. Compared to standard stohasti gradient desent (SGD),

ADADELTA employs adaptive per-dimension learning rates and does not require manual setting

of the learning rate. The hyperparameters of ADADELTA are set to ρ = 0.95 and ǫ = 10−6

following [54℄. The validation error is omputed every epoh and the training is stopped after

10 onseutive epohs failed to obtain better validation error. The latest model whih yields the
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14 Nugraha, Liutkus, and Vinent

Table 1: Implementation details of the DNN training ost funtions.

Exp.

label

Weight

reg.

Primary ost funtion

IS Dℓ2
D

IS
=

1

JFN

∑

j,f,n

(∣∣c̃j(f, n)
∣∣2 + δ

vj(f, n) + δ
− log

( ∣∣c̃j(f, n)
∣∣2 + δ

)
+ log

(
vj(f, n) + δ

)
− 1

)

(16)

KL Dℓ2

D
KL

=
1

JFN

∑

j,f,n

(( ∣∣c̃j(f, n)
∣∣+ δ

)(
log

(∣∣c̃j(f, n)
∣∣+ δ

)
− log

(√
vj(f, n) + δ

))

−
∣∣c̃j(f, n)

∣∣+
√

vj(f, n)

)
(17)

Cau Dℓ2

D
Cau

=
1

JFN

∑

j,f,n

(
3

2
log

( ∣∣c̃j(f, n)
∣∣2 + vj(f, n) + δ

)
− log

(√
vj(f, n) + δ

))

(18)

PS Dℓ2
D

PS
=

1

2JFN

∑

j,f,n

(
vj(f, n)∑
j′ vj′ (f, n)

∣∣x̃(f, n)
∣∣ −
∣∣c̃j(f, n)

∣∣ cos
(
∠x̃(f, n)− ∠c̃j(f, n)

))2

(19)

MSE Dℓ2 DMSE =
1

2JFN

∑

j,f,n

(
∣∣c̃j(f, n)

∣∣ −
√

vj(f, n)

)2

(13)

best validation error is kept. Besides, the maximum number of training epohs is set to 100.

The DNNs for the soure separation evaluation were trained on both the real and simulated

training sets (tr05_real and tr05_simu) with the real and simulated development sets (dt05_real

and dt05_simu) as validation data. Conversely, we trained the DNNs for the speeh reognition

evaluation on the real training set only (tr05_real) and validated them on the real development

set only (dt05_real). The same DNNs were also used for the performane omparison to the

general iterative EM algorithm. See [29℄ for the perfomane omparison between these two

di�erent settings.

4.4 Impat of ost funtions

We �rst evaluated the impat of the ost funtion by setting L = 0 (see Algorithm 2) so that the

separation relied on the PSD estimates vj(f, n) by letting the spatial ovariane matries Rj(f)
be the identity matrix. This is equivalent to single-hannel soure separation for eah hannel.

Fig. 4 shows the evaluation results for the resulting 6-hannel estimated speeh signal on the

simulated test set (et05_simu).

`KL', `PS', and `MSE' have omparable performane. Among these three ost funtions, `KL'

is shown to have the best SDR and SIR properties, while `PS' and `MSE' whose performane is

the same follow losely behind. `MSE' is shown to have the best ISR property, while `KL' and

`PS' follow behind. For the SAR, these three ost funtions have almost the same performane.

Among all of the ost funtions used in this evaluation, `IS' almost always has the worst per-

formane. Interestingly, `Cau' outperformed the others in terms of SIR, but it has a poor SAR

property. Thus, in general, `IS' and `Cau' should be avoided for single-hannel soure separation
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with DNN model.

In addition, it is worth mentioning that the use of �ooring funtion (e.g. ReLU ativation

funtion for the DNN outputs) during the training with `IS', `KL', `Cau', `PS' seems to be

important. We found in additional experiments (not shown here) that training failed when a

linear ativation funtion was used for the output layer with these ost funtions.
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Figure 4: Performane omparison for the DNNs trained with di�erent ost funtions. The

PSDs vj(f, n) are estimated by DNN0 and the spatial ovariane matries Rj(f) are the identity
matrix. The SDR, ISR, SIR, and SAR measured on the observed 6-hannel mixture signal are

3.8 dB, 18.7 dB, 4.0 dB, and 69.8 dB, respetively. The evaluation was done on the simulated

test set (et05_simu). The �gures show the mean value and the 95% on�dene interval. Higher is

better.

0 2 4 6 8 10 12 14 16 18 20

Rj updates

8

9

10

11

12

13

14

15

S
D
R
(d
B
)

KL

Cau

MSE

IS

PS

(a) SDR

0 2 4 6 8 10 12 14 16 18 20

Rj updates

14

15

16

17

18

19

20

21

22

23

24

IS
R
(d
B
)

PS

MSE

KL

IS

Cau

(b) ISR

0 2 4 6 8 10 12 14 16 18 20

Rj updates

10

11

12

13

14

15

16

17

18

19

20

S
IR

(d
B
)

Cau

KL

MSE

IS

PS

() SIR

0 2 4 6 8 10 12 14 16 18 20

Rj updates

12

13

14

15

16

17

18

19

S
A
R
(d
B
)

IS

KL

Cau

MSE

PS

(d) SAR

Figure 5: Performane omparison for various numbers of spatial updates with the DNNs trained

with di�erent ost funtions. The PSDs vj(f, n) are estimated by the DNN0 and the spatial

ovariane matries Rj(f) are updated in the iterative proedure. The evaluation was done

on the simulated test set (et05_simu). The �gures show the mean value. The 95% on�dene

intervals are similar to those in Fig. 4. Higher is better. The legend is sorted by the �nal

performane.
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4.5 Impat of spatial parameters updates

In this subsetion, we investigate the impat of the spatial parameters updates on the performane

by setting the number of iterations to L = 1 and varying the number of spatial updates K,

while ignoring the omputation of zj(f, n) and the spetral parameters update (lines 16�19 of

Algorithm 2). Thus, the spetral parameters vj(f, n) are only initialized by the �rst DNN (as

in Setion 3.2) and kept �xed during the iterative proedure. We evaluate the di�erent ost

funtions from Setion 3.2 in this ontext again.

Fig. 5 shows the results for the resulting 6-hannel estimated speeh signal on the simulated

test set (et05_simu). The x-axis of eah hart orresponds to the number of spatial updates k.
Thus, k = 0 is equivalent to single-hannel soure separation for eah hannel whose results are

shown in Fig. 4.

In general, the performane of `PS' saturated after a few updates, while the performane of

other ost funtions is inreased with k in most metris. Interestingly, after 20 iterations, eah

ost funtion showed its best property. Among all of the ost funtions, `KL' has the best SDR,

`Cau' the best SIR, and `IS' the best SAR. While for the ISR, `PS', `MSE', and `KL' performed

almost idential and better than the other two ost funtions.

In summary, the proposed multihannel approah outperformed single-hannel DNN-based

approah even when using DNN0 only. The spatial parameters and their updates improved the

enhanement performane. From the experiments using 20 spatial parameter updates, we an

observe that eah ost funtion has its own properties. `KL' followed by `MSE' are the most

reasonable hoies beause they improved all of the metris well. `PS' is suitable for the tasks

that put emphasis on the ISR. On the ontrary, `Cau' is suitable for the tasks in whih the ISR

is less important. Finally, `IS' is suitable for the tasks that put emphasis on the SAR. Thus, the

hoie of the ost funtion should depend on the trade-o� we want to ahieve between these four

metris.

4.6 Impat of spetral parameters updates

In this subsetion, we investigate the impat of spetral parameter updates (i.e. the spetrogram

�tting) on the performane by setting the number of spatial updates to K = 20, varying the

number of iterations L, and varying the DNN used for iteration l. We also evaluate di�erent

ost funtions in this ontext, namely IS, KL, Cauhy, and MSE. We left the PS ost funtion

beause as shown previously, its SDR after 20 spatial updates was signi�antly lower than the

others and the overall performane saturated already.

We trained two additional DNNs (DNN1 and DNN2) for spetrogram �tting. This allowed

us to try di�erent settings for the iterative proedure: (1) without spetral updates; (2) with

spetral updates using only DNN1; and (3) with spetral updates using DNN1 and DNN2.

We present the omparison of these three settings using KL divergene as the ost funtion

in Fig. 6. We then present the omparison of di�erent ost funtions using the third setting in

Fig. 7. For both �gures, the x-axis shows the index of EM iteration l, the update type (spatial
or spetral), and the DNN index. Thus, l = 0 is equivalent to single-hannel soure separation

for eah hannel whose results are shown in Fig. 4, while l = 1 with spatial updates is equivalent

to the results shown in Fig. 5.

Fig. 6 shows that the use of a spei� DNN for eah iteration (here, DNN1 for l = 1 and

DNN2 for l = 2) is bene�ial. When a spei� DNN is used, the spetral update provides

a small improvement. Most importantly, this update allows the following spatial update to

yield signi�ant improvement. This behavior an be observed by omparing the performane of

the spetral updates of EM iteration l and the spatial updates of the following iteration l + 1.
Additionally, we an observe it by omparing the overall behavior of the �3 DNNs� urve to the
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�1 DNN� urve, in whih no spetrogram �tting is done. Fig. 7 shows similar behavior for the

other ost funtions.

Fig. 6 also shows that the use of the same DNN for several iterations (here, DNN1 for l = 1
and l = 2) did not improve the performane. Although the following spatial update reovered

the performane, the use of a spei� DNN for eah iteration still provided better performane.

We an observe this by omparing the �3 DNNs� urve to the �2 DNNs� urve for l = 2 and

l = 3. It is understandable beause there is a mismath between the input and the training data

of the DNN in this ase.

Fig. 7 shows that the performane of all ost funtions improves with l. `Cau' and `IS' tend

to saturate more quikly than the others.

In summary, the iterative spetral and spatial updates improve the enhanement performane.

The performane saturates after few EM iteration. `KL' and `MSE' perform better than the other

ost funtions. Although the use of IS divergene for DNN training is theoretially motivated,

the resulting performane is lower than the others for most metris.

4.7 Comparison to NMF-based iterative EM algorithm

In this subsetion, we ompare the best system of the proposed framework to the NMF-based

iterative EM algorithm [24℄ in terms of soure separation performane. We used the algorithm

implementation in the Flexible Audio Soure Separation Toolbox (FASST)

2

and followed the

settings used in [55℄. The speeh spetral and spatial models were trained on the real training

set (tr05_real). Meanwhile, the noise spetral and spatial models were initialized for eah

mixture using 5 seonds of bakground noise ontext based on its annotation. By doing so,

the omparison is not ompletely fair sine the proposed framework does not use this ontext

information. However, this setting is favourable for the NMF-based iterative algorithm. As

desribed in Setion 4.3, the DNNs used in this evaluation were also trained on the real training

set only. The separation results from this evaluation were then used for the speeh reognition

evaluation in Setion 4.8.

Table 2 shows the performane of the NMF-based iterative EM algorithm after 50 EM it-

erations and the performane of the proposed framework after the spatial update of the EM

iteration l = 3. The proposed framework was learly better than the NMF-based iterative EM

algorithm for all metris. This on�rms that DNNs are able to model spetral parameters muh

better than NMF does.

Table 2: Performane omparison in terms of soure separation metris (in dB). The evaluation

was done on the simulated test set (et05_simu). The table shows the mean value. Higher is

better.

Enhanement method
SDR ISR SIR SAR

NMF-based iterative EM [24℄ 7.72 10.77 13.29 12.29

Proposed: KL (3 DNNs) 13.25 24.25 15.58 18.23

4.8 Speeh reognition

In this subsetion, we evaluate the use of our best system as the front-end of a speeh reognition

system. We did a speeh reognition evaluation by following the Kaldi setup distributed by the

2

http://bass-db.gforge.inria.fr/fasst
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Figure 6: Performane omparison for eah update of the EM iterations in whih di�erent number

of DNNs are used. In "1 DNN", there is no spetrogram �tting. In "2 DNNs", DNN1 is used

for spetrogram �tting of both l = 1 and l = 2. In "3 DNNs", DNN1 and DNN2 are used for

spetrogram �tting of l = 1 and l = 2, respetively. Some markers and lines are not visible

beause they oinide. The DNNs are trained with KL divergene. The spatial ovariane

matries Rj(f) are updated with K = 20. The evaluation was done on the simulated test set

(et05_simu). The �gures show the mean value. The 95% on�dene intervals are similar to those

in Fig. 4. Higher is better.
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Figure 7: Performane omparison for eah update of the EM iterations with the DNNs trained

with di�erent ost funtions. Di�erent DNNs are used for eah EM iteration. The spatial

ovariane matries Rj(f) are updated with K = 20. The evaluation was done on the simulated

test set (et05_simu). The �gures show the mean value. The 95% on�dene interval for eah ost

funtion is similar to the interval of orresponding ost funtion in Fig. 4. Higher is better. The

legend is sorted by the �nal performane.
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CHiME-3 hallenge organizers

3

[40, 56℄. The evaluation inludes the uses of (a) feature-spae

maximum likelihood regression (fMLLR) features [57℄; (b) aousti models based on Gaussian

Mixture Model (GMM) and DNN trained with the ross entropy (CE) riterion followed by

state-level minimum Bayes risk (sMBR) riterion [58℄; and () language models with 5-gram

Kneser-Ney (KN) smoothing [59℄ and resoring using reurrent neural network-based language

model (RNN-LM) [60℄. The aousti models are trained on enhaned multi-ondition real and

simulated data. The evaluation results are presented in terms of word error rate (WER). The

optimization of the speeh reognition bak-end is beyond the sope of this artile. Please refer

to [56℄ for the further details of the methods used in the evaluation.

The evaluation results inlude the baseline performane (observed), DS beamforming, and

NMF-based iterative EM algorithm [24℄. The baseline performane was measured using only

hannel 5 of the observed signal. This hannel is onsidered as the most useful hannel beause

the orresponding mirophone faes the user and is loated at the bottom-enter of the tablet

devie. DS beamforming was performed on the 6-hannel observed signal as desribed in Setion

4.2. For the NMF-based iterative EM algorithm and the proposed framework, we simply average

over hannels the separation results from the evaluation desribed in Setion 4.7.

Table 3 shows the performane omparison using the GMM bak-end retrained on enhaned

multi-ondition data. Table 4 shows the performane omparison using the DNN+sMBR bak-

end trained with enhaned multi-ondition data followed by 5-gram KN smoothing and RNN-LM

resoring. Both tables show the performane on the real development set (dt05_real) and the

real test set (et05_real). Boldfae numbers show the best performane for eah dataset.

For the single-hannel enhanement (see EM iteration l = 0), the WER on the real test set

dereases by 22% and 21% relative using the GMM and the DNN+sMBR bakends, respetively,

w.r.t. the observed WER. Interestingly, this single-hannel enhanement whih is done after DS

beamforming did not provide better performane ompared to the DS beamforming alone. It

indiates that proper exploitation of multihannel information is ruial.

The proposed multihannel enhanement then dereases the WER on the real test set up to

25% and 33% relative using the GMM and the DNN+sMBR bakends, respetively, w.r.t. the

orresponding single-hannel enhanement. It dereases the WER up to 25% and 26% relative

w.r.t. the DS beamforming alone. It also dereases the WER up to 16% and 24% relative w.r.t.

the NMF-based iterative EM algorithm [24℄.

Table 3: Average WERs (%) using the GMM bak-end retrained on enhaned multi-ondition

data. The evaluation was done on the real sets. Lower is better.

Enhanement method

EM

iter.

Update

type

Dev Test

Observed - - 18.32 33.02

DS beamforming - - 14.07 25.86

NMF-based iterative EM [24℄ 50 - 12.63 23.23

Proposed: KL (3 DNNs)
0 - 13.56 25.90

1 spatial 11.17 20.42

spetral 11.25 20.67

2 spatial 10.80 19.96

spetral 11.00 19.72

3 spatial 10.70 19.44

3

https://github.om/kaldi-asr/kaldi/tree/master/egs/hime3
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Table 4: Average WERs (%) using the DNN+sMBR bak-end trained with enhaned multi-

ondition data followed by 5-gram KN smoothing and RNN-LM resoring. The evaluation was

done on the real sets. Lower is better.

Enhanement method

EM

iter.

Update

type

Dev Test

Observed - - 9.65 19.28

DS beamforming - - 6.35 13.70

NMF-based iterative EM [24℄
50 - 6.10 13.41

Proposed: KL (3 DNNs) 0 - 6.64 15.18

1 spatial 5.37 11.46

spetral 5.19 11.46

2 spatial 4.87 10.79

spetral 4.99 11.12

3 spatial 4.88 10.14

5 Conlusion

In this artile, we presented a DNN-based multihannel soure separation framework where the

multihannel �lter is derived from the soure spetra, whih are estimated by DNNs, and the

spatial ovariane matries, whih are updated iteratively in an EM fashion. Evaluation has been

done for a speeh enhanement task. The experimental results show that the proposed framework

works well. It outperforms single-hannel DNN-based enhanement and the NMF-based iterative

EM algorithm [24℄. The use of a single DNN to estimate the soure spetra from the mixture

already su�es to observe an improvement. Spetral updates by employing additional DNNs

moderately improve the performane themselves, but they allow the following spatial updates

to provide further signi�ant improvement. We also demonstrate that the use of a spei� DNN

for eah iteration is bene�ial. The use of KL divergene as the DNN training ost funtion is

shown to provide the best performane. The widely used MSE is also shown to perform very

well.

Future diretions onern alternative training targets for DNNs, the use of spatial features

[9�11℄ as additional inputs, the inorporation of prior information about the soure position, the

use of more advaned network arhitetures, suh as RNN [8℄ and onvolutional neural network

(CNN), and the use of more advaned training tehniques, suh as dropout.
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