Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers

Barycentric Subspaces and Affine Spans in Manifolds

Xavier Pennec 1, * 
* Corresponding author
1 ASCLEPIOS - Analysis and Simulation of Biomedical Images
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This paper addresses the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. Current methods like Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) minimize the distance to a " Geodesic subspace ". This allows to build sequences of nested subspaces which are consistent with a forward component analysis approach. However, these methods cannot be adapted to a backward analysis and they are not symmetric in the parametrization of the subspaces. We propose in this paper a new and more general type of family of subspaces in manifolds: barycentric subspaces are implicitly defined as the locus of points which are weighted means of k +1 reference points. Depending on the generalization of the mean that we use, we obtain the Fréchet / Karcher barycentric subspaces (FBS / KBS) or the affine span (with exponential barycenter). This definition restores the full symmetry between all parameters of the subspaces, contrarily to the geodesic subspaces which intrinsically privilege one point. We show that this definition defines locally a submanifold of dimension k and that it generalizes in some sense geodesic subspaces. Like PGA, barycentric sub-spaces allow the construction of a forward nested sequence of subspaces which contains the Fréchet mean. However, the definition also allows the construction of backward nested sequence which may not contain the mean. As this definition relies on points and do not explicitly refer to tangent vectors, it can be extended to non Riemannian geodesic spaces. For instance, principal subspaces may naturally span over several strata in stratified spaces, which is not the case with more classical generalizations of PCA.
Complete list of metadata

Cited literature [17 references]  Display  Hide  Download
Contributor : Project-Team Asclepios Connect in order to contact the contributor
Submitted on : Wednesday, June 17, 2015 - 1:18:57 AM
Last modification on : Saturday, June 25, 2022 - 11:16:41 PM
Long-term archiving on: : Tuesday, September 15, 2015 - 5:35:30 PM


Files produced by the author(s)



Xavier Pennec. Barycentric Subspaces and Affine Spans in Manifolds. Geometric Science of Information GSI'2015, Second International Conference, Oct 2015, Palaiseau, France. pp.12-21, ⟨10.1007/978-3-319-25040-3_2⟩. ⟨hal-01164463⟩



Record views


Files downloads