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ABSTRACT
Product Derivation is a key activity in Software Product Line
Engineering. During this process, derivation operators mod-
ify or create core assets (e.g., model elements, source code
instructions, components) by adding, removing or substitut-
ing them according to a given configuration. The result is
a derived product that generally needs to conform to a pro-
gramming or modeling language. Some operators lead to
invalid products when applied to certain assets, some others
do not; knowing this in advance can help to better use them,
however this is challenging, specially if we consider assets
expressed in extensive and complex languages such as Java.
In this paper, we empirically answer the following question:
which product line operators, applied to which program el-
ements, can synthesize variants of programs that are incor-
rect, correct or perhaps even conforming to test suites? We
implement source code transformations, based on the deriva-
tion operators of the Common Variability Language. We au-
tomatically synthesize more than 370,000 program variants
from a set of 8 real large Java projects (up to 85,000 lines of
code), obtaining an extensive panorama of the sanity of the
operations.

1. INTRODUCTION
Many domains are concerned with some form of varia-

tion in software artifacts—from managing changes to soft-
ware over time to supporting families of related products
(i.e., software product lines—SPL). Numerous theories, tech-
niques, tools and languages have been developed to indicate
which parts of a system vary, and how a particular variant
(product) is produced [3, 4, 20,24,30].

SPL developers typically add, remove or replace program
elements, like classes, methods or statements, to vary their
functionality [3] or their non functional properties [11, 26].
Add, remove and replace are operators, which applied to
program elements gives us operations (or transformations,
if we use the vocabulary of source code manipulation). For
instance, the directives of the C preprocessor (#if, #else,
#elif, etc.) can be used to conditionally include parts of
files and activate or deactivate a portion of code at compile
time [15,17,19]. At the modeling level, the same principle can
be applied: presence conditions are specified over different
kinds of elements (e.g., classes, associations, attributes in
class diagrams) [13,23].

Given a programming or modeling language, numerous lan-
guage constructs can be varied, changing the structure or
behavior of a program or a model. In the case of Java, devel-
opers can add a new class, remove a statement, substitute a
field or many other variational operations. Thus, developers

are confronted to understand what can vary in a software ar-
tifact while mastering the technical means of how to realize
the variability.

In particular, not all constructs of a language are subject
to variation because of the numerous well-formedness and
domain-specific rules. For instance, removing a return state-
ment in a non-void Java method yields compilation errors;
adding a call to an external public method without an import
to its respective class either; replacing the type of a parame-
ter by another unrelated type is unlike to produce a correct
variant, etc. Some operations will (obviously or intricately)
lead to syntactic or semantic errors; some others not. Addi-
tionally, a transformation may yield a valid program in one
context and an invalid one in another (e.g., removing a class
can break a program, if it is being used by another class).

Although generic foundations and tools for correctly man-
aging variations are emerging [4, 8], it is still a very hard
task [9]. Some of them concentrate on refactoring the sys-
tem that is subject to variation [1, 18], some others require
specific target formalisms [6]; yet, in many cases, variabil-
ity management needs to be seamless and non-intrusive, as
companies do not want to afford changing their software or
processes and tools to cope with variability. One possible so-
lution is to use an orthogonal variability language like CVL
(Common Variability Language)1 [12]. Using CVL, one can
express, regardless of the target language, variational infor-
mation that can be further used to generate variants of a
model. This can provide a non-intrusive mechanism to han-
dle variability in existing (legacy) software.

What if we could correctly use CVL to directly vary Java
programs? We would be able to express and manage vari-
ability information about any peace of code orthogonally and
without changing the target program. We could consider to
vary not only coarse-grained elements, like components or
entire modules, but also fine-grained constructs, like instruc-
tions inside of a method. These fine-grained operations could
be then composed into multiple operations to vary a set of
instructions corresponding to a systems’ feature. Such abil-
ities serve beyond SPL engineering and could be helpful to
any kind of program variation approach (e.g., mutant-based
testing [2], approximate computation [32], program sketch-
ing [27]). The unfortunate intuition is that not all CVL-based
operators are relevant and directly applicable, e.g., some of
the derivation operators will lead to Java program variants
that do not compile. The first goal of this paper is to em-
pirically verify this hypothesis. The second goal is to char-
acterize the effects of each CVL-based operator applied to
programs: which operators are directly applicable? which

1http://www.omgwiki.org/variability

1



operators need to be specialized? Our work seeks to assess
the applicability of the CVL derivation operators with re-
spect to existing Java code elements, as well as quantifying
how prone each kind of derivation operator and Java con-
struct are to generate valid or invalid programs. This under-
standing may help to validate, refine, or disprove what kinds
of variations on program elements the variability-based tools
(e.g., IDE, refactoring) or paradigms (e.g., feature-oriented
programming) should support.

We conduct an empirical study in which we exhaustively
apply derivation operators to random source code elements
in a set of 8 real large Java programs with up to 85,000
lines of code. For each operation, we verify if the resulting
Java variant compiles and if the test suite passes. Statistical
data and synthesized variants are then used to characterize
which language constructs are likely to vary or require spe-
cific transformations. Specifically, we answer to the following
research questions:

(1) Which CVL-based operations and operators are more
likely to generate invalid and valid programs?

(2) Which program elements are more likely to vary with-
out breaking the program? Which ones are not?

(3) Can we, and how could we identify operators to be
specialized?

We measure, report, and discuss the percentages of valid
and invalid generated programs (among 370,000 variants)
providing a quantified panorama of the results. From a qual-
itative perspective, we review and analyze the resulting Java
variants with the help of dedicated tools.

The remainder of the paper is organized as follows. Sec-
tion 2 gives background information about CVL and the mo-
tivations of the study. Section 3, introduces our CVL-based
approach to automatically synthesize Java variants. Sec-
tion 4 defines in detail our experiment. Section 5 analyses the
results and discuss them. Section 6 presents the threats to
validity of the experiment. Section 7 discusses related work.
Section 8 concludes the paper and presents future work.

2. BACKGROUND AND MOTIVATIONS

2.1 The Common Variability Language
We have chosen to use CVL because it encompasses many

SPL approaches and because it fulfills the requirements of
our long term view: to orthogonally express, reason and real-
ize variability information of a system but neither changing
it nor introducing new language constructs to cope with vari-
ability. CVL is an effort from various partners from both
academia and industry to standardize variability in model-
based product line. Using CVL, one can specify and resolve
variability over any artifact that could be abstracted as a
model.

An SPL defined with CVL has three main parts: the Vari-
ability Abstraction Model (VAM), which is the tree-based
structure (equivalent to feature models, see VAM in Figure 1,
in which VSs are Variability Specifications, analogue to fea-
tures), the base model (the core assets; in Figure 1, it is the
existing Java code), and a Variability Realization Model (the
mapping between both, see VRM in Figure 1). These map-
ping relationships can have different semantics and we name
them realization/derivation operators (in the CVL spec-
ification, they are called variation points).

In this paper, we are interested on studying the effects
of applying these realization operators to Java programs, in

any kind of program construct. We concentrate on the last
two parts af an SPL defined with CVL: the mapping oper-
ators and the base model elements. As for the VAM, we
will consider only boolean features and we abstract about
its configuration: the goal is to study what happens when,
individually, a VRM operator is triggered by a selection or
deselection of a feature, being this study independent from
the VAM part.

CVL Derivation Operators
Following, we list each of the CVL realization operators con-
sidered in this work, explaining how they are implemented
in the Java context and briefly exemplifying them.
• Object Existence. It is an operator that expresses whether

a determined object will make part or not of the derived
variant; its execution implies on deleting or adding any
source code element (e.g., statements, assignments, blocks,
literals, etc.) from the original program.

• Link Existence. It expresses whether there is a relationship
or not between two elements, in the case of Java programs,
we consider as a link any relationship between classes: as-
sociation, composition, inheritance, etc. The execution of
this variation point implies on removing or adding state-
ments that refer to the associated class (e.g., to remove an
extends Class A from a class’ header).

• Object Substitution. It expresses that a determined pro-
gram element will be replaced by another of its same type,
e.g., a method substituted by another method.

• Link End Substitution. It expresses that a relationship
between a class A and a class B will be replaced by another
relationship of the same type between class A and a third
class C (e.g., A extends C instead of A extends B).

2.2 Motivations
Our main motivation relies on the use of CVL to vary Java

programs. As illustrated in Figure 1, CVL has a derivation
engine that executes the operational semantics of its opera-
tors (e.g., Object Existence) when applied to a target element
(e.g., statements in an existing Java code). The derivation
process generates products (programs in our case) that may
or may not be correct (e.g., uncompilable Java code or pro-
grams with run time errors). Determining whether an oper-
ator applied to a program construct is going to yield valid or
invalid programs can be hard. In the case of Java, besides
depending on the own semantics of the CVL operator, the
success of a product line operation may also depend on: the
type of the program construct, the other constructs to which
it is connected, how it is being used in the current situation,
etc. Manually evaluating all these cases can be endless.

Therefore, our work seeks to determine the“safety”of these
operations automatically. Figure 1 shows percentages over
different operations; they reveal how likely is an operator
to work when applied to a given program construct. These
percentages are the output of our experiment and may
be useful for different applications. Two possible applications
are to: make recommendations about which operations to
use, and specialize derivation operators that do not work as
they are. The ultimate goal is to make the use of CVL safer,
so that the chances of having a bad CVL design are lower.
For example, Figure 1 illustrates that removing a field name
or the entire class Client has less than 10% of chances of
resulting in a valid program after derivation, while removing
the annotation element can be harmless.
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Figure 1: Directly using CVL with Java code.

3. AUTOMATIC SYNTHESIS OF JAVA PRO-
GRAMS WITH CVL

This section presents an overview of the approach to auto-
matically synthesize Java programs using CVL. This automa-
tion is the foundation to perform the empirical assessment.

3.1 Definition
In CVL, the operators are always linked to a target ele-

ment. Consequently, we will further refer to the definition
of operation type T as a pair 〈O,E〉, in which O is a type
of CVL operator (from the aforementioned list) and E is a
type of targeted program element (e.g., code statement, class,
package). Therefore, an operation op = 〈o, e〉 of type T is an
operation in which o ∈ O and e ∈ E. With a derivation
engine δ, we can apply op in a given Java program P , having
δ(op, P ) = P ′, where P ′ is a generated program.

Given an operation op, a program P that successfully com-
piles and a test suite TS that passes on P , the possible results
for a transformed program P ′ = δ(op, P ) are:

1. P ′ is syntactically incorrect and contains compilation
errors–P ′ is a counterexample;

2. P ′ is syntactically correct and successfully compiles but
at least one test case in TS fails–P ′ is a variant ;

3. P ′ compiles and all test cases in TS passes–P ′ is a
sosie2.

3.2 Process overview
Figure 2 shows an overview of the process of generating

a program P ′. First, we extract the Abstract Syntax Tree
(AST) of P , which provides the set of program elements and
their relationships. This step makes possible to handle P as
a model, therefore we can use the concept of model-based
SPL with CVL. Second, we use the AST of P and the list
of CVL realization operators as input to the derivation. In
the derivation step, we pick a random program element and a
random operator, composing an operation and then applying
it by using the CVL derivation engine; the result of this is
a generated AST ′. As a third step, we print back as source
code the AST ′, having as result a generated program P ′. Fi-
nally, we try to compile P ′ and also to test it against the test
suite, which evaluates P ′ as a counterexample or a variant or
a sosie.
2Sosie is a French noun that means “look alike” and it has
been previously defined in [5].

Program P

Compilation 
and Testing

Generated 
P'

Parsing AST of P

Derivation

Counterexample 
P' Variant P' Sosie P'

Operators

Compilation fails

Compilation ok

Compiles and 
tests pass

Figure 2: Process to generate variants of Java pro-
grams.

Examples of generated programs
Following, we exemplify the three possible evaluations of a
program generated by our approach—conterexample, variant
or sosie—using real examples from an existing Java program;
we exemplify that the same CVL-operator (e.g., Object Sub-
stitution) can yield both valid and invalid programs. Listing
1 shows an excerpt of a generated program that does not
compile; precisely, it is the result of an Object Substitution
in the statement of the line 38 inside the constructor of the
class UniformReservoir of the metrics3 project. The replaced
statement is commented (instead of actually deleted, in order
to facilitate visualization and retrieval) and a new statement
is placed right after. In this case, one of the reasons it does
not compile is because the variable registry was not declared
before.

Listing 1: Object Substitution generating a coun-
terexample.
//class com.codahale.metrics.UniformReservoir, line 38
public UniformReservoir(int size) {

this.values = new AtomicLongArray(size);
for (int i = 0; i < values.length(); i++) {

values.set(i, 0);
}
//subtitution
//count.set(0);
registry.register(name(prefix, "mean-get-time"));

}

3http://metrics.codahale.com/
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Differently, we have cases in which a substitution of a pro-
gram element does not imply any error. Listing 2 shows one
of these cases and, like in the previous operation, a statement
is replaced by another. In this case, the replaced statement
is an independent method call, as well as the inserted one,
which is a static method call. However, the transformed pro-
gram does not have the same behaviour of the original one,
therefore it does not pass on the test suite of the original
one. The reason is because the replaced statement plays a
role on the functionality of the time method. This program
is a variant.

Listing 2: Object Substitution generating a variant.
//class com.codahale.metrics.Timer, line 101
public <T> T time(Callable<T> event) throws Exception {

final long startTime = clock.getTick();
try {

return event.call();
} finally {

//substitution
//update(clock.getTick() - startTime);
com.codahale.metrics.ThreadLocalRandom.
current().nextLong(); }}

In some situations, an operation can generate compilable
variants and also preserve the behaviour of the original program–
sosie. Following, Listing 3 presents a sosie generated from a
replacement of a literal value by another of the same type
(the string“csv-reporter” is replaced by “m5 rate”), therefore
not leading to compilation errors; besides, this literal did not
play an important role on the program execution and its be-
haviour remained unchanged.

Listing 3: Object Substitution generating a sosie.
//class com.codahale.metrics.CsvReporter, line 135
private CsvReporter(MetricRegistry registry,

File directory, Locale locale,
TimeUnit rateUnit, TimeUnit durationUnit,
Clock clock,
MetricFilter filter) {

//substitution
super(registry,/**Type:Literal"csv-reporter"**/
"m5_rate", filter, rateUnit, durationUnit);
this.directory = directory;
this.locale = locale;
this.clock = clock; }

These examples also apply to the other types of CVL opera-
tors. We could see that the success of an operation depends
on the kind of the targeted element. It is expected that it
would not be possible to modify or remove some program el-
ements without leading to compilation errors (e.g., remove a
return keyword from a method with non-void value type). On
the other hand, we can easily expect that some statements
that do not have any impact on the program execution, like
log statements, could be removed without any further prob-
lem.

4. EXPERIMENT
In this Section, we present in details the empirical study

we conducted in order to assess the product line derivation
operators in the context of Java programs.

4.1 Goal and Research Questions
The main objective of the experiment is to assess the safety

of CVL operators when varying Java programs. We specifi-

cally aim at answering the following research questions:
RQ1. Which CVL-based operations (pairs of oper-

ators and program elements) are more likely to gen-
erate invalid and valid programs? Answering RQ1 can
give us insight about transformations that will always lead
to counterexamples or transformations that will always lead
to variants or sosies. We will also be able to quantify the
chances that each operation has to yield valid or invalid pro-
grams.

We also want to investigate the proportion of valid and
invalid programs individually, for both program elements and
derivation operators, which gives us RQ2a and RQ2b.

RQ2a. Which program elements are more likely to
vary without breaking the program and which ones
are not? We will be able to know, for example, if removing
program elements that are blocks of code is more likely to
generate correct programs than if removing single instruc-
tions.

RQ2b. Which CVL operators are more likely to
result in correct programs? Knowing, for example, if
Object Existence performs better than Object Substitution.

RQ3. Can we, and how could we identify operators
to be specialized? Qualitatively analysing the results can
help to design better operators.

4.2 Measurement Methodology
We measure the percentage of non-compilable, compilable

program variants and sosies generated by a given operator
applied to different program elements. We want to observe
these percentages with respect to the operators, the program
elements and the pairs operator & program element (oper-
ations). For each analysed program, our experimentation
algorithm performs one transformation per time and tries to
compile the transformed program, if it compiles, we proceed
to run the test suite, checking whether it passes or not.

4.3 Experiment Variables
We define our variables according to the theory of scales

of measurements; additionally, they are also classified as in-
dependent, dependent or controlled variables. Independent
and controlled variables influence dependent variables, but
the controlled ones remain unchanged during the entire ex-
perimentation. Table 1 presents the experiment variables
with their classification and the range of values they can as-
sume during the experiment. The number of non-compilable,
compilable and programs with preserved behaviour is depen-
dent on the operator and the program element4 used in the
program transformation. We perform the experiment for a
controlled set of 8 input programs.

4.4 Subject Programs
The data set of our experiment is composed by 8 widely-

used open source projects. The first selection criterion is that
the project is structured to be handled by Maven: a tool for
building and managing Java projects. The second one is that
they need to have a good test suite (a statement coverage
greater than 70%); they are all expressed in JUnit. Table 2
shows the included projects and some relevant properties for
the experiment.

The size of each program ranges from 1 to 80 KLOC and
the number of classes from 23 to 803; they are in the category

4The complete list of program elements can be found in the
Spoon API: http://spoon.gforge.inria.fr/mvnsites/spoon-
core/apidocs/index.html
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Table 1: Experiment variables.
Name Abbreviation Type Scale Type Unit Range

CVL Realization Operator operator Independent Nominal Text {ObjectExistence, LinkEx-
istence, ObjectSubstitution,
LinkEndSubstitution}

Program Element element Independent Nominal Text {constructor, class, parame-
ter, statement, etc}

Non-compilable programs counterexamples Dependent Ratio % [0,100]
Compilable programs compile% Dependent Ratio % [0,100]

Variants with preserved behaviour sosie% Dependent Ratio % [0,100]
Original input program input Controlled Nominal Text see Table 2

of APIs and frameworks—programs that are used by other
programs. All of them have a good test coverage percentage,
ranging from 79% to 94%. None of the programs have a
compilation time greater than 10 seconds, which helps on
the total time for running the experiments. However, their
testing time ranges from 7 to 144 seconds5.

4.5 Protocol
The experiment is designed to randomly explore the pos-

sible transformations that can be done in a given program,
having its AST nodes and the four operators as the universe
to be sampled. Algorithm 1 defines the protocol to run the
experiments. It takes as input the program to be transformed
and returns the data we use further to analyse the transfor-
mations and the AST elements (we get either a counterex-
ample, a variant or a sosie for each random transformation
applied). Our stopping criteria is not strict and it is defined
by the amount of computational resources available in the
Grid50006—we seek to achieve a reasonable statistical rele-
vance.

Data: P , a program to vary
Result: values for the dependent variables of Table 4

1 O={the four kinds of CVL operators}
2 E={elements in the AST of P}
3 while resources available do
4 randomly select o ∈ O
5 randomly select e ∈ E
6 op← 〈o, e〉
7 P ′ ← derive (op, P )
8 if compile(P’) = true then
9 if test(P’) = true then

10 store P ′ as a sosie
11 else
12 store P ′ as a variant
13 end

14 else
15 store P ′ as a counterexample
16 end

17 end
Algorithm 1: The experimental protocol for creating, ap-
plying the operations and evaluating the generated pro-
gram.

5CPU: Intel Xeon Processor W3540 (4 core, 2.93 GHz),
RAM: 6GB
6www.grid5000.fr

5. ANALYSIS

5.1 Results
Table 3 presents the results after running the experiments

for the 8 subject programs, totalizing 196,816 lines of code.
We calculate the number of possibilities of applying a specific
operator in the universe of the 8 programs (the candidate
column). The number of candidates for Object Existence
is simply the number of nodes in the AST; for the Object
Substitution, it is the sum of the squares of the number of
elements of each AST type present in the programs; for Link
Existence is the number of fields plus the number of inher-
itance links; and for the Link End Substitution, it is the
number of fields squared plus the number o inheritance links
squared.

The Trial column describes how many times we applied
a transformation containing the given operator. Given the
number of candidates, the number of trials, and a confidence
of 99%, we calculate the margin of error for each operator.
This margin holds meaning if one wants to consider the re-
sults as probabilities inside our universe. An example of in-
terpretation is: the probability of having a program that
compiles after removing a random program element is be-
tween 10.97% and 11.97% (compile% = 11.47 and margin of
error = 0.50).

Panorama of operations. There are 86 possible com-
binations between operators and types of program elements
in our data set. In Table 4, we show the 15 first and the
15 last operations ordered by their compilation percentage.
The complete table can be found in the paper web site. The
first column refers to the type of operator: OE (Object Ex-
istence), OS (Object Substitution), LE (Link Existence) and
LS (Link End Substitution). The second column is the af-
fected program element. We also show the number of pos-
sibilities for each transformation and how many times we
actually apply them in our experiments.

Panorama of types of program elements. Figure 3
shows the results for 7 groups of program elements, indepen-
dently from the kind of operator. Each of the vertical bars
represent the compilable and sosie percentages for a given
project (they are arranged in the same order of Table 2).
We measured the dependent variables for all 42 program el-
ements, and the detailed results for each of the projects can
be found in the paper’s web page. However, to fit the results
to be seen in this paper, we have selected 20 elements and
grouped them according to their common function. The first
group is the if, containing the if and the conditional (i.e.,
A?B:C) program elements. The loops group contains the do,
while, foreach and for elements. The invocations group is
composed by the invocation (i.e, a method call such as .a() ,

5



Table 2: Descriptive statistics about our experimental data set
#LoC #class #test case #assert coverage #statement compile

time (sec)
test time
(sec)

JUnit 8056 170 721 1535 82% 2914 4.5 14.4
EasyMock 4544 81 617 924 91% 2042 4 7.8
JBehave-core 13173 188 485 1451 89% 4984 5.5 22.9
Metrics 4066 56 214 312 79% 1471 4.7 7.7
commons-collections 23559 285 1121 5397 84% 9893 7.9 22.9
commons-lang 22521 112 2359 13681 94% 11715 6.3 24.6
commons-math 84282 803 3544 9559 92% 47065 9.2 144.2
clojure 36615 150 NA NA 71% 18533 105.1 185

Table 3: Results for the operators.
candidate trial %trial margin of

error
compile compile% sosie sosie%

Link Existence 11248 7247 64.43 0.70 856 11.81 539 7.44
Link Substitution 14869609 85459 0.57 0.40 3851 4.51 3572 4.18
Object Existence 626258 79913 12.76 0.30 17559 21.97 6994 8.75

Object Substitution 14706362886 203566 <0.01 0.20 18776 9.22 12127 5.96
Total 14721870001 376185 <0.01 0.20 41042 10.91 23232 6.18

where a is a method), unary operators and binary operators;
we see the two last as invocations of methods (e.g., a + b
is equivalent to add(a,b)). The read group contains the pro-
gram elements in charge of access: variable, field and array
access. The write group is composed by the assignment and
operator assignment program elements. The new group con-
tains the elements responsible to create objects or primitive
types (the case for literal): new array, new class and literal.
In the exception group, we gathered the catch, try and throw
elements. In Table 5, we show the values for the variance,
standard deviation, mean and margin of error for each of the
aforementioned group of AST elements.

Table 5: Variance(σ2), standard deviation(σ),
mean(µ) and margin of error (ME) for the compi-
lation% of the 7 groups of Figure 3.

σ2 σ µ ME
if 47.44 6.89 26.32 0.01

loop 54.90 7.41 34.16 0.02
invocation 13.31 3.65 12.29 0.00

read 2.22 1.49 6.57 0.00
write 41.50 6.44 24.42 0.01
new 111.49 10.56 33.90 0.01

exception 40.81 6.39 16.62 0.02

We excluded from Figure 3 program elements that have
never compiled after being affected.

5.2 Visualizing the Results
Due to the large amount of data produced as result of the

experiment, we had to provide means to ease the visualiza-
tion of the transformations. Figure 4 shows the web-based
visualization tool we built to achieve this task. First, we
provide a global view of the input program by packages (see
1 ), within each package we have the classes, which are rep-
resented as long rectangles with colored lines inside. It is
possible to click on those rectangles to zoom in the classes
(see 2 ). Once zoomed, it is possible to see and access each
of the colored lines that make part of a class; they represent
code locations (a line number) that received transformations.
The red portions of the lines represent the amount of trans-

formations in that place of the code that did not succeed to
compile, while blue portions represent the ones that compiled
and the green portion the ones that resulted on sosies.

Furthermore, we made possible to click on each line to vi-
sualize the list of the transformations done in a given place
(see 3 ). This third view provides details on the actual num-
ber of transformations performed in that code location, the
name of the applied transformation and its status (0 means
it compiled and passed the tests, -1 it compiled and -2 it
did not compile). In the transformed code, we comment ev-
erything that was supposed to be removed/substituted in a
transformation in order to let the user compare the before
and after the transformation. In the specific case of Fig-
ure 4, the first transformation erased the first parameter of a
method call and the second one replaced the “null” keyword
by the “unchecked” string. The visualization tool is available
in the paper’s web site: http://varyjava.barais.fr/.

5.3 Discussing the Research Questions

5.3.1 RQ1. Safe and Unsafe Operations
We refer to Table 4 to discuss RQ1; it shows an excerpt of

the comprehensive panorama of the operations’ success per-
centages. In its 12 last lines, we can find 12 operations that
always lead to counterexamples. Meanwhile, if we observe
the 2 first lines of the table we will find 2 operations that
have always generated variants or sosies, followed by 72 kinds
of operations that worked at least one time. The complete
results can be found in the paper webpage. Some elements
of a Java program have an optional nature with respect to
correctness.

There are many ways of varying a Java program us-
ing CVL. Only 14% of operations (12 out of 86) never
resulted in valid programs. The other 86% resulted in
compilable programs in at least one attempt. The fre-
quencies may be low while some of the operations exhibit
high percentages (see also RQ2). A direct application of
CVL operations is thus generally not effective, suggesting
to specialize some operators (see also RQ3).
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Table 4: Global results for the 15 first and the 15 last operations ordered by compilation %.
operator program element candidate trial %trial compile compile% sosie sosie%

OE AnnotationType 46 23 50.00 23 100.00 19 82.61
OE Continue 124 31 25.00 31 100.00 9 29.03
OE ForEach 888 330 37.16 325 98.48 47 14.24
OS SuperAccess 60348 189 0.31 186 98.41 183 96.83
OS ThisAccess 5790636 2282 0.04 2203 96.54 2006 87.91
OE SuperAccess 456 86 18.86 83 96.51 24 27.91
OE While 609 95 15.60 88 92.63 18 18.95
OE For 3461 251 7.25 230 91.63 60 23.90
OE Break 1008 121 12.00 110 90.91 74 61.16
OE OperatorAssignment 1825 153 8.38 137 89.54 53 34.64
OE If 12859 2175 16.91 1851 85.10 587 26.99
OE Annotation 3802 903 23.75 699 77.41 655 72.54
OE Throw 3092 523 16.91 370 70.75 150 28.68
OS Annotation 3150678 1591 0.05 1019 64.05 980 61.60
OE Synchronized 95 27 28.42 16 59.26 1 3.70
. . . . . . . . . . . . . . . . . . . . . . . . . . .
OS Parameter 172555379 13594 0.01 12 0.09 12 0.09
OE Method 18906 3998 21.15 3 0.08 3 0.08
OE Parameter 28701 4494 15.66 2 0.04 1 0.02
OE Catch 602 218 36.21 0 0.00 0 0.00
OE Class 2477 309 12.47 0 0.00 0 0.00
OE Enum 61 4 6.56 0 0.00 0 0.00
OE Interface 671 52 7.75 0 0.00 0 0.00
OS Break 409674 192 0.05 0 0.00 0 0.00
OS Case 2035772 530 0.03 0 0.00 0 0.00
OS Catch 51158 650 1.27 0 0.00 0 0.00
OS Continue 4554 27 0.59 0 0.00 0 0.00
OS Do 916 8 0.87 0 0.00 0 0.00
OS Field 13019255 3639 0.03 0 0.00 0 0.00
OS LocalVariable 162483228 6604 0.00 0 0.00 0 0.00
OS Throw 2361268 1270 0.05 0 0.00 0 0.00
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Figure 3: Results by categories of program elements for the 8 projects.

For example, if we remove a “continue” from a loop it will
continue syntactically correct, and maybe even semantically,
since a “continue” can be used for optimization purposes,
not implicating changes in the loop semantics. On the other
hand, there are some Java constructs that can be considered
as mandatory with respect to others and therefore must be
handled carefully.

As CVL is designed to be generic to any target language,
the fact that it is easier to design unsafe CVL models with
respect to Java is acceptable and even expected [9]; it is un-
feasible to anticipate every possible domain-specific syntax
or semantics rules for any language; therefore an specializa-
tion step is strongly advised, and it is further addressed in
the RQ3 discussion. Despite of having 12 transformations
that never yield valid programs, we observe that they are
the minority: 14% (12 out of 86). This indicates that there
are several possibilities for varying a Java program without
crashing it.

5.3.2 RQ2. Safety of Program Elements/Operators

In order to address RQ2a, we can pick the operations that
have Object Existence as their operator and blocks of code
as elements: Do, For, ForEach, While, If, Throw. We can
observe in Table 4 that their variant percentage are from
70% (in the case of the Throw) to 98% (in the case of the
ForEach). We can also observe from Table 5.1 and Figure 3
that the mean for loops, which are blocks of code, is the
greatest comparing to the others program elements.

We confirm the idea that blocks of code are easier to
vary; their success percentages are the highest (from 70%
to 98% of derived programs are valid). Derivation opera-
tors over Do, For, ForEach, While, If, Throw are appli-
cable for realizing fine-grained variability (typically inside
methods).

We refer to Table 3 to discuss RQ2b. We can see that only
about 9% of the transformations based on Object Substitu-
tion have succeed to generate correct programs, while the
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1 2 3 

Figure 4: Visualizing the transformations.

ones based on Object Existence had about 21% of success.
This is due to the fact that Object Existence is translated
into fewer operations than Object Substitution, which en-
compasses removing one element (OE) and adding a substi-
tute. An interesting number is the one of Link Existence, im-
plying that, in some situations, we could remove associations
between Classes and the generated program still compiled
and even passed the test suite.

5.3.3 RQ3. Identifying Operators to be Specialized
To address RQ3, we can refer to the extensive results of

percentages and to our visualization tool. We took the role
of the user to investigate some of the operations in one of the
data set projects. We could learn from this experience that
there is a straightforward path to follow. (1) We looked into
most popular types of program elements first (e.g., Class)
and checked how the operations performed. Two possible
outcomes are: the operation has a high success percentage
or it has a low one; if it has a high one we can keep the
operation.

If an operation has a low compilation%, it does not
necessarily mean that the operation is irrelevant. Our
qualitative review rather suggests that there is room for
specializing operators through simple adaptations or com-
plex refactoring (e.g., based on static analysis).

Determining when an operation is irrelevant and not useful
needs further investigation and typically requires knowledge
about the host language (here Java) and the purpose of the
variation to the user. The problems induced by some deriva-
tion operators can also justify the emergence of paradigms
(e.g., feature-oriented programming) that try to provide coarse-
grained operators for variability.

(2) We analyse the code, with the help of our tool and we
check why the operation performed poorly. (3) We assess if
the errors occasioned by the operations are recurrent and can
be fixed systematically; in case it is true, we can do a simple
adaptation of the operator or a static analysis based one. One
example of simple adaptation is with a try-catch. We know
that a “try” block is often followed by a “catch” or a finally
one, therefore removing a catch have great chances of giving
compilation errors, to avoid this, we can simply condition the
removal of a catch to the removal of its corresponding “try”.

On the other hand, some specializations need the assis-
tance of static analysis. For example, we would expect to

be able to remove a Class using CVL, however this operation
has a compile% close to 0; we could design a ClassExistence
operator that would remove a given Class and all the other
Classes/Interfaces to which it points. The same happens with
replacing a “field” by another. Instead of having an Object
Existence to a “field”, we would have a specialized operator
called Field Existence, which would be responsible by not
only the existence of the given field, but also by any occur-
rence of that field in the program.

6. THREATS TO VALIDITY
Our experiment has the necessary conditions for causality.

No other changes are done in the programs by each iteration,
we only perform one operation at a time (see Algorithm 1),
therefore the changes in our dependent variables are only
related to the execution of the given operation.

Internal Validity: One potential threat for internal validity
is the number of trials with respect to the possible number
of operations in our universe. We have addressed this threat
by controlling the margin of error for the operations, hav-
ing it always less than 1% and using a confidence level of
99%. However, some program elements were not numerous
enough for being representative, such as annotation types;
they are rarely used and therefore our experiments may not
be conclusive for these program elements.

External Validity: Regarding the representativeness of the
transformations, in total, we generated, compiled and tested
376,185 programs. We tried to compute the maximum num-
ber of operations as possible, given the available resources;
if we multiply the total number of transformations by their
compilation time, added to the testing time (when compila-
tion is ok) of the 8 projects, we have a total of around 97
days of computation in a personal computer.

By calculating the variance and standard deviation of trans-
forming specific program elements over our 8 different subject
programs, we could notice some discrepancy among them.
This fact can be an evidence that factors such as choices of
design and programming style, can have an influence on the
compilation percentages; it needs to be further explored.

Approach Generality: We chose Java as it is a widely used
programming language, however our experiments can be re-
produced to analyse other languages. The essential steps are:
(1) Perform executions of the operations over the constructs
of the chosen language in a set of examples; (2) Collect and
categorize the generated variants in succeeded and not suc-
ceeded, together with the used transformations; (3) Quanti-
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tatively analyse the best and the worst transformations with
respect to a criteria; (4) Qualitatively analyse subsets of op-
erations + transformed programs by domain expert and spe-
cialize operators.

7. RELATED WORK
Our work is at the crossroads of research related to (1) vari-

ability and software product lines, (2) Java, and (3) program
synthesis and transformation.

Variability Approaches. Different approaches to repre-
sent variation have been proposed. For instance, the direc-
tives of the C preprocessor (#if, #else, #elif, etc.) condi-
tionally include parts of files. They can be used to activate
or deactivate a portion of code [15,17]. Superimposition is a
generic composition mechanism to produce new variants, be-
ing programs (written in C, C++, C#, Haskell, Java, etc.),
HTML pages, Makefiles, or UML models. Software artefacts
are composed through the merging of their corresponding
substructures [4]. Voelter and Groher et al. illustrated how
negative (i.e., annotative) and positive (i.e., compositional)
variability [31] can be combined. Delta modeling [25] pro-
motes a modular approach to develop SPLs. The deltas are
defined in separate models and a core model is transformed
into a new variant by applying a set of deltas. At the foun-
dation level, the Choice Calculus [8] provides a theoretical
framework for representing variations (being annotative or
compositional).

The Common Variability Language (CVL) has emerged to
provide a solution for managing variability in any domain-
specific modeling languages [12, 28]. CVL provides both the
means to support annotative, compositional, or transforma-
tional mechanisms. CVL thus shares similarities with other
variability approaches. The effort involves academic and in-
dustry partners and pursues the goal of providing a generic
yet extensible solution. Our work provides further empirical
results of CVL as well as a tooling infrastructure capable of
operating over Java programs.

Empirical Studies and Variability. Empirical stud-
ies have been conducted to further understand variability-
intensive systems (e.g., [1,15,17,19,21]). For instance, Liebieg
et al. [17,19] analyzed annotations of the C preprocessor over
40 open sources projects; metrics and qualitative assessment
of the discipline of annotations are reported.

Most of the empirical studies focus on studying the ex-
isting practices of variability, trying to understand how de-
velopers implement configurable systems or SPLs. These
studies provide insights for tooling builders, designers of lan-
guages, or developers. Typically new tools or programming
paradigms emerge to better support the activities of practi-
tioners [14, 16, 22]. Our approach differs in that we explore
all possible types of variability transformations a developer
could apply in a language, not limiting to a subset of con-
structs. It is most likely that we explore variability mecha-
nisms that have not been observed in existing projects.

Empirical Studies and Java. Empirical studies have
been conducted to understand how developers use Java. For
instance, Dyer et al. [7] analyzed 18 billion AST nodes to find
uses of new Java language features over time. Tempero et
al. [29] studied the use of inheritance in Java projects. Our
empirical study focuses on the possible product line based
operations developers can use for deriving Java variants.

Program Synthesis and Transformations. Several
authors have developed techniques to synthesize or trans-
form programs [2, 10]. The objectives and applications are

multi-fold. For instance, mutation techniques aim simulat-
ing faults in order to improve the fault detection power of
test suites [2]. The use of product line derivation operators
can be considered in this context. We leave it as future work.

We refer to [5] for a thorough discussion about sosies, di-
versity, and existing synthesis techniques. We chose to con-
sider sosies for (1) evaluating the potential of CVL transfor-
mations in the quest of diversification; (2) challenging fur-
ther CVL transformations – it is more difficult to synthesize
a sosie than just a compilable Java variant.

8. CONCLUSIONS AND FUTURE WORK
This paper presented the first empirical study seeking to

systematically understand the effects of a direct application
of different product line operations over any Java program
constructs. We described a fully automated procedure based
on the Common Variability Language (CVL) to synthesize
variants of Java programs. Our approach can be conceptu-
ally extended to any (modeling) language subject to varia-
tion. We implemented the approach and developed an infras-
tructure capable of performing large-scale experiments with
CVL and Java. We performed a substantial empirical study
of the impact of variational transformation across a set of
Java applications, obtaining 376,185 variants of Java pro-
grams. Our results provide quantified knowledge about the
safety of CVL operators and the brittleness of the different
kinds of Java program elements. The data set, empirical re-
sults, and the set of visualisation tools are available online at
http://varyjava.barais.fr/.

We studied 86 different ways of varying a Java program,
out of which many had never been investigated by existing
research on variability realization. We give quantitatively-
supported insights about product line operators:

• 14% of operations never resulted in valid programs; the
other 86% resulted in compilable programs in at least
one attempt, but the frequencies are generally low;

• derivation operators (Do, For, ForEach, While, If, Throw)
for realizing fine-grained variability (typically inside meth-
ods) have highest percentages (from 70% to 98% of de-
rived programs are valid);

• a low compilation% does not necessarily mean that the
operation is irrelevant. Our qualitative review rather
suggests that there is room for specializing operators
through simple adaptations or complex refactoring (e.g.,
based on static analysis).

Future Work. An immediate research direction is to in-
vestigate how to validate, disprove, and specialize derivation
operators as part of product line tools (e.g., IDE, refactor-
ing). Our empirical results also suggest to study the design
of coarse-grained derivation operators for manipulating vari-
ability at a higher level (e.g., beyond individual statements).

Our long-term view is to apply CVL to any language in
a safer way. The empirical study opens avenues for further
investigations and developments. In the short-term, we plan
to implement specialized CVL operators for Java programs,
and then running the same experiments with the new set
of operators, evaluating how did the refinement helped with
the task of generating safer CVL designs; we would also catch
less obvious situations that lead to invalid programs and then
specialize the operators once again to correct more intricate
errors.
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Another direction is to investigate the derivation operators
in other areas than product line engineering. We plan to ap-
ply them to any kind of program variation approach (e.g.,
mutant-based testing [2], approximate computation [32], pro-
gram sketching [27]).
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