$hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems

Abstract : We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, for spatially-varying polynomial degree, and for mixed rectangular-triangular grids possibly containing hanging nodes. They deliver a global error upper bound with constant one and, up to data oscillation, error lower bounds on element patches with a generic constant only dependent on the mesh regularity and with a computable bound. We numerically asses the estimates and several hp-adaptive strategies using the interior penalty discontinuous Galerkin method. Asymptotic exactness is observed for all the symmetric, nonsymmetric (odd degrees), and incomplete variants on non-nested unstructured triangular grids for a smooth solution and uniform refinement. Exponential convergence rates are reported on nonmatching triangular grids for the incomplete version on several benchmarks with a singular solution and adaptive refinement.
Document type :
Journal articles
Complete list of metadatas

Cited literature [39 references]  Display  Hide  Download

https://hal.inria.fr/hal-01165187
Contributor : Martin Vohralik <>
Submitted on : Monday, June 27, 2016 - 3:27:12 PM
Last modification on : Friday, June 14, 2019 - 1:33:45 PM

File

Pub_hp_ref_16.pdf
Files produced by the author(s)

Identifiers

Citation

Vít Dolejší, Alexandre Ern, Martin Vohralík. $hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (5), pp.A3220-A3246. ⟨10.1137/15M1026687⟩. ⟨hal-01165187v3⟩

Share

Metrics

Record views

596

Files downloads

408