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ABSTRACT
In this paper, we propose a new strategy for near-duplicate video
retrieval that is based on shot aggregation. We investigate different
methods for shot aggregation with the main objective to solve the
difficult trade-off between performance, scalability and speed. The
proposed short aggregation is based on two steps. The first step con-
sists of keyframes selection. And the second one is the aggregation
of the keyframes per shot. The aggregation is performed by applying
Fisher vector on the descriptors computed on the selected keyframes.
We demonstrate that the scalability and the speed are tackled by a
sparse video analysis approach (i.e. extracting only few keyframes)
combined with shot aggregation, while the performance is discussed
around the choice of the aggregation strategy. The performance is
evaluated on the CC WEB VIDEO dataset that is designed for the
near-duplicate video retrieval assessment and for which some exper-
iments have been conducted by different authors.

1. INTRODUCTION

Over the last decade, several web services offer online-storage for
personal video backup, such as Dropbox, OneDrive, or for video
sharing such as Youtube, Dailymotion. The problem of efficient
storage, retrieval, and copyright infringement has motivated the
online storage providers to develop the concept of near-duplicates
in their platforms. Near-duplicate video content (NDVC) is often
defined as identical or approximately identical videos but differ-
ent in file formats, encoding parameters, photometric variations,
editing operations, lengths, and certain modifications [1] such as
variations in camera viewpoint, setting [2] and camera motion [3].
Cherubini et al. [4] in agreement with [3] articulates the definition
of near-duplicate video clip from a user’s perspective by taking into
account the participants activity on video sharing websites. Jiang
et al. [5] defines NDVC as the same scenes originally captured
from two different cameras. Since there is no unique consensus
on the NDVC definition in the literature, particular approaches rely
on some datasets, where it is annotated whether two videos are
near-duplicate or not. In this work we will follow this data-driven
definition.

There are a number of datasets that challenge video finger-
print and give data-driven definitions of near-duplicate videos. The
Muscle-VCD dataset [6] and the TRECVID dataset provided by
the National Institute of Science and Technology [7] are essentially
for video copy detection. The CC WEB VIDEO dataset [1] does
not consider the large scale but proposes NDVC content from real
world rather than artificially created content. UQ VIDEO [2] is
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a combined dataset created by injecting more videos to the exist-
ing CC WEB VIDEO. VCDB is a new dataset [5] for partial copy
detection in videos containing about 100,000 videos downloaded
from the internet. The evaluation procedure needs to compare the
scores obtained by our algorithm with state of the art in the same
test collection. CC WEB VIDEO dataset benefits to some relevant
comparison studies [8], [9] in near duplicate use case. For this rea-
son, we have selected CC WEB VIDEO as the reference dataset for
our experiments.

To achieve a good trade-off between performance, scalability
and speed, most of the video fingerprint algorithms manage the video
as a succession of frames. For each selected frame, some attributes
or descriptors are extracted in a sparse or dense manner. The quality
of attributes affects the accuracy of a near-duplicate video retrieval
(NDVR) system while their size and number impact the scalabil-
ity and the speed of retrieval. Color histograms [1] used as a global
video signature are computationally expensive and also fail in case of
photometric variations in the videos. An improvement over this issue
was proposed [1, 2], which consists in using a hierarchical approach
employing local signatures. Shang et al. [9] introduced a video sig-
nature method based on a binary spatio-temporal feature. A tempo-
ral approach is also elaborated in [10] by finding temporal relations
among patterns. To improve scalability and the speed of retrieval, a
temporal sparse approach consisting of detecting keyframes is em-
ployed [11]. Ordinal relations are extracted only on these keyframes
using conditional entropy and local binary pattern methods. How-
ever, this method is not robust to spatial editing and hence brings the
performance down. Visual descriptors aggregation methods [12–20]
became more and more popular because of their robustness to differ-
ent transformations or editing in the videos. Aggregated descriptors
tackle the sparsity of the image descriptor but do not handle the tem-
poral aspect. Note also that selecting “relevant” keyframes is a way
to improve the scalability and speed in video description. Uniformly
sampled keyframes are used in [9, 16, 18, 20, 21] which leads to an
extra storage cost because of redundant information. One keyframe
per shot (the center of the shot) is extracted in [1, 13, 15]. Such a
method of keyframe extraction leads to a loss of information over
the entire shot and hence to a performance drop, especially in the
case of long shots. To improve the accuracy, a method consists in
increasing the number of features [22] but this leads also to an extra
cost storage.

The aim of our proposal is to maintain a high performance while
increasing the scalability and speed of retrieval. First, the keyframes
are selected using the method described in [23, 24]. Shot bound-
aries are found in a video and stable keyframes are extracted from
inside these shots in a non-uniform manner. The scale-invariant fea-
ture transform (SIFT) [25] descriptors are extracted from each of the
keyframes. A feature vector is calculated per shot by aggregating



all extracted descriptors in a shot in a single Fisher vector, which
is a simplifications of the Fisher kernel [26]. Finally, the retrieved
videos are ranked using two different strategies: a voting strategy
or a hidden Markov model (HMM)-based strategy that allows ex-
ploiting temporal coherence between sequences of shots. The main
contribution of this paper is to combine a sparse video analysis ap-
proach, i.e., selecting just few keyframes, with different aggrega-
tion methods that should lead a good trade off between performance,
scalability and speed.

The rest of the paper is organized as follows. Section 2 describes
our proposed shot aggregation method in detail. Section 3 is devoted
to experiments. Conclusions are drawn in section 4.

2. PROPOSED METHOD

A general scheme of the proposed method is represented in Fig. 2.
In the following subsections the method is described step by step.

Fig. 1. General scheme of the proposed method.

2.1. Keyframe Selection

The goal of this step is to find the best frames in a video to finger-
print with a reasonable density rate. A shot being a temporal section
where the video activity shall be constant, the method we use [23,24]
consists in finding shot boundaries and the best stable frames in each
shot. Shot boundaries are the two frames that surround the shot
while the best stable frames are the frames with the smallest con-
tent variation along the shot. The activity is captured by analysing
a perceptual distance between successive frames [24]. This percep-
tual distance is defined as the Euclidean distance between perceptual
hash (a global descriptor) of neighbour frames. Perceptual hash we
used is a so-called Radon soft hash algorithm (RASH) [27] that is
computed on radial strip (set of points on a line passing through the
image center), with orientation θ ∈ [1o, 180o]. More details on shot
detection can be found in [24].

We have observed that selecting only the best stable frame is
relevant in case of short temporal section but it is not enough if the
shot is longer than few seconds. For this reason we have decided to
extend the number of stable frames to a maximum ofA stable frames
per shot under the constraint that the temporal distance between two
stable frames is at least B frames. Values of A and B drive the
density of stable frames in a temporal section. We have chosen A =
10 and B = 20. We have also observed that the stable frames are
usually the best in the shot in terms of blurriness (due to motion),
darkness or brightness but some artefacts due to image macro block
compression persist. For each stable frame detected, we detect if it is
a I, P, or B-type frame. If the stable frame is not an I frame, we search
in a neighbour window (of up to 5 frames) if an I frame is available.
I frames are better encoded than P or B frames and generate less of
compression artefacts, so it is better to apply image fingerprint on I
frames in the latter stage.

Once the keyframes are selected, they have to be described.
SIFT local descriptors aggregated by Fisher vector techniques are
dedicated to this task.

2.2. Fisher Vector Encoding

The Fisher kernel [19] combines the advantages of methods based
on generative statistical models and those of discriminative methods.
The Fisher vector is the normalized gradient of the log-likelihood of
the data sample with respect to the model parameters, the model
being pre-trained from some training data. 1 The Fisher vector can
be derived as a special case of the Fisher kernel [26]. The Fisher
vector is an image representation obtained by pooling local image
features, and it results in a dense and compact image representation
that was shown more efficient than the standard bag of visual words
(BOVW) for image classification and categorization [26, 28].

Consider aD-dimensional feature vectorX = [x1, x2, . . . , xD]T

(here we use dense SIFT) extracted from an image and the pa-
rameters of the Gaussian mixture model (GMM) to be θ =
{µk,Σk, πk}Kk=1, where µk, Σk and πk denote respectively the
mean vector, the covariance matrix and the weight of k-th compo-
nent. The GMM associates each feature vector X to a component
k in the mixture with a strength given by the posterior probability.
Thus, the assignment to a given GMM component is done in a
soft manner, which is a fundamental difference between the Fisher
vector and the BOVW model that is based on a hard assignment.
We here compute the Fisher vector with respect to GMM means µk

only [29], and thus the Fisher vector length is

L = D ×K. (1)

For example for a SIFT descriptor of size 128 and a GMM with 64
components, we get a Fisher vector of length - 128× 64 = 8192.

Unlike the previous works [9, 16, 18, 20, 21], where either only
one frame per shot or uniformly sampled frames were consid-
ered, our method considers several non-uniformly selected stable
frames, aka keyframes, per shot. By not considering uniformly sam-
pled frames, our method eliminates redundant information and this
should help in its scalability. Once dense SIFT and Fisher vector are
applied on keyframes, the shot aggregation of the local features is
performed. We consider two alternative ways for that:

1. Shot level SIFT aggregation (S AGG) : Dense SIFT features
computed for each of the keyframes in a shot are aggregated
into a single Fisher vector per shot:

FVshot = G
({
{Xm,n}Nk(m)

n=1

}Ms

m=1

)
, (2)

where Xm,n is the n-th SIFT vector in the m-th keyframe,
Nk(m) is the total number of SIFT vectors in them-th keyframe,
Ms is the total number of keyframes in the shot, and G(·) is the
Fisher vector aggregation function.

2. Shot level Fisher averaging (F AV): For each keyframe one
Fisher vector is computed from the corresponding dense SIFT
features. Then, Fisher vectors belonging to a single shot are av-
eraged to obtain a single Fisher vector for this shot:

FVshot =
1

Ms

Ms∑
m=1

G
(
{Xm,n}Nk(m)

n=1

)
. (3)

1In case of image representation this training data may be a set of descrip-
tors extracted from a big set of images.



2.3. Ranking

To rank the retrieved videos, we propose two strategies: the vot-
ing strategy and the HMM-based strategy. Both strategies are using
a similarity measure that is the Euclidean distance between the de-
scriptors, i.e., Fisher vectors, of the query video and the descriptors
of all the videos in the dataset. LetD = [dij ]

I,J
i,j=1 matrix of similar-

ity measures between the query video and a video from the reference
dataset, where dij is the Euclidean distance between the ith descrip-
tor of the query and the jth descriptor of the reference dataset,indices
i and j enumerate to either the shots or the keyframes depending on
the method, and I and J are the corresponding total numbers of shots
or keyframes.

2.3.1. Majority voting

We rely on the voting strategy introduced in [30]. GivenD the voting
similarity between the query video and a video from the reference
dataset is computed as

V =
∑I

i=1

(
max

k=1,...,K
[d̃ik]− min

j=1,...,J
[dij ]

)
, (4)

where D̃ = [d̃ik]I,Ki,k=1 is the matrix of similarity measures between
the query video and all videos from the reference dataset, with in-
dex k = 1, . . . ,K enumerating over all videos the shots or the
keyframes depending on the method. The videos can now be ranked
according to the votes received.

2.3.2. HMM-based strategy

Voting similarity described in the previous section does not take into
account temporal consistency between different keyframes or shots.
However, in the near-duplicate content the keyframes or shots keep
usually the same order in the query and the reference videos, and at
the same time this does not happen in 100 %, since some shot swaps,
insertions or deletions are possible as well. Here we would like ex-
ploiting such a temporal consistency, while having an approach that
tolerates temporally non-consist exceptions. For that we are using
an HMM-based strategy that allows taking into account temporal
consistency via a most likely path decoded within similarity ma-
trix D that usually relies distances dij in a monotone manner (see
red path on Fig. 2), while non-monotone behaviour is possible as
well. HMM-based strategy was also used to detect copied segments
in [31].

This is achieved as follows. Given a similarity matrix D be-
tween a query video and one reference video, we consider an I-
length observation sequence decoded within a J-state HMM. The
similarity measure between these two videos is now computed as
the log-likelihood of the most likely sequence of states q = {qi}Ii=1

(qi ∈ {1, . . . , J}). In other words

V = max
q

log p(q), (5)

where

log p(q) = −c×
I∑

i=1

diqi +

I∑
i=2

log p(qi|qi−1) + log p(q1), (6)

is a log-likelihood of a sequence q that is defined by replacing the
observation log-likelihood at time i and state j by c dij with c being
a positive constant (here we use c = 0.001), initial probabilities p(j)

are fixed to equal values and transition probabilities p(j|j′) are de-
fined so as to favour short state transitions forward, while not forbid-
ding any other state transitions, e.g., backward or far forward (and
example of transition probabilities values can be found on Fig. 2).
This allows temporal consistency check, while being tolerant to ex-
ceptional cases where this consistency does not held (e.g., due to
video editing).

This maximum log-likelihood (5) can be efficiently computed by
dynamic programming or Viterbi algorithm [32] relying on forward
and backward propagation. Since we only need the maximum log-
likelihood value and do not really need the most likely state sequence
q, we are using forward propagation only.

Fig. 2. HMM-based strategy

3. EXPERIMENTS

Here we evaluate our methods on the CC WEB VIDEO dataset,
since it is a popular benchmark for the NDVR task and results of
state-of-the-art methods for this benchmark are available [8, 9]. In
this dataset 24 different queries are issued from YouTube, Google
Video, and Yahoo! and the corresponding search results are col-
lected to form a dataset consisting of 12790 videos which is split
into 24 subsets based on the queries. We pre-trained a GMM for
the Fisher vector computation using a completely different dataset,
built with stable frames collected from thirty hours of videos, and
for varying number of components: 64, 128, 256. The keyframes
are then densely sampled and SIFT features are computed on each
patch. Fisher vectors are then computed based on the two shot ag-
gregation strategies, S AGG and F AV, described in section 2.2. To
evaluate the performance of our methods, we have two additional
experimental set-ups, A KF and C SH:

• A KF: Fisher vectors for all the Ms keyframes from a shot are
computed and no shot aggregation is performed.

• C SH: We extract one middle keyframe per shot, similar to [1],
but using our shot detection method described in section 2.1.
Fisher vectors are computed for all the keyframes.

We also consider two baseline state-of-the-art methods [8, 9]:

• B CE: In [9], keyframes are sampled uniformly every second
and a conditional entropy method is applied to all the keyframes.

• B CCA : In [8], a canonical correlation analysis (CCA) is per-
formed between two videos to check for similarity. The CCA is
applied on the features extracted from the videos.

For all the methods based on the Fisher vectors, we perform
tests with 3 different GMM components: 64, 128, 256. The lower
the number of components, the smaller is the Fisher vector size and
hence the storage requirements, which leads in turn to a better scal-
ability.
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Fig. 3. Averaged precision-recall curves across 24 queries for our
methods.

3.1. Results

We evaluated the performances for each of the set-up, and the cor-
responding precision-recall curves [8, 9] are plotted on Figure 3.
The best overall performance of F AV method is obtained with 128
GMM components. S AGG-128 performs similar to F AV-128,
while A KF-128 has a slightly higher precision for lower recall
values. However, as recall is increased, the precision drops heav-
ily. Since for C SH-128 method only the middle keyframes from
the shot are considered, the area under the precision-recall curve is
relatively smaller than for other methods considered here.

Figure 4 plots the comparison of our methods F AV-128 and
F AV-128-HMM with the baseline state-of-the-art methods B CE
and B CCA. 2 We can see that our method F AV-128 has a per-
formance similar to B CCA, while F AV-128-HMM has a higher
precision than B CCA. This is due to the fact that the HMM-based
strategy checks the temporal coherence between matched shots or
keyframes sequences using a probabilistic model. HMM-based strat-
egy does not improve the recall but reduces the false positive rate.
Both F AV-128 and F AV-128-HMM outperforms B CE for lower
recall values.

3.2. Storage and Complexity

Our shot aggregation methods require an average 0.210 MB for
GMM with 64 components and the storage requirements increase
linearly with respect to the GMM size. F AV-128 requires a higher
storage than F AV-64 but performs better compared to it. Since de-
scriptors are computed and stored for many keyframes in each shot,
A KF requires the maximum storage space among our methods,
thus affecting its scalability. The computational expense is also in-
creased compared to F AV-128. Keyframes are sampled uniformly
in B CE and hence it requires more storage compared to F AV-128.
With relatively smaller storage requirements and a less expensive
computation, F AV-128 provides a similar performance to B CCA.
F AV-128-HMM is computationally more expensive than F AV-128
but it improves the performance.

2Precision-recall curves of the baseline methods are taken from the cor-
responding papers [8, 9].
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Fig. 4. Comparison of our best methods with two baselines.

4. CONCLUSION

This paper introduced several shot aggregation strategies for NDVR.
The keyframes from the videos are extracted using a shot boundary
detector followed by non-uniform stable frame selection from the
shots. Shot aggregation methods are applied to each shot in a video
from which one single Fisher vector per shot is computed.

This strategy provides similar or higher performance than the
baseline methods that are based on single keyframe extraction from
the center of each shot. It also provided better scalability com-
pared to baseline state-of-the-art methods that are based on uniform
keyframes sampling. The combination of shot aggregation strat-
egy and an HMM-based strategy for ranking the near-duplicates im-
proved the performance compared to the voting strategy at the ex-
pense of a slightly higher computational load. Our best method is
robust to temporal and spatial editing, photometric and geometric
variations and gives a similar performance compared to the baseline
state-of-the-art methods [8, 9] with smaller storage requirements. It
also provides a good trade-off between performance, scalability and
speed.
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