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Inria Sophia-Antipolis and Céte d’Azur University (UCA), France
xavier.pennec@inria.fr

Abstract. This paper addresses the generalization of Principal Com-
ponent Analysis (PCA) to Riemannian manifolds. Current methods like
Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) min-
imize the distance to a ”Geodesic subspace”. This allows to build se-
quences of nested subspaces which are consistent with a forward compo-
nent analysis approach. However, these methods cannot be adapted to
a backward analysis and they are not symmetric in the parametrization
of the subspaces. We propose in this paper a new and more general type
of family of subspaces in manifolds: barycentric subspaces are implicitly
defined as the locus of points which are weighted means of k41 reference
points. Depending on the generalization of the mean that we use, we ob-
tain the Fréchet / Karcher barycentric subspaces (FBS / KBS) or the
affine span (with exponential barycenter). This definition restores the
full symmetry between all parameters of the subspaces, contrarily to the
geodesic subspaces which intrinsically privilege one point. We show that
this definition defines locally a submanifold of dimension k and that it
generalizes in some sense geodesic subspaces. Like PGA, barycentric sub-
spaces allow the construction of a forward nested sequence of subspaces
which contains the Fréchet mean. However, the definition also allows the
construction of backward nested sequence which may not contain the
mean. As this definition relies on points and do not explicitly refer to
tangent vectors, it can be extended to non Riemannian geodesic spaces.
For instance, principal subspaces may naturally span over several strata
in stratified spaces, which is not the case with more classical generaliza-
tions of PCA.

1 Introduction

For Principal Component Analysis (PCA) in a Euclidean space, one can equiva-
lently define the principal k-dimensional affine subspace using the minimization
of the variance of the residuals (the projection of the data point to the subspace)
or the maximization of the explained variance within that affine subspace. This is
due to the Pythagorean theorem, which does not hold in more general manifolds.
A second important observation is that principal components of different orders
are nested, which allows to build forward and backward estimation methods by
iteratively adding or removing principle components.



Generalizing affine subspaces to manifolds is not so obvious. For the zero-
dimensional subspace, intrinsic generalization of the mean on manifolds naturally
comes into mind: the Fréchet mean is the set of global minima of the variance,
as defined by Fréchet in general metric spaces [5]. The set of local minima of
the variance was named Karcher mean by W.S Kendall [10] after the work of
Karcher et al. on Riemannian centers of mass ([8] see [9] for a discussion of the
naming and earlier works).

The one-dimensional component is then quite naturally a geodesic which
should passe through the mean point. Higher-order components are more difficult
to define. The simplest intrinsic generalization of PCA is tangent PCA (tPCA),
which amounts to unfold the whole distribution in the tangent space at the
mean using the pullback of the Riemannian exponential map, and to compute
the principle components of the covariance matrix in the tangent space. The
method is thus based on the maximization of the explained variance. tPCA
is often used on manifolds because it is simple and efficient. However, if it is
good for analyzing data which are sufficiently centered around a central value
(unimodal or Gaussian-like data), it is often not sufficient for multimodal or
large support distributions (e.g. uniform on close compact subspaces).

Fletcher et al. proposed in [4] to rely on the least square distance to sub-
spaces which are totally geodesic at one point. These Geodesic Subspaces (GS)
are spanned by the geodesics going through one point with tangent vector re-
stricted to a linear subspace of the tangent space. These subspaces are only
locally a manifold as they are generally not smooth at the cut locus of the mean
point. The procedure was coined Principle Geodesic Analysis (PGA). However,
the least-square procedure was computationally expensive, so that the authors
implemented in practice a classical tangent PCA. A real implementation of the
original PGA procedure was only provided recently by Sommer et al. [16]. PGA
is intrinsic and allows to build a sequences of embedded principal geodesic sub-
spaces in a forward component analysis approach by building iteratively the
components from dimension 0 (the mean point), dimension 1 (a geodesic), etc.
Higher dimensions are obtained iteratively by selecting the direction in the tan-
gent space at the mean that optimally reduce the square distance of data point to
the geodesic subspace. However, the mean always belong to geodesic subspaces
even when it is not part of the support of the distribution.

Huckemann et al. [14] proposed to start at the first order component by fitting
a geodesic to the data, not necessarily through the mean. The second principle
geodesic is chosen orthogonally to the first one, and higher order components
are added orthogonally at the crossing point to build a geodesic subspace. The
method was named Geodesic PCA (GPCA). Sommer [15] proposed a method
called horizontal component analysis (HCA) which uses the parallel transport
of the 2nd direction along the first principle geodesic to define the second coor-
dinates, and iteratively define higher order coordinates through horizontal de-
velopment along the previous modes. Other principle decompositions have been
proposed, like Principle Graphs [6], extending the idea of k-means.



All the cited methods are intrinsically forward methods that build succes-
sively larger approximation spaces for the data. A notable exception is Principle
Nested Spheres (PNS), proposed by Jung, et al. [7] as a general framework
for non-geodesic decomposition of high-dimensional spheres or high-dimensional
planar landmarks shape spaces. Subsphere or radius 0 to 1 are obtained by slic-
ing a higher dimensional sphere by an affine hyperplane. The backward analysis
approach, determining a decreasing family of subspace, has been generalized to
more general manifold with the help of a nested sequence of relations [3]. How-
ever, up to know, such sequences of relationships are only known for spheres,
Euclidean spaces or quotient spaces of Lie groups by isometric actions [14].

In this paper, we keep the principle of minimizing the unexplained infor-
mation. However, we propose to replace Geodesic Subspaces by new and more
general types of family of subspaces in manifolds: Barycentric Subspaces (BS).
BS are defined as the locus of points which are weighted means of k+ 1 reference
points. Depending on the generalization of the mean that we use on manifolds,
Fréchet mean, Karcher mean or exponential barycenter, we obtain the Fréchet
/ Karcher barycentric subspaces (FBS / KBS) or the affine span. We show that
these definition are related and locally define a submanifold of dimension &, and
that they generalize in some sense the geodesic subspaces. Like PGA, Barycentric
Subspace Analysis (BSA) allows the construction of forward nested subspaces
which contains the Fréchet mean. However, it also allows a backward analysis
which may not contain the mean. As this definition relies on points and do not
explicitly refer to tangent vectors to parametrize geodesics, a very interesting
side effect is that it can also be extended to more general geodesic spaces that
are not Riemannian. For instance, in stratified spaces, it naturally allows to have
principle subspaces that span over several strata. The paper is divided in three
parts. We recall in Section 2 the background knowledge. Then, we define in Sec-
tion 3 the notions of barycentric subspaces in metric spaces and the affine spans
in manifolds. Section 4 finally establishes important properties and relationships
between these subspaces.

2 Background knowledge on Riemannian manifolds

2.1 Computing in Riemannian manifolds

We consider an embedding Riemannian manifold M of dimension n. The Rie-
mannian metric is denoted (. |.), on each tangent space T, M of the manifold.
The expression of the the underlying norm in a chart is ||v||2 = v™ G(z) v =
v'v9 g;;(x) using Einstein notations for tensor contractions. We assume the man-
ifold to be geodesically complete (no boundary nor any singular point that we can
reach in a finite time). As an important consequence, the Hopf-Rinow-De Rham
theorem states that there always exists at least one minimizing geodesic between
any two points of the manifold.

We denote by exp, (v) the ezponential map at point  which associate to each
tangent vector v € T, M the point of M reached by the geodesic starting at x
with this tangent vector after a unit time. This map is a local diffeomorphism



from 0 € T, M to M, and we denote ﬁ/ log,,(y) its inverse: it may be defined
as the smallest vector of 7, M that allows to shoot a geodesic from x to y. A
geodesic exp, (tv) is minimizing up to a certain cut time ¢y, and not anymore
after. When ¢ is finite, tgv is called a tangential cut-point and exp, (tov) a cut
point. The domain of injectivity D(x) € T, M of the exponential map can be
maximally extended up to the tangential cut-locus 9D(z) = C(z). It covers all
the manifold M except the cut locus C(z) = exp,(C(x)) which has null measure
for the Riemannian measure.

When the tangent space is provided with an orthonormal basis, the Rieman-
nian exponential and logarithmic maps provide a normal coordinate systems at
x. A set of normal coordinate systems at each point of the manifold realize an
atlas which allows to work very easily on the manifold. The implementation of
exp and log maps is the basis of programming on Riemannian manifolds, and
most the geometric operations needed for statistics or image processing can be
rephrased based on them [12,13].

2.2 Taylor expansions in normal coordinate systems

We consider a normal coordinate system centered at z and z, = exp,(v) a
variation of the point z. We denote by ; 11 () the coefficients of the Riemannian
curvature tensor at z and by € a conformal gauge scale that encodes the size of
the path (in terms of ||v]|, and ||Z7||,) normalized by the curvature Following [2],
the Taylor expansion of the metric is g (v) = 6§ — 2 R% v°v? — LV R vevevd+
O(e*), and a geodesic joining z,, to y has 1nlt1a1 tangent Vector

[log, (y)]" = zy* — v® + LRY TP + 5 VRS, TP YTy + O(e*
Combining these two expansions we get the expansion of the Riemannian dis-
tance: d2,(v) = dist? (expx = |zg|2 + (Vd2,)™ + %’UTVQdiyU + O(€%),
where the gradient Vdmy = —2:@ is -2 times the log and the Hessian is the
opposite of the differential of the log:

(V2d2,)5 = — [Dxlog, ()] = 0 — §7°TY Ry — 1579 TG 7YV Ry, + O(€%).

2.3 Moments of point distributions

Let p(xz) = Y, Midz, (x) be a singular distribution of k£ + 1 points on M with
weights (Ao, ... A;) that do not sum up to zero. To define the moments of that
distribution, we have to take care that the Riemannian log and distance functions
are not smooth at the cut-locus of the points {z;}.

Definition 1 ((k + 1)-pointed Riemannian manifold).

Let {xq,...7} € ML be a set of k + 1 distinct points in the Riemannian
manifold M and C(xo, ... xr) = UE_,C(z;) be the union of the cut loci of these
points. We call (k + 1)-pointed manifold M*(xq,...x) = M/C(xg,...x1) the
submanifold of the non-cut points of the points.

Since the cut locus of each point is closed and has null measure, M*(xg,...xy)
is open and dense in M. Thus, it is a submanifold of M (not necessarily con-
nected). On this submanifold M*(xo,...zy), the distance to the points x; and
the Riemannian log function zz; = log, (x;) are smooth.



Definition 2 (Weighted moments of a (k + 1)-pointed manifold).
Let (Ao, ... A\i) € RFL such that Y-, \; # 0. The weighted n-order moment of a
(k 4+ 1)-pointed Riemannian manifold M*(xo, ...xy) is the smooth (n,0) tensor:

M (2, N) = >\ I, @ T} ... @ I, (1)
i n times

The 0-th order moment (the mass) Mo(A) = >, A\; = 17\ is constant. All other
moment are homogeneous of degree 1 in A and can be normalized by dividing by
the mass My(\). The first order moment 9% (x, \) = 3=, \i#x; is a smooth vector
field on the manifold M*(zq,...xx). The second and higher order moments are
smooth (n,0) tensor fields that will be used through their contraction with the
Riemannian curvature tensor.

3 Barycentric subspaces

In a Euclidean space, an affine subspace of dimension k is generated by a point
and k non-collinear vectors: Aff(zg,v1...v) = {IE =x0+ Zle AiVi, A € Rk} )
Alternatively, one could also generate the affine span of k + 1 points in general
linear position using the implicit equation ), Aj(z; —x) = 0 where Zf:o A= 1.
The two definitions are equivalent when x; = xg + v;. The last parametrization
of k-dimensional affine submanifolds is relying on barycentric coordinates which

live in the projective space Py minus the orthogonal of the line element 1 = (1 :
1:...1):

p;:{(AO:...:Ak)eR’f“ s.t. ZAi#0}~

Standard charts of this space are given either by the intersection of the line
elements with the "upper” unit sphere Sy of R¥*! with north pole 1/ VE (unit
weights) or by the k-plane of R¥T! passing through the point 1/k and orthogonal

to this vector. We call normalized weights \; = A;/ (Z.I;:O A;) this last projection.

3.1 Fréchet and Karcher Barycentric subspaces in a metric space

The two above definitions of the affine span turn out to have different general-
izations in manifolds: the first definition leads to geodesic subspaces, as defined
in PGA and GPCA [4, 16, 14], while the second definition using the affine span
suggests a generalization to manifolds either using the Fréchet/Karcher weighted
mean or using an exponential barycenter.

Definition 3 (Fréchet / Karcher Barycentric subspaces of k+1 points).
Let (M, dist) be a metric space and (o, ...xr) € MF be k+ 1 distinct refer-
ence points. The (normalized) weighted variance at point x with weight A € P}
is: 0%z, N) = L300 A, dist® (@) = L300 0N dist® (@, 20) /(5o ). The
Fréchet barycentric subspace is the locus of weighted Fréchet means of these



points, i.e. the set of absolute minima of the weighted variance: FBS(xq,...x1) =
{arg minge pm 02 (2, \), A € P;}. The Karcher barycentric subspace K BS(xo, . .. x)
1s defined similarly with local minima instead of global ones.

This definition restores the full symmetry of all the parameters defining the sub-
spaces, contrarily to the geodesic subspaces which privilege one point. Here, we
defined the notion on general metric spaces to show that it works in spaces more
general than smooth Riemannian manifolds. In a stratified space for instance,
the barycentric subspace spanned by points belonging to different strata natu-
rally maps over all these strata. This is a significant improvement over geodesic
subspaces used in PGA which can only be defined within a regular strata.

3.2 Affine spans as exponential barycentric subspaces

A second way to generalize the affine span to manifolds is to see directly the
implicit barycentric coordinates equation as a weighted exponential barycenter:

Definition 4 (Affine span of a (k + 1)-pointed Riemannian manifold).
A point x € M*(xg,...xx) has barycentric coordinates A € Py if

My (2, \) = Y8 A7z, = 0. (2)

The affine span of the points (xg,...xx) € MP¥ is the set of weighted exponential
barycenters of the reference points in M™*(xg, ... x):
Aff(xo, ... x,) = {x € M*(x0,...25)|3N € P : My (x,\) = 0}.

This definition is only valid on M*(xy, . . . 2x) and may hide some discontinuities
of the affine span on the union of the cut locus of the reference points. Outside
this null measure set, one recognizes that Eq.(2) defines nothing else than the
critical points of the variance o?(z,A) = 1 3. dist?(z, ;). The affine span
is thus a superset of the barycentric subspaces in M*(xq, ...xy). However, we
notice that the variance may also have local minima on the cut-locus of the
reference points.

Let us consider field of n x (k + 1) matrices Z(z) = [Zz(, ... zx}]. We can
rewrite Eq.(2) in matrix form: 9% (z, A) = Z(x)A = 0. Thus, we see that the
affine span is controled by the kernel of the matrix field Z(z):

Theorem 1 (SVD Characterization of the affine span).

Let Z(x) = U(z).S(z).V(z)" be a singular decomposition of the matriz fields
Z(x) = [ZZ, . .. ZTh] on M*(x0, . .. 1) (with singular values sorted in decreasing
order). The barycentric subspace Aff(xq,...xy) is the zero level-set of the k + 1
singular value si11(x) and the subspace of valid barycentric weights is spanned
by the right singular vectors corresponding to the | vanishing singular values:
Span(vi_i,...vg) (it is void if L =0).

4 Properties of barycentric subspaces in manifolds

In this section, we restrict the analysis to M*(xo,...xz)) so that all quantities
are smooth.



4.1 Karcher barycentric subspaces and affine span

In M*(xq,...xx), the critical points of the weighted variance are the points of
the affine span. Among these points, the local minima may be characterized by
the Hessian H(x,\) = — >, \;D, log,(x;) of the weighted variance. Using the
Taylor expansion of the differential of the log of Section 2.2), we obtain:

[H (2, )]y = 6 — 3REGa[Ma(, )] — 5 VR, M3 (2, 1) + O(e?),  (3)

The key factor is the contraction of the curvature with the dispersion of the
reference points: when the typically distance from x to all the reference points
x; is smaller than the inverse of the curvature, then H(z, A) is essentially close to
the identity. In the limit of null curvature, (e.g. for a Euclidean space), H(z, \)
is simply the unit matrix. In general Riemannian manifolds, Eq.(3) only gives a
qualitative behavior. In order to obtain hard bounds on the spectrum of H(x, \),
one has to investigate bounds on Jacobi fields, as is done for the proof of unique-
ness of the Karcher and Fréchet means [8,10,11,1,17]. Thanks to these proofs,
we can in fact establish that the Karcher barycentric submanifold is locally well
defined around the Karcher mean.

When the Hessian is degenerated, we cannot conclude on the local minimality
without going to higher order differentials. This leads us to stratify the affine
span by the index of the Hessian of the weighted variance.

Definition 5 (Regular and positive points of M*(zg,...xx)).
A point x € M*(xq,...xk) is said regular (resp. positive) if the Hessian matriz
H(z, \) is invertible (resp. positive definite) for all X in the right singular space
of the smallest singular value of Z(x). The set of reqular (resp. positive) points is
denoted Reg(M*(xg,...xzx)) (resp. Regt(M*(zo,...xx))). The set of positive
points of the affine span is called the positive span Aff™ (xq,...x1).

Positive points are obviously regular, and in Euclidean spaces all the points
are positive and regular. However, in Riemannian manifolds, we may have non-
regular points and regular points which are non-positive.

Theorem 2 (Karcher barycentric subspace and positive span).
The positive span AffT (xq,...xy) is the set of regular points of the Karcher
barycentric subspace KBS(xq,...x) on M*(xg,...xL).

One generalization of the Fréchet (resp. Karcher) mean is the use of the
power « of the metric instead of the square. For instance, one defines the
median (¢« = 1) and the modes (o« — 0) as the minima of the a-variance
o x) =1 Zf:o dist®(z, z;). Following this idea, one could think of generalizing
barycentric subspaces to the a-Fréchet (resp. a-Karcher) barycentric subspaces.
In fact, it turns out that the critical points of the a-variance are just elements
of the affine span with weights X, = \; dist°‘72(ac7 x;). Thus, changing the power
of the metric just amounts to reparametrizing the barycentric weights, which
shows the notion of affine span is really central.



4.2 Dimension of the barycentric subspace

We can locally parametrize the affine span thanks to a Taylor expansion of the
constraint Z(z)A = 0: a change of coordinates 6\ induces a change of position
ox verifying H(x,\)ox + Z(x)6\ = 0. At the positive points, the Hessian is
invertible and the SVD characterization leads us to conclude that:

Theorem 3 (Dimension of the barycentric subspaces at regular points).
The positive span Afft(xq,...,21) (i.e. the reqular KBS), is a stratified space
of dimension k on Reg(M*(xg,...xzx)). On the m-dimensional strata, Z(x) has
exactly k —m + 1 vanishing singular values.

4.3 Geodesic subspaces as limit of barycentric subspaces

By analogy with Euclidean spaces, one would expects the affine span to be close
to the geodesic subspace

GS(xz,w,...wg) = {expw (Zle aiwi) € M for o c Rk}

generated by the k independent vectors wy, . .. wy at x when all the points {x; =
exp,, (ew;) h1<i<k are converging to x¢ at first order.

In order to investigate that, we first need to restrict the definition of the
geodesic subspaces. Indeed, although the above classical definition is implicitly
used in most of the works using PGA, it may not define a k-dimensional sub-
manifold when there is a cut-locus. For instance, it is well known that geodesics
of a flat square torus are either periodic or everywhere dense in a flat torus sub-
manifold depending on whether the components of the initial velocity field have
rational or irrational ratios. Thus, it makes sense to restrict to the part of the
GS which is limited by the cut-locus.

Definition 6 (Restricted Geodesic Submanifolds).
Let x € M be a point of a Riemannian manifold and W, = {Zle aw;, o € RF}
the k-dimensional linear subspace of TpyM generated a k-uplet {w;}i<i<k €
(T, M)* of tangent vectors at x. Recall that D(z) C Ty M is the mazimal defi-
nition domain on which the exponential map is diffeomorphic.

We call restricted geodesic submanifold GS*(W,) at x generated by the vector
subspace W, the submanifold of M generated by the geodesics starting at x with
tangent vectors w € Wy, but up to the first cut-point of x only:

GS*(W,) = GS™(z, w1, ... wg) = {exp, (w) ,w € W, N D(z)}

This restricted definition correctly defines a k-dimensional submanifold of M,
whose completion may be a manifold with boundary.

Let x = exp, (w) € GS*(W,). Thanks to the symmetry of geodesics, we can
show that this point is solution of the barycentric equation Zf:o Ailog, (z;) =
O(n2) with non-normalized homogeneous coordinates \; = «; for 1 < i < k
and \g = n — (3_, ;). These coordinates obviously sum up to zero when n



goes to zero, which is a point at infinity in P;. In that sense, points of the
restricted geodesic submanifold GS* (W) are points at infinity of the affine span
Aff(z,xq,...2,) when the points z; = exp,(nw;) are converging to x at first
order along the tangent vectors w;.

Theorem 4 (Restricted GS as limit case of the affine span).

Points of the restricted geodesic submanifold GS*(W,) = {exp, (w),w € W, N
D(z)} are points at infinity in P} of the affine span Aff(x,z1,...x1) when the
points x; = exp, (nw;) are converging to x at first order along the tangent vectors
w; defining the k-dimensional subspace W, C T, M.

5 Perspectives

We proposed in this paper three generalization of the affine span of k£ + 1 points
in a manifold. These barycentric subspaces are implicitly defined as the locus of
points which are weighted (Fréchet / Karcher / exponential barycenter) means
of k + 1 reference points. In generic conditions, barycentric subspaces are strat-
ified spaces that are locally submanifolds of dimension k. Their singular set of
dimension k — [ corresponds to the case where [ of the reference point belongs
to the barycentric subspace defined by the k — [ other reference points.

In non-generic conditions, points may coalesce along certain directions, defin-
ing non local jets instead of a regular k-tuple. Geodesic subspaces, which are
defined by k — 1 tangent vectors at a point, do correspond (in some restricted
sense) to the limit of the affine span when the k-tuple converges towards that
jet. We conjecture that this can be generalized to higher order derivatives using
techniques from sub-Riemannian geometry. This way, some non-geodesic decom-
position schemes such as loxodromes, splines and principle nested spheres could
also be seen as limit cases of barycentric subspaces.

Investigating simple manifolds like spheres and symmetric spaces will provide
useful guidelines in that direction. For instance, the closure of the barycentric
subspace of k + 1 different reference points on the n-dimensional sphere is the
k-dimensional great subsphere that contains the reference points. It is noticeable
that the closure of the affine span generated by any k + 1-tuple of points of a
great k-dimensional subsphere generate the same space, which is also a geodesic
subspace. This coincidence of spaces is due to the very high symmetry of the
sphere. For second order jets, we conjecture that we obtain subspheres of different
radii as used in principle nested spheres (PNS) analysis.

Barycentric subspaces can be naturally nested, by defining an ordering of
the reference points, which makes is suitable for a generalization of Principal
Component Analysis (PCA) to Riemannian manifolds. Several problems how-
ever remain to be investigated to use Barycentric Subspace Analysis (BSA) in
practice. First, the optimization on k-tuple might have multiple solutions, as in
the case of spheres. Here, we need to find a suitable quotient space similar to
the quotient definition of Grassmanians. Second, the optimization might con-
verge towards a non-local jet instead on a k-tuple, and good renormalization
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techniques need to be designed to guaranty the numerical stability. Third, one
theoretically needs to define a proper criterion to be optimized by all k-tuple
for kK =0...n together and not just a greedy approach as done by the classical
forward and backward approaches.
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