$hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems

Abstract : We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, for spatially-varying polynomial degree, and for mixed rectangular-triangular grids possibly containing hanging nodes. They deliver a global error upper bound with constant one and, up to data oscillation, error lower bounds on element patches with a generic constant only dependent on the mesh regularity and with a computable bound. We numerically asses the estimates and several hp-adaptive strategies using the interior penalty discontinuous Galerkin method. Asymptotic exactness is observed for all the symmetric, nonsymmetric (odd degrees), and incomplete variants on non-nested unstructured triangular grids for a smooth solution and uniform refinement. Exponential convergence rates are reported on nonmatching triangular grids for the incomplete version on several benchmarks with a singular solution and adaptive refinement.
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (5), pp.A3220-A3246. 〈10.1137/15M1026687〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01165187
Contributeur : Martin Vohralik <>
Soumis le : lundi 27 juin 2016 - 15:27:12
Dernière modification le : vendredi 25 mai 2018 - 12:02:07

Fichier

Pub_hp_ref_16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vít Dolejší, Alexandre Ern, Martin Vohralík. $hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (5), pp.A3220-A3246. 〈10.1137/15M1026687〉. 〈hal-01165187v3〉

Partager

Métriques

Consultations de la notice

506

Téléchargements de fichiers

82