Uniform convergence of conditional distributions for absorbed one-dimensional diffusions

Nicolas Champagnat 1, 2 Denis Villemonais 1, 2
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
2 Probabilités et statistiques
IECL - Institut Élie Cartan de Lorraine
Abstract : This article studies the quasi-stationary behaviour of absorbed one-dimensional diffusions. We obtain a necessary and sufficient condition for the exponential convergence to a unique quasi-stationary distribution in total variation, uniformly with respect to the initial distribution. Our approach is based on probabilistic and coupling methods, contrary to the classical approach based on spectral theory results. We provide several conditions ensuring this criterion, which apply to most practical cases. As a by-product, we prove that most strict local martingale diffusions are strict in a stronger sense: their expectation at any given positive time is actually uniformly bounded with respect to the initial position. We provide several examples and extensions, including the sticky Brownian motion and some one-dimensional processes with jumps. We also give exponential ergodicity results on the Q-process.
Type de document :
Article dans une revue
Journal of Applied Probability, Applied Probability Trust, A Paraître
Liste complète des métadonnées

https://hal.inria.fr/hal-01166960
Contributeur : Nicolas Champagnat <>
Soumis le : vendredi 20 mai 2016 - 18:19:27
Dernière modification le : jeudi 11 janvier 2018 - 15:51:35

Fichiers

article_without_killing_1d_v2....
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01166960, version 1
  • ARXIV : 1506.02385

Citation

Nicolas Champagnat, Denis Villemonais. Uniform convergence of conditional distributions for absorbed one-dimensional diffusions. Journal of Applied Probability, Applied Probability Trust, A Paraître. 〈hal-01166960〉

Partager

Métriques

Consultations de la notice

260

Téléchargements de fichiers

56