C. Chaffer and R. Weinberg, A Perspective on Cancer Cell Metastasis, Science, vol.331, issue.6024, pp.1559-1564, 2011.
DOI : 10.1126/science.1203543

G. Gupta and J. Massagué, Cancer Metastasis: Building a Framework, Cell, vol.127, issue.4, pp.679-695, 2006.
DOI : 10.1016/j.cell.2006.11.001

J. Talmadge and I. Fidler, AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective, Cancer Research, vol.70, issue.14, pp.5649-5669, 2010.
DOI : 10.1158/0008-5472.CAN-10-1040

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

O. Reilly, M. Holmgren, L. Shing, Y. Chen, C. Rosenthal et al., Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma, Cell, vol.79, issue.2, pp.315-328, 1994.
DOI : 10.1016/0092-8674(94)90200-3

R. Kaplan, R. Riba, S. Zacharoulis, A. Bramley, L. Vincent et al., VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche, Nature, vol.174, issue.7069, pp.820-827, 2005.
DOI : 10.1038/nature04186

M. Kim, T. Oskarsson, S. Acharyya, D. Nguyen, X. Zhang et al., Tumor Self-Seeding by Circulating Cancer Cells, Cell, vol.139, issue.7, pp.1315-1326, 2009.
DOI : 10.1016/j.cell.2009.11.025

J. Ebos, C. Lee, W. Cruz-munoz, G. Bjarnason, J. Christensen et al., Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis, Cancer Cell, vol.15, issue.3, pp.232-239, 2009.
DOI : 10.1016/j.ccr.2009.01.021

A. Chambers, A. Groom, and I. Macdonald, Metastasis: Dissemination and growth of cancer cells in metastatic sites, Nature Reviews Cancer, vol.2, issue.8, pp.563-572, 2002.
DOI : 10.1038/nrc865

I. Fidler, Timeline: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited, Nature Reviews Cancer, vol.3, issue.6, pp.453-458, 2003.
DOI : 10.1038/nrc1098

D. Nguyen, P. Bos, and J. Massagué, Metastasis: from dissemination to organ-specific colonization, Nature Reviews Cancer, vol.100, issue.4, pp.274-284, 2009.
DOI : 10.1038/nrc2622

S. Valastyan and R. Weinberg, Tumor Metastasis: Molecular Insights and Evolving Paradigms, Cell, vol.147, issue.2, pp.275-292, 2011.
DOI : 10.1016/j.cell.2011.09.024

H. Byrne, Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, vol.85, issue.3, pp.221-230, 2010.
DOI : 10.1038/nrc2808

R. Araujo and D. Mcelwain, A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulletin of Mathematical Biology, vol.66, issue.5, pp.1039-1091, 2004.
DOI : 10.1016/j.bulm.2003.11.002

S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. Ebos et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth, PLoS Computational Biology, vol.90, issue.8, p.25167199, 2014.
DOI : 10.1371/journal.pcbi.1003800.s010

D. Drasdo and S. Höhme, : monolayers and spheroids, Physical Biology, vol.2, issue.3, pp.133-147, 2005.
DOI : 10.1088/1478-3975/2/3/001

A. Anderson, A. Weaver, P. Cummings, and V. Quaranta, Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment, Cell, vol.127, issue.5, pp.905-920, 2006.
DOI : 10.1016/j.cell.2006.09.042

B. Waclaw, I. Bozic, M. Pittman, R. Hruban, B. Vogelstein et al., A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity, Nature, vol.9, issue.7568, 2015.
DOI : 10.1038/nature14971

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782800

D. Ambrosi and F. Mollica, Mechanical models in tumour growth. Preziosi L, editor. Cancer Modelling and Simulation, pp.142-166, 2003.

D. Bresch, C. T. Grenier, E. Ribba, B. Saut, and O. , Computational Modeling of Solid Tumor Growth: The Avascular Stage, SIAM Journal on Scientific Computing, vol.32, issue.4, p.2321, 2010.
DOI : 10.1137/070708895

URL : https://hal.archives-ouvertes.fr/inria-00148610

L. Liotta, G. Saidel, and J. Kleinerman, Stochastic Model of Metastases Formation, Biometrics, vol.32, issue.3, pp.535-550, 1976.
DOI : 10.2307/2529743

G. Saidel, L. Liotta, and J. Kleinerman, System dynamics of a metastatic process from an implanted tumor, Journal of Theoretical Biology, vol.56, issue.2, pp.417-434, 1976.
DOI : 10.1016/S0022-5193(76)80083-5

H. Haeno, M. Gonen, M. Davis, J. Herman, C. Iacobuzio-donahue et al., Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies, Cell, vol.148, issue.1-2, pp.362-375, 2012.
DOI : 10.1016/j.cell.2011.11.060

J. Scott, D. Basanta, A. Anderson, and P. Gerlee, A mathematical model of tumour self-seeding reveals secondary metastatic deposits as drivers of primary tumour growth, Journal of The Royal Society Interface, vol.433, issue.7023, p.23427099, 2013.
DOI : 10.1038/nature03204

J. Scott, P. Gerlee, D. Basanta, and A. Fletcher, Mathematical modeling of the metastatic process. Malek A, editor. Experimental Metastasis: Modeling and Analysis. Dordrecht, 2013.

K. Iwata, K. Kawasaki, and N. Shigesada, A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, Journal of Theoretical Biology, vol.203, issue.2, pp.177-86, 2000.
DOI : 10.1006/jtbi.2000.1075

N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat et al., Mathematical Modeling of Tumor Growth and Metastatic Spreading: Validation in Tumor-Bearing Mice, Cancer Research, vol.74, issue.22, pp.6397-6407, 2014.
DOI : 10.1158/0008-5472.CAN-14-0721

URL : https://hal.archives-ouvertes.fr/hal-01107681

S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi et al., Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach, Cancer Research, vol.76, issue.3
DOI : 10.1158/0008-5472.CAN-15-1389

URL : https://hal.archives-ouvertes.fr/hal-01222046

J. Spratt, J. Meyer, and J. Spratt, Rates of growth of human solid neoplasms: Part I, Journal of Surgical Oncology, vol.49, issue.2, pp.137-146, 1995.
DOI : 10.1002/jso.2930600216

H. Miyake, I. Hara, and K. Gohji, Relative Expression of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 in Mouse Renal Cell Carcinoma Cells Regulates Their Metastatic Potential Relative Expression of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloprotein, Clin Cancer Res, pp.2824-2829, 1999.

L. Liotta, J. Kleinerman, and G. Saidel, The Significance of Hematogenous Tumor Cell Clumps in the Metastatic Process, Cancer Res, pp.889-894, 1976.

N. Aceto, A. Bardia, D. Miyamoto, M. Donaldson, B. Wittner et al., Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis, Cell, vol.158, issue.5, pp.1110-1122, 2014.
DOI : 10.1016/j.cell.2014.07.013

G. Steel and L. Lamerton, The growth rate of human tumours., British Journal of Cancer, vol.20, issue.1, pp.74-86, 1966.
DOI : 10.1038/bjc.1966.9

J. Talmadge and I. Fidler, Evidence for the clonal origin of spontaneous metastases, Science, vol.217, issue.4557, pp.361-363, 1982.
DOI : 10.1126/science.6953592

I. Fidler and J. Talmadge, Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell, Cancer Res, vol.46, pp.5167-5171, 1986.

C. Klein, Parallel progression of primary tumours and metastases, Nature Reviews Cancer, vol.12, issue.4, pp.302-312, 2009.
DOI : 10.1038/nrc2627

T. Wheldon, Mathematical models in cancer research, 1988.

A. Casey, The Experimental Alteration of Malignancy with an Homologous Mammalian Tumor Material: I. Results with Intratesticular Inoculation, Am J Cancer, vol.21, pp.760-775, 1934.

A. Laird, Dynamics of Tumor Growth, British Journal of Cancer, vol.18, issue.3, pp.490-502, 1964.
DOI : 10.1038/bjc.1964.55

L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res, vol.48, pp.7067-7071, 1988.

M. Lavielle, Mixed Effects Models for the Population Approach. Models, Tasks, Methods and Tools, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01122873

T. Mathworks, Matlab with statistics and optimization toolboxes, 2013.

N. Hartung, Efficient resolution of metastatic tumor growth models by reformulation into integral equations, Discrete and Continuous Dynamical Systems - Series B, vol.20, issue.2, pp.445-467, 2015.
DOI : 10.3934/dcdsb.2015.20.445

D. Ambrosi and L. Preziosi, ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH, Mathematical Models and Methods in Applied Sciences, vol.12, issue.05, pp.737-754, 2002.
DOI : 10.1142/S0218202502001878

B. Ribba, C. T. Schnell, and S. , A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.1, pp.7-16472396, 2006.
DOI : 10.1186/1742-4682-3-7

URL : https://hal.archives-ouvertes.fr/hal-00756367

D. Bresch, C. T. Grenier, E. Ribba, B. Saut, and O. , Computational Modeling of Solid Tumor Growth: The Avascular Stage, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.2321-2344, 2010.
DOI : 10.1137/070708895

URL : https://hal.archives-ouvertes.fr/inria-00148610

F. Montel, M. Delarue, J. Elgeti, D. Vignjevic, G. Cappello et al., Isotropic stress reduces cell proliferation in tumor spheroids, New Journal of Physics, vol.14, issue.5, p.55008, 2012.
DOI : 10.1088/1367-2630/14/5/055008

URL : https://hal.archives-ouvertes.fr/hal-01138975

T. Stylianopoulos, J. Martin, V. Chauhan, S. Jain, B. Diop-frimpong et al., Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors, Proceedings of the National Academy of Sciences, vol.109, issue.38, pp.15101-15108, 2012.
DOI : 10.1073/pnas.1213353109

T. Stylianopoulos, J. Martin, M. Snuderl, F. Mpekris, S. Jain et al., Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse, Cancer Research, vol.73, issue.13, pp.3833-3841, 2013.
DOI : 10.1158/0008-5472.CAN-12-4521

S. Hiratsuka, A. Watanabe, H. Aburatani, and Y. Maru, Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis, Nature Cell Biology, vol.17, issue.12, pp.1369-1375, 2006.
DOI : 10.1016/S0092-8674(00)80108-7

B. Psaila and D. Lyden, The metastatic niche: adapting the foreign soil, Nature Reviews Cancer, vol.3, issue.4, pp.285-293, 2009.
DOI : 10.1038/nrc2621

J. Joyce and J. Pollard, Microenvironmental regulation of metastasis, Nature Reviews Cancer, vol.19, issue.4, pp.239-252, 2009.
DOI : 10.1038/nrc2618

E. Ribot, D. Wecker, A. Trotier, W. Lefrançois, E. Thiaudière et al., Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively, PLOS ONE, vol.24, issue.2, p.26426849, 2015.
DOI : 10.1371/journal.pone.0139249.s003

E. Ribot, F. Martinez-santiesteban, C. Simedrea, P. Steeg, A. Chambers et al., In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T, Journal of Magnetic Resonance Imaging, vol.29, issue.1, pp.231-238, 2011.
DOI : 10.1002/jmri.22593

S. Miraux, P. Massot, E. Ribot, J. Franconi, and E. Thiaudiere, 3D TrueFISP imaging of mouse brain at 4.7T and 9.4T, Journal of Magnetic Resonance Imaging, vol.50, issue.2, pp.497-503, 2008.
DOI : 10.1002/jmri.21449