Skip to Main content Skip to Navigation
Journal articles

Probabilistic Connections for Bidirectional Path Tracing

Abstract : Bidirectional Path Tracing Probabilistic Connections for Bidirectional Path Tracing Figure 1: Our Probabilistic Connections for Bidirectional Path Tracing approach importance samples connections to an eye sub-path, and greatly reduces variance, by considering and reusing multiple light sub-paths at once. Our approach (right) achieves much higher quality than bidirectional path-tracing on the left for the same computation time (~8.4 min).. Abstract Bidirectional path tracing (BDPT) with Multiple Importance Sampling is one of the most versatile unbiased rendering algorithms today. BDPT repeatedly generates sub-paths from the eye and the lights, which are connected for each pixel and then discarded. Unfortunately, many such bidirectional connections turn out to have low contribution to the solution. Our key observation is that we can importance sample connections to an eye sub-path by considering multiple light sub-paths at once and creating connections probabilistically. We do this by storing light paths, and estimating probability mass functions of the discrete set of possible connections to all light paths. This has two key advantages: we efficiently create connections with low variance by Monte Carlo sampling, and we reuse light paths across different eye paths. We also introduce a caching scheme by deriving an approximation to sub-path contribution which avoids high-dimensional path distance computations. Our approach builds on caching methods developed in the different context of VPLs. Our Probabilistic Connections for Bidirectional Path Tracing approach raises a major challenge, since reuse results in high variance due to correlation between paths. We analyze the problem of path correlation and derive a conservative upper bound of the variance, with computationally tractable sample weights. We present results of our method which shows significant improvement over previous unbiased global illumination methods, and evaluate our algorithmic choices.
Document type :
Journal articles
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download
Contributor : Team Reves <>
Submitted on : Wednesday, June 17, 2015 - 11:58:50 PM
Last modification on : Monday, December 14, 2020 - 3:32:33 PM
Long-term archiving on: : Tuesday, September 15, 2015 - 6:11:35 PM


Files produced by the author(s)


  • HAL Id : hal-01164842, version 1



Stefan Popov, Ravi Ramamoorthi, Fredo Durand, George Drettakis. Probabilistic Connections for Bidirectional Path Tracing. Computer Graphics Forum, Wiley, 2015, Eurographics Symposium on Rendering, 34 (4), pp.12. ⟨hal-01164842⟩



Record views


Files downloads