Probabilistic Connections for Bidirectional Path Tracing - Archive ouverte HAL Access content directly
Journal Articles Computer Graphics Forum Year : 2015

Probabilistic Connections for Bidirectional Path Tracing

(1) , (2) , (3) , (1)


Bidirectional Path Tracing Probabilistic Connections for Bidirectional Path Tracing Figure 1: Our Probabilistic Connections for Bidirectional Path Tracing approach importance samples connections to an eye sub-path, and greatly reduces variance, by considering and reusing multiple light sub-paths at once. Our approach (right) achieves much higher quality than bidirectional path-tracing on the left for the same computation time (~8.4 min).. Abstract Bidirectional path tracing (BDPT) with Multiple Importance Sampling is one of the most versatile unbiased rendering algorithms today. BDPT repeatedly generates sub-paths from the eye and the lights, which are connected for each pixel and then discarded. Unfortunately, many such bidirectional connections turn out to have low contribution to the solution. Our key observation is that we can importance sample connections to an eye sub-path by considering multiple light sub-paths at once and creating connections probabilistically. We do this by storing light paths, and estimating probability mass functions of the discrete set of possible connections to all light paths. This has two key advantages: we efficiently create connections with low variance by Monte Carlo sampling, and we reuse light paths across different eye paths. We also introduce a caching scheme by deriving an approximation to sub-path contribution which avoids high-dimensional path distance computations. Our approach builds on caching methods developed in the different context of VPLs. Our Probabilistic Connections for Bidirectional Path Tracing approach raises a major challenge, since reuse results in high variance due to correlation between paths. We analyze the problem of path correlation and derive a conservative upper bound of the variance, with computationally tractable sample weights. We present results of our method which shows significant improvement over previous unbiased global illumination methods, and evaluate our algorithmic choices.
Fichier principal
Vignette du fichier
submission_prepress.pdf (13.82 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01164842 , version 1 (17-06-2015)


  • HAL Id : hal-01164842 , version 1


Stefan Popov, Ravi Ramamoorthi, Fredo Durand, George Drettakis. Probabilistic Connections for Bidirectional Path Tracing. Computer Graphics Forum, 2015, Eurographics Symposium on Rendering, 34 (4), pp.12. ⟨hal-01164842⟩
147 View
202 Download


Gmail Facebook Twitter LinkedIn More